Accuracy Verification and Correction of D-InSAR and SBAS-InSAR in Monitoring Mining Surface Subsidence
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methods
2.3.1. D-InSAR Subsidence Monitoring
2.3.2. SBAS-InSAR Subsidence Monitoring
3. Results
3.1. Overall Comparative Analysis of D-InSAR- and SBAS-InSAR-Monitored Results
3.2. Overall Comparative Analysis of D-InSAR- and SBAS-InSAR-Monitored Results
3.2.1. D-InSAR-, SBAS-InSAR- and Leveling-Monitored Results
3.2.2. Division of Different Subsidence Magnitude in the Mining Area
3.2.3. Comparison of InSAR- and Leveling-Monitored Results with Different Subsidence Magnitudes
4. Correction
4.1. Fitting Curves of Leveling- and InSAR-Monitored Errors
4.2. Relationship between Leveling and InSAR-Monitored Errors
4.3. Correction of InSAR Monitored Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zebker, H.A.; Villasenor, J. Decorrelation in interferometric radar echoes. IEEE Trans. Geosci. Remote Sens. 1992, 30, 950–959. [Google Scholar] [CrossRef] [Green Version]
- Zhou, D.W.; Qi, L.Z.; Zhang, D.M.; Zhou, B.H.; Guo, L.L. Unmanned Aerial Vehicle (UAV) Photogrammetry Technology for Dynamic Mining Subsidence Monitoring and Parameter Inversion: A Case Study in China. IEEE Access 2020, 8, 16372–16386. [Google Scholar] [CrossRef]
- Chang, M.; Liu, Y.; Zhou, C.; Che, H.X. Hazard assessment of a catastrophic mine waste debris flow of Hou Gully, Shimian, China. Eng. Geol. 2020, 275, 105733. [Google Scholar] [CrossRef]
- Wang, L.Y.; Deng, K.Z.; Zheng, M.N. Research on ground deformation monitoring method in mining areas using the probability integral model fusion D-InSAR, sub-band InSAR and offset-tracking. Int. J. Appl. Earth Obs. Geoinf. 2019, 85, 101981. [Google Scholar] [CrossRef]
- Yang, Z.F.; Li, Z.W.; Zhu, J.J.; Yi, H.W.; Feng, G.C.; Hu, J.; Wu, L.X.; Preusse, A.; Wang, Y.J.; Papst, M. Locating and defining underground goaf caused by coal mining from space-borne SAR interferometry. ISPRS J. Photogramm. Remote Sens. 2018, 135, 112–126. [Google Scholar] [CrossRef]
- Klein, E.; Vigny, C.; Fleitout, L.; Grandin, R.; Jolivet, R.; Rivera, E.; Métois, M. A comprehensive analysis of the Illapel 2015 Mw8.3 earthquake from GPS and InSAR data. Earth Planet. Sci. Lett. 2017, 469, 123–134. [Google Scholar] [CrossRef] [Green Version]
- Acosta, G.; Rodríguez, A.; Euillades, P.; Euillades, L.; García, H. Detection of active landslides by DInSAR in Andean Precordillera of San Juan, Argentina. J. S. Am. Earth Sci. 2021, 108, 103205. [Google Scholar] [CrossRef]
- Novellis, D.V.; Castaldo, R.; Luca, C.D.; Pepe, S.; Zinno, I.; Casu, F.; Lanari, R.; Solaro, G. Source modelling of the 2015 Wolf volcano (Galápagos) eruption inferred from Sentinel 1-A DInSAR deformation maps and pre-eruptive ENVISAT time series. J. Volcanol. Geotherm. Res. 2017, 344, 246–256. [Google Scholar] [CrossRef]
- Budetta, P.; Nappi, M.; Santoro, S.; Scalese, G. DinSAR monitoring of the landslide activity affecting a stretch of motorway in the Campania region of Southern Italy. Transp. Res. Procedia 2020, 45, 285–292. [Google Scholar] [CrossRef]
- Tzampoglou, P.; Loupasakis, C. Evaluating geological and geotechnical data for the study of land subsidence phenomena at the perimeter of the Amyntaio coalmine, Greece. Int. J. Min. Sci. Technol. 2018, 28, 601–612. [Google Scholar] [CrossRef]
- Chen, B.Q.; Li, Z.H.; Chen, Y.; Fairbairn, D.; Kang, J.R.; Hu, J.S.; Liang, L. Three-dimensional time-varying large surface displacements in coal exploiting areas revealed through integration of SAR pixel offset measurements and mining subsidence model. Remote Sens. Environ. 2020, 240, 111663. [Google Scholar] [CrossRef]
- Ren, H.R.; Feng, X.M. Calculating vertical deformation using a single InSAR pair based on singular value decomposition in mining areas. Int. J. Appl. Earth Obs. Geoinf. 2020, 92, 102115. [Google Scholar] [CrossRef]
- Du, Y.L.; Yan, S.Y.; Yang, H.N.; Jiang, J.X.; Zhao, F. Investigation of deformation patterns by DS-InSAR in a coal resource-exhausted region with spaceborne SAR imagery. J. Asian Earth Sci. 2021, 5, 100049. [Google Scholar] [CrossRef]
- Liu, Z.G.; Bian, Z.F.; Lv, F.X.; Dong, B.Q. Monitoring on subsidence due to repeated excavation with D-InSAR technology. Int. J. Min. Sci. Technol. 2013, 23, 173–178. [Google Scholar] [CrossRef]
- Zhang, L.L.; Cai, X.X.; Wang, Y.; Wei, W.; Liu, B.; Jia, S.L.; Pang, T.F.; Bai, F.Z.; Wei, Z.M. Long-term ground multi-level deformation fusion and analysis based on a combination of deformation prior fusion model and OTD-InSAR for longwall mining activity. Measurement 2020, 161, 107911. [Google Scholar] [CrossRef]
- Modeste, G.; Doubre, C.; Masson, F. Time evolution of mining-related residual subsidence monitored over a 24-year period using InSAR in southern Alsace, France. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102392. [Google Scholar] [CrossRef]
- Ghzala, K.; Tounsi, Y.; Muhire, D.; Nassim, A. Land motion detection in central Rwanda using small baseline subset interferometry. Remote Sens. Appl. Soc. Environ. 2021, 21, 100430. [Google Scholar] [CrossRef]
- Yalvac, S. Validating InSAR-SBAS results by means of different GNSS analysis techniques in medium- and high-grade deformation areas. Environ. Monit. Assess. 2020, 192, 1–12. [Google Scholar] [CrossRef]
- Wei, T.; Mahdi, M.; Wei, Z. Monitoring active open-pit mine stability in the Rhenish coalfields of Germany using a coherence-based SBAS method. Int. J. Appl. Earth Obs. Geoinf. 2020, 93, 102217. [Google Scholar] [CrossRef]
- Miranda, S.F.; Hernández-Madrigal, V.M.; Tuxpan-Vargas, J.; Reyes, C.I.V. Evolution assessment of structurally-controlled differential subsidence using SBAS and PS interferometry in an emblematic case in Central Mexico. Eng. Geol. 2020, 279, 105860. [Google Scholar] [CrossRef]
- Du, Z.Y.; Ge, L.L.; Ng, A.H.M.; Zhu, Q.G.Z.; Horgan, F.G.; Zhang, Q. Risk assessment for tailings dams in Brumadinho of Brazil using InSAR time series approach. Sci. Total. Environ. 2020, 717, 137125. [Google Scholar] [CrossRef]
- Carlà, T.; Farina, P.; Intrieri, E.; Hakki, K.; Casagli, N. Integration of ground-based radar and satellite InSAR data for the analysis of an unexpected slope failure in an open-pit mine. Eng. Geol. 2018, 235, 39–52. [Google Scholar] [CrossRef]
- Luo, H.B.; Li, Z.H.; Chen, J.J.; Pearson, C.; Wang, M.M.; Lv, W.C.; Ding, H.Y. Integration of Range Split Spectrum Interferometry and conventional InSAR to monitor large gradient surface displacements. Int. J. Appl. Earth Obs. Geoinf. 2018, 74, 130–137. [Google Scholar] [CrossRef] [Green Version]
- Gama, F.F.; Cantone, A.; Mura, J.C.; Pasquali, P.; Paradella, W.R.; Dos-Santos, A.R.; Silva, G.G. Monitoring subsidence of open pit iron mines at Carajás Province based on SBAS interferometric technique using TerraSAR-X data. Remote Sens. Appl. Soc. Environ. 2017, 8, 199–211. [Google Scholar] [CrossRef]
- Pillot, B.; Muselli, M.; Poggi, P.; Haurant, P.; Dias, J.B. Development and validation of a new efficient SRTM DEM-based horizon model combined with optimization and error prediction methods. Sol. Energy 2016, 129, 101–115. [Google Scholar] [CrossRef] [Green Version]
- Massonnet, D.; Rossi, M.; Carmona, C.; Adragna, F.; Peltzer, G.; Feigl, K.; Rabaute, T. The displacement field of the Landers earthquake mapped by rader interferometry. Nature 1993, 364, 138–142. [Google Scholar] [CrossRef]
- Jiang, T.C. Ameliorative Minimum Cost Flow Algorithm for Phase Unwrapping. Procedia Environ. Sci. 2011, 10, 2560–2566. [Google Scholar] [CrossRef] [Green Version]
- Sabrian, P.G.; Saepuloh, A.; Kashiwaya, K.; Koike, K. Combined SBAS-InSAR and geostatistics to detect topographic change and fluid paths in geothermal areas. J. Volcanol. Geotherm. Res. 2021, 416, 107272. [Google Scholar] [CrossRef]
- Rodriguez, E.; Martin, J.M. Theory and design of interferometric synthetic aperture radars. IEE Proc. Radar 1992, 139, 147–159. [Google Scholar] [CrossRef]
- Tao, Q.X.; Ding, L.J.; Hu, L.Y.; Chen, Y.; Liu, T.W. The performance of LS and SVD methods for SBAS InSAR deformation model solutions. Int. J. Remote Sens. 2020, 41, 8547–8572. [Google Scholar] [CrossRef]
- Vu, T.; Chunikhina, E.; Raich, R. Perturbation expansions and error bounds for the truncated singular value decomposition. Linear Algebra Appl. 2021, 627, 94–139. [Google Scholar] [CrossRef]
- Liu, B.C.; Dai, H.Y. Research development and origin of Probability Integral Method. J. Min. Strat. Control. Eng. 2016, 21, 1–3. [Google Scholar]
No | Strike Length/m | Dip Length/m | Mining Period | No | Strike Length/m | Dip Length/m | Mining Period |
---|---|---|---|---|---|---|---|
I | 1800 | 200 | 2010/11–2013/01 | VIII | 573 | 223 | 2011/07–2012/03 |
II | 400 | 190 | 2010/01–2010/06 | IX | 770 | 171 | 2012/12–2013/08 |
III | 2070 | 210 | 2012/06–2015/08 | X | 1800 | 102 | 2014/12–2015/06 |
IV | 800 | 130 | 2010/09–2011/03 | XII | 1350 | 143 | 2016/01–2016/10 |
V | 1823 | 224 | 2013/09–2016/08 | XIV | 243 | 107 | 2016/04–2016/06 |
VI | 690 | 110 | 2015/02–2015/11 | XVI | 185 | 380 | 2016/10–2017/01 |
VII | 1150 | 240 | 2016/04 to present |
No | Imaging Date | Orbit | No | Imaging Date | Orbit |
---|---|---|---|---|---|
1 | 2015/08/23 | 7389 | 9 | 2016/03/26 | 10,539 |
2 | 2015/09/16 | 7739 | 10 | 2016/04/19 | 10,889 |
3 | 2015/10/10 | 8089 | 11 | 2016/06/30 | 11,939 |
4 | 2015/11/03 | 8439 | 12 | 2016/07/24 | 12,289 |
5 | 2015/11/27 | 8789 | 13 | 2016/08/29 | 12,814 |
6 | 2015/12/21 | 9139 | 14 | 2016/10/04 | 13,339 |
7 | 2016/01/14 | 9489 | 15 | 2016/11/09 | 13,864 |
8 | 2016/03/02 | 10,189 | 16 | 2016/12/03 | 14,214 |
Cumulative Mean Absolute Error/mm | Cumulative Root Mean Square Error/mm | Cumulative Maximum Absolute Error/mm | Cumulative Absolute Error at Maximum Settlement Point/mm | ||
---|---|---|---|---|---|
D-InSAR | Dip line | 203 | 291 | 659 | 643 |
Strike line | 349 | 433 | 923 | 923 | |
SBAS-InSAR | Dip line | 338 | 480 | 1049 | 1049 |
Strike line | 457 | 550 | 1079 | 1079 |
Cumulative Mean Absolute Error/mm | Cumulative Root Mean Square Error/mm | Cumulative Maximum Absolute Error/mm | Cumulative Absolute Error at Maximum Settlement Point/mm | ||
---|---|---|---|---|---|
Corrected D-InSAR | Dip line | 52 | 75 | 187 | 9 |
Strike line | 106 | 144 | 324 | 271 | |
Corrected SBAS-InSAR | Dip line | 71 | 89 | 227 | 84 |
Strike line | 106 | 131 | 338 | 114 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Yu, S.; Tao, Q.; Liu, G.; Wang, L.; Wang, F. Accuracy Verification and Correction of D-InSAR and SBAS-InSAR in Monitoring Mining Surface Subsidence. Remote Sens. 2021, 13, 4365. https://doi.org/10.3390/rs13214365
Chen Y, Yu S, Tao Q, Liu G, Wang L, Wang F. Accuracy Verification and Correction of D-InSAR and SBAS-InSAR in Monitoring Mining Surface Subsidence. Remote Sensing. 2021; 13(21):4365. https://doi.org/10.3390/rs13214365
Chicago/Turabian StyleChen, Yang, Shengwen Yu, Qiuxiang Tao, Guolin Liu, Luyao Wang, and Fengyun Wang. 2021. "Accuracy Verification and Correction of D-InSAR and SBAS-InSAR in Monitoring Mining Surface Subsidence" Remote Sensing 13, no. 21: 4365. https://doi.org/10.3390/rs13214365