A Review of Irrigation Information Retrievals from Space and Their Utility for Users
Abstract
:1. Introduction
- To provide a comprehensive review of studies that have attempted to map irrigation, more specifically (i) where irrigation occurs, i.e., mapping methods, (ii) when irrigation occurs (frequency of irrigation), i.e., timing methods, and (iii) how much irrigation is applied. Reviewed studies include: (i) methods based on ground measurements and local statistics, (ii) remote sensing-based methods including multispectral, microwave, and gravimetric measurements, and (iii) methods based on modeling and data assimilation.
- To report the results of a survey about user requirements on irrigation management in small-scale farming that targeted ten companies and organizations representative of the Mediterranean area (Spain, Italy, and France).
- To confront the review of irrigation mapping studies with the user requirements survey in order to assess whether current remote sensing and modeling-based irrigation products can meet the requirements of actors working in the field of water resource management and agriculture.
- To provide recommendations and guidelines for the future development of improved irrigation mapping techniques to help us meet the demands of farmers and stakeholders.
2. Irrigation Mapping with Ground Observations and National Statistics
3. Irrigation Remote Sensing
3.1. Visible- and Near-Infrared-Based Methods
3.1.1. Mapping Methods
3.1.2. Quantification Methods
3.2. Microwave-Based Methods
3.2.1. Mapping Methods
3.2.2. Quantification Methods
3.3. Gravimetry-Based Methods
4. Irrigation Modeling and Data Assimilation
5. The User Perspective: Observation Requirements and Current Obstacles
5.1. User Characteristics
5.2. Current Practices Versus Current Satellite Capabilities
5.2.1. Management Systems
5.2.2. Irrigation Strategies
5.2.3. Employed Technology
5.3. Operational Observation Requirements
6. Synthesis and Future Perspectives
- (1)
- The information of irrigation collected in situ is very limited due to the reluctance of farmers and managers to share these data [137], and the difficulty to collect data at global and regional levels. This poses a big challenge for the understanding of energy, water, and carbon cycles, climate interactions and future projections, sustainable agriculture and water management, food production, and water security.
- (2)
- Estimates of areas equipped for irrigation, derived from inventories of national and local authorities, have partially covered this gap, but being mainly based on statistics and sparsely and historically collected information, they are likely to be inaccurate and inhomogeneous. Moreover, this information is static and thus does not say when, where, and how much irrigation has been applied. Despite these limitations, these data remain a reference for many applications, including global hydrological modeling, modeling of changes in crop productivity, or climate impact assessments.
- (3)
- In the last twenty years, there has been a substantial improvement in both spectral, spatial, and temporal resolution of Earth observations, which has boosted methodological developments. A first advance was to separate the identification of irrigated areas from general land cover classification approaches. A second advance came with improvements in spatial resolution, which allowed for more accurate assessments of irrigated areas [123,145] that do not hinge on information about the fraction of irrigated area within low-resolution pixels. A third advance was the synergetic use of various satellite, climatic, and ecoregions time series instead of vegetation index time series alone.
- (4)
- The automation of high-resolution time series processing has benefited greatly from the emergence of platforms that allow the parallel processing of big amounts of data, such as Google Earth Engine, Amazon, or the European DIAS. The technological advances have made it feasible to estimate the irrigated area at ever smaller time steps, progressing from a decadal overview of the areas equipped for irrigation toward the actual irrigated area at the beginning of the season, also thanks to the continuous development of new machine learning and classification methods which so far relied mainly upon supervised types of algorithms. The lack of the real data to guide these algorithms, especially over data-scarce regions, surely demands for a more massive use of unsupervised techniques [146,147].
- (5)
- Microwave-based observations and their combination with optical data and models have provided new ways to map irrigated areas. Previous work using coarse-scale and disaggregated soil moisture products have shown potential for retrieving information of irrigation from space, but also have several limitations associated with: (i) the noise of these products compared to the strength of the irrigation signal, and (ii) the scale mismatch between the satellite footprint and the size of the irrigated fields. In this context, SAR data have demonstrated to be a viable way to provide information on irrigation mapping and researchers are currently exploring ways to retrieve quantitative irrigation estimates from them as well. The latter is, however, more challenging compared to simple irrigated area mapping.
- (6)
- Visible, near-infrared, and microwave-based methods have all demonstrated a certain ability to quantify volumes of applied irrigation. However, VNIR observations—besides their inherent limitations due to cloud cover—can theoretically only provide the consumptive water use (i.e., the amount of water that is transpired by the crop and evaporated from the soil), and thus neglect the amount of water infiltrating to the subsurface, or MW observations have been demonstrated to be sensitive to noise and vegetation as well as to the satellite revisit time. Indeed, the temporal frequency is a crucial factor to reproduce the spatio-temporal dynamics of irrigation. In fact, the irrigation frequency depends on many factors (e.g., climatic conditions, crop type, water availability) and low-frequency data are often not able to detect irrigation events occurring at a not-negligible time distance from the acquisition.
- (7)
- Hardly affected by surface conditions, gravimetric measurements derived from GRACE and its successor GRACE-FO could provide important information on irrigation, but the spatial and temporal resolution achievable with these instruments have so far limited their application to only very large areas.
- (8)
- Most studies addressing the quantification of irrigation have employed modeling components, which potentially exhibit large uncertainties due to the need of a suitable parameterization and high-quality input observations (especially land cover and soil maps in land surface and hydrological models). For instance, the means of irrigation (i.e., sprinkler, drip, or flood) strongly affects the daily timing and quantity of irrigation water applied, while input data providing information on irrigated areas and starting of the growing season are required but rarely available. Additionally, modeled irrigation schemes generally ignore the source of applied water (i.e., surface water or groundwater), thus not allowing an integrated water resource analysis.
- (9)
- Considering that there has been increasing interest in understanding both the role of the irrigation on land–atmosphere interactions [148] and the impact of irrigation on water resources [149], coupling remote sensing information with land surface models for an improved representation of anthropogenic activities seems to be a key challenge to be addressed in the near future (e.g., [119,150]).
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO 2016. AQUASTAT Database. Available online: https://www.fao.org/aquastat/en/ (accessed on 29 July 2021).
- Gleick, P.H.; Allen, L.; Christian-Smith, J.; Cohen, M.J.; Cooley, H.; Heberger, M.; Eli Moore, E.; Morrison, J.; Orr, S.; Schulte, P.; et al. The World’s Water: The Biennial Report on Freshwater Resources; Island Press: Washington, DC, USA, 2012. [Google Scholar]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Cinnell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozdogan, M.; Yang, Y.; Allez, G.; Cervantes, C. Remote sensing of irrigated agriculture: Opportunities and challenges. Remote Sens. 2010, 2, 2274–2304. [Google Scholar] [CrossRef] [Green Version]
- Matthews, O.P.; Germain, D.S. Boundaries and transboundary water conflicts. J. Water Resour. Plan. Manag. 2007, 133, 386–396. [Google Scholar] [CrossRef]
- Fader, M.; Shi, S.; von Bloh, W.; Bondeau, A.; Cramer, W. Mediterranean irrigation under climate change: More efficient irrigation needed to compensate for increases in irrigation water requirements. Hydrol. Earth Syst. Sci. 2016, 20, 953–973. [Google Scholar] [CrossRef] [Green Version]
- Tramblay, Y.; Llasat, M.C.; Randin, C.; Coppola, E. Climate change impacts on water resources in the Mediterranean. Reg. Environ. Chang. 2020, 20, 83. [Google Scholar] [CrossRef]
- Rosa, L.; Chiarelli, D.D.; Sangiorgio, M.; Beltran-Peña, A.A.; Rulli, M.C.; D’Odorico, P.; Fung, I. Potential for sustainable irrigation expansion in a 3 °C warmer climate. Proc. Natl. Acad. Sci. USA 2020, 117, 29526–29534. [Google Scholar] [CrossRef]
- Döll, P.; Siebert, S. Global modelling of irrigation water requirements. Water Resour. Res. 2002, 38, 8.1–8.10. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; Green, P.; Salisbury, J.; Lammers, R.B. Global water resources: Vulnerability from climate change and population growth. Science 2000, 289, 284–288. [Google Scholar] [CrossRef] [Green Version]
- Alter, R.E.; Im, E.S.; Eltahir, E.A. Rainfall consistently enhanced around the Gezira Scheme in East Africa due to irrigation. Nat. Geosci. 2015, 8, 763–767. [Google Scholar] [CrossRef]
- Haddeland, I.; Skaugen, T.; Lettenmaier, D.P. Hydrologic effects of land and water management in North America and Asia: 1700–1992. Hydrol. Earth Syst. Sci. 2007, 11, 1035–1045. [Google Scholar] [CrossRef] [Green Version]
- Breña-Naranjo, J.A.; Kendall, A.D.; Hyndman, D.W. Improved methods for satellite-based groundwater storage estimates: A decade of monitoring the high plains aquifer from space and ground observations. Geophys. Res. Lett. 2014, 41, 6167–6173. [Google Scholar] [CrossRef]
- Hu, X.; Shi, L.; Zeng, J.; Yang, J.; Zha, Y.; Yao, Y.; Cao, G. Estimation of actual irrigation amount and its impact on groundwater depletion: A case study in the Hebei Plain, China. J. Hydrol. 2016, 543, 433–449. [Google Scholar] [CrossRef]
- Le Page, M.; Berjamy, B.; Fakir, Y.; Bourgin, F.; Jarlan, L.; Abourida, A.; Benrhamen, M.; Jacob, G.; Huber, M.; Sghrer, F.; et al. An integrated DSS for groundwater management based on remote sensing. the case of a semi-arid aquifer in morocco. Water Resour. Manag. 2012, 26, 3209–3230. [Google Scholar] [CrossRef] [Green Version]
- Le Page, M.; Jarlan, L.; El Hajj, M.M.; Zribi, M.; Baghdadi, N.; Boone, A. Potential for the detection of irrigation events on maize plots using sentinel-1 soil moisture products. Remote Sens. 2020, 12, 1621. [Google Scholar] [CrossRef]
- Bretreger, D.; Yeo, I.-Y.; Hancock, G.; Willgoose, G. Monitoring irrigation using landsat observations and climate data over regional scales in the Murray-Darling Basin. J. Hydrol. 2020, 590, 125356. [Google Scholar] [CrossRef]
- Foster, T.; Gonçalves, I.Z.; Campos, I.; Neale, C.M.U.; Brozović, N. Assessing landscape scale heterogeneity in irrigation water use with remote sensing and in situ monitoring. Environ. Res. Lett. 2019, 14, 024004. [Google Scholar] [CrossRef]
- OECD. Drying Wells, Rising Stakes: Towards Sustainable Agricultural Ground-Water Use; OECD: Paris, France, 2015. [Google Scholar]
- Copernicus—The European Earth Observation Programme. Available online: https://ec.europa.eu/growth/sectors/space/copernicus_en (accessed on 29 July 2021).
- Bartholomé, E.; Belward, A.S. GLC2000: A new approach to global land cover mapping from Earth observation data. Int. J. Remote Sens. 2005, 26, 1959–1977. [Google Scholar] [CrossRef]
- Tateishi, R.; Zhu, L.; Sato, H.P. GLC2000 Database. The Land Cover Map for Central Asia for the Year 2000. European Commision Joint Research Centre. 2003. Available online: https://forobs.jrc.ec.europa.eu/products/glc2000/publications.php (accessed on 13 October 2021).
- Thenkabail, P.S.; Biradar, C.M.; Turral, H.; Noojipady, P.; Li, Y.J.; Vithanage, J.; Dheeravath, V.; Velpuri, M.; Schull, M.; Cai, X.L.; et al. An Irrigateed Area Map of the World (1999) Derived from Remote Sensing; Research Report 105; International Water Management Institute: Colombo, Sri Lanka, 2006. [Google Scholar]
- ESA. Land Cover CCI Product User Guide Version 2. Tech. Rep. 2017. Available online: Maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf (accessed on 13 October 2021).
- Portmann, F.T.; Siebert, S.; Döll, P. MIRCA2000-Global monthly irrigated and rainfed crop areas around the year 2000: A new high-resolution data set for agricultural and hydrological modeling. Glob. Biogeochem. Cycles 2010, 24, GB1011. [Google Scholar] [CrossRef]
- Siebert, S.; Kummu, M.; Porkka, M.; Döll, P.; Ramankutty, N.; Scanlon, B.R. A global data set of the extent of irrigated land from 1900 to 2005. Hydrol. Earth Syst. Sci. 2015, 19, 1521–1545. [Google Scholar] [CrossRef] [Green Version]
- Siebert, S.; Döll, P.; Hoogeveen, J.; Faures, J.-M.; Frenken, K.; Feick, S. Development and validation of the global map of irrigation areas. Hydrol. Earth Syst. Sci. 2005, 9, 535–547. [Google Scholar] [CrossRef]
- Hoffman, R.O.; Edwards, D.E.; Wallin, G.; Burton, T. Remote sensing instrumentation and methods used for identifying center pivot sprinkler irrigation systems and estimating crop water use. Proc. Int. Semin. Expo. Water Resour. Instrum. 2013, 312–317. [Google Scholar]
- Loveland, T.R.; Reed, B.C.; Brown, J.F.; Ohlen, D.O.; Zhu, Z.; Yang, L.W.M.J.; Merchant, J.W. Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. Int. J. Remote Sens. 2000, 21, 1303–1330. [Google Scholar] [CrossRef]
- Deines, J.M.; Kendall, A.D.; Hyndman, D.W. Annual irrigation dynamics in the US Northern High Plains derived from Landsat satellite data. Geophys. Res. Lett. 2017, 44, 9350–9360. [Google Scholar] [CrossRef]
- Peña-Arancibia, J.L.; McVicar, T.R.; Paydar, Z.; Li, L.; Guerschman, J.P.; Donohue, R.J.; Dutta, D.; Podger, G.M.; van Dijk, A.I.J.M.; Chiew, F.H.S. Dynamic identification of summer cropping irrigated areas in a large basin experiencing extreme climatic variability. Remote Sens. Environ. 2014, 154, 139–152. [Google Scholar] [CrossRef]
- Ozdogan, M.; Gutman, G. A new methodology to map irrigated areas using multi-temporal MODIS and ancillary data: An application example in the continental US. Remote Sens. Environ. 2008, 112, 3520–3537. [Google Scholar] [CrossRef] [Green Version]
- Nagaraj, D.; Proust, E.; Todeschini, A.; Rulli, M.C.; D’Odorico, P. A new dataset of global irrigation areas from 2001 to 2015. Adv. Water Resour. 2021, 152, 103910. [Google Scholar] [CrossRef]
- Ambika, A.K.; Wardlow, B.; Mishra, V. Remotely sensed high resolution irrigated area mapping in India for 2000 to 2015. Sci. Data 2016, 3, 160118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meier, J.; Zabel, F.; Mauser, W. A global approach to estimate irrigated areas—a comparison between different data and statistics. Hydrol. Earth Syst. Sci. 2018, 22, 1119–1133. [Google Scholar] [CrossRef] [Green Version]
- Pervez, M.S.; Brown, J.F. Mapping irrigated lands at 250-m scale by merging MODIS data and national agricultural statistics. Remote Sens. 2010, 2, 2388–2412. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Zhao, A.; Li, Y.; Liu, X. Agricultural irrigation requirements under future climate scenarios in China. J. Arid. Land 2015, 7, 224–237. [Google Scholar] [CrossRef] [Green Version]
- Salmon, J.M.; Friedl, M.A.; Frolking, S.; Wisser, D.; Douglas, E.M. Global rain-fed, irrigated, and paddy croplands: A new high resolution map derived from remote sensing, crop inventories and climate data. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 321–334. [Google Scholar] [CrossRef]
- Jin, N.; Tao, B.; Ren, W.; Feng, M.; Sun, R.; He, L.; Zhuang, W.; Yu, Q. Mapping irrigated and rainfed wheat areas using multi-temporal satellite data. Remote Sens. 2016, 8, 207. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Lu, D.; Luo, L.; Pokhrel, Y.; Deb, K.; Huang, J.; Ran, Y. Detecting irrigation extent, frequency, and timing in a heterogeneous arid agricultural region using MODIS time series, Landsat imagery, and ancillary data. Remote Sens. Environ. 2018, 204, 197–211. [Google Scholar] [CrossRef]
- Ferrant, S.; Caballero, Y.; Perrin, J.; Gascoin, S.; Dewandel, B.; Aulong, S.; Dazin, F.; Ahmed, S.; Maréchal, J.C. Projected impacts of climate change on farmers’ extraction of groundwater from crystalline aquifers in South India. Sci. Rep. 2014, 4, 1377–1406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrant, S.; Selles, A.; Le Page, M.; Herrault, P.-A.; Pelletier, C.; Al-Bitar, A.; Mermoz, S.; Gascoin, S.; Bouvet, A.; Saqalli, M.; et al. Detection of irrigated crops from sentinel-1 and sentinel-2 data to estimate seasonal groundwater use in South India. Remote Sens. 2017, 9, 1119. [Google Scholar] [CrossRef] [Green Version]
- Ferrant, S.; Selles, A.; Le Page, M.; AlBitar, A.; Mermoz, S.; Gascoin, S.; Bouvet, A.; Ahmed, S.; Kerr, Y. Sentinel-1&2 for near real time cropping pattern monitoring in drought prone areas. application to irrigation water needs in telangana, south-india. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 285–292. [Google Scholar] [CrossRef] [Green Version]
- Demarez, V.; Helen, F.; Marais-Sicre, C.; Baup, F. In-season mapping of irrigated crops using landsat 8 and sentinel-1 time series. Remote Sens. 2019, 11, 118. [Google Scholar] [CrossRef] [Green Version]
- Pageot, Y.; Baup, F.; Inglada, J.; Baghdadi, N.; Demarez, V. Detection of irrigated and rainfed crops in temperate areas using sentinel-1 and sentinel-2 time series. Remote Sens. 2020, 12, 3044. [Google Scholar] [CrossRef]
- Deines, J.M.; Kendall, A.D.; Crowley, M.A.; Rapp, J.; Cardille, J.A.; Hyndman, D.W. Mapping three decades of annual irrigation across the US high plains aquifer using landsat and Google Earth Engine. Remote Sens. Environ. 2019, 233, 111400. [Google Scholar] [CrossRef]
- Xu, X.; Chen, F.; Barlage, M.; Gochis, D.; Miao, S.; Shen, S. Lessons learned from modeling irrigation from field to regional scales. J. Adv. Modeling Earth Syst. 2019, 11, 2428–2448. [Google Scholar] [CrossRef] [Green Version]
- Zohaib, M.; Kim, H.; Choi, M. Detecting global irrigated areas by using satellite and reanalysis products. Sci. Total. Environ. 2019, 677, 679–691. [Google Scholar] [CrossRef] [PubMed]
- McAllister, A.; Whitfield, D.; Abuzar, M. Mapping irrigated farmlands using vegetation and thermal thresholds derived from landsat and ASTER data in an irrigation district of Australia. Photogramm. Eng. Remote Sens. 2015, 81, 229–238. [Google Scholar] [CrossRef]
- Pun, M.; Mutiibwa, D.; Li, R. Land use classification: A surface energy balance and vegetation index application to map and monitor irrigated lands. Remote Sens. 2017, 9, 1256. [Google Scholar] [CrossRef] [Green Version]
- Duchemin, B.; Hadria, R.; Erraki, S.; Boulet, G.; Maisongrande, P.; Chehbouni, A.; Escadafal, R.; Ezzahar, J.; Hoedjes, J.C.B.; Kharrou, M.H.; et al. Monitoring wheat phenology and irrigation in Central Morocco: On the use of relationships between evapotranspiration, crops coefficients, leaf area index and remotely-sensed vegetation indices. Agric. Water Manag. 2006, 79, 1–27. [Google Scholar] [CrossRef]
- Consoli, S.; Cirelli, G.L.; Toscano, A. Monitoring crop coefficient of orange orchards using energy balance and the remote sensed NDVI. In Remote Sensing for Agriculture, Ecosystems, and Hydrology VIII; Owe, M., D’Urso, G., Neale, C.M.U., Gouweleeuw, B.T., Eds.; SPIE: Stockholm, Sweden, 2006; Volume 6359, pp. 179–189. [Google Scholar] [CrossRef]
- de Oliveira, R.M.; da Cunha, F.F.; da Silva, G.H.; Andrade, L.M.; de Morais, C.V.; Ferreira, P.M.O.; Raimundi, F.P.G.; Freitas, A.R.; de Souza, C.M.; de Oliveira, R.A. Evapotranspiration and crop coefficients of Italian zucchini cultivated with recycled paper as mulch. PLoS ONE 2020, 15, 1–16. [Google Scholar] [CrossRef]
- French, A.N.; Hunsaker, D.J.; Sanchez, C.A.; Saber, M.; Gonzalez, J.R.; Anderson, R. Satellite-based NDVI crop coefficients and evapotranspiration with eddy covariance validation for multiple durum wheat fields in the US Southwest. Agric. Water Manag. 2020, 239, 106266. [Google Scholar] [CrossRef]
- Guerschman, J.P.; Van Dijk, A.I.J.M.; Mattersdorf, G.; Beringer, J.; Hutley, L.B.; Leuning, R.; Pipunic, R.C.; Sherman, B.S. Scaling of potential evapotranspiration with MODIS data reproduces flux observations and catchment water balance observations across Australia. J. Hydr. 2009, 369, 107–119. [Google Scholar] [CrossRef]
- Hunsaker, D.J.; Fitzgerald, G.J.; French, A.N.; Clarke, T.R.; Ottman, M.J.; Pinter, P.J. Wheat irrigation management using multispectral crop coefficients: I. Crop evapotranspiration prediction. Trans. ASABE 2007, 50, 2017–2033. [Google Scholar] [CrossRef]
- Kamble, B.; Kilic, A.; Hubbard, K.; French, A.; Hunsaker, D.; Sanchez, C.A.; Saber, M.; Gonzalez, J.R.; Anderson, R.; Farg, E.; et al. Estimation of evapotranspiration ETc and crop coefficient Kc of wheat, in south nile delta of egypt using integrated FAO-56 approach and remote sensing data. Remote Sens. 2012, 239, 83–89. [Google Scholar] [CrossRef] [Green Version]
- Kamble, B.; Kilic, A.; Hubbard, K. Estimating crop coefficients using remote sensing-based vegetation index. Remote Sens. 2013, 5, 1588–1602. [Google Scholar] [CrossRef] [Green Version]
- Mutiibwa, D.; Irmak, S. AVHRR-NDVI-based crop coefficients for analyzing long-term trends in evapotranspiration in relation to changing climate in the U.S. High Plains. Water Resour. Res. 2013, 49, 231–244. [Google Scholar] [CrossRef] [Green Version]
- Allen, R.G.; Pereira, L.; Raes, D.; Smith, M. FAO Irrigation and Drainage Paper No. 56; Food and Agriculture Organization of the United Nations: Rome, Italy, 1998; Volume 56, pp. 26–40. [Google Scholar]
- Allen, R.G.; Pereira, L.; Smith, M.; Raes, D.; Wright, J.L. FAO-56 dual crop coefficient method for estimating evaporation from soil and application extensions. J. Irrig. Drain. Eng. 2005, 131, 2–13. [Google Scholar] [CrossRef] [Green Version]
- Hunink, J.E.; Eekhout, J.P.C.; de Vente, J.; Contreras, S.; Droogers, P.; Baille, A. Hydrological modelling using satellite-based crop coefficients: A comparison of methods at the basin scale. Remote Sens. 2017, 9, 174. [Google Scholar] [CrossRef] [Green Version]
- Hunsaker, D.J.; Pinter, P.J.; Barnes, E.M.; Kimball, B.A. Estimating cotton evapotranspiration crop coefficients with a multispectral vegetation index. Irrig. Sci. 2003, 22, 95–104. [Google Scholar] [CrossRef]
- Zhang, Y.; Han, W.; Niu, X.; Li, G. Maize crop coefficient estimated from UAV-Measured multispectral vegetation indices. Sensors 2019, 19, 5250. [Google Scholar] [CrossRef] [Green Version]
- Saadi, S.; Todorovic, M.; Tanasijevic, L.; Pereira, L.S.; Pizzigalli, C.; Lionello, P. Climate change and Mediterranean agriculture: Impacts on winter wheat and tomato crop evapotranspiration, irrigation requirements and yield. Agric. Water Manag. Agric. Water Manag. Priorities Chall. 2015, 147, 103–115. [Google Scholar] [CrossRef]
- Droogers, P.; Immerzeel, W.W.; Lorite, I.J. Estimating actual irrigation application by remotely sensed evapotranspiration observations. Agric. Water Manag. 2010, 97, 1351–1359. [Google Scholar] [CrossRef]
- Romaguera, M.; Hoekstra, A.Y.; Su, Z.; Krol, M.S.; Salama, M.S. Potential of using remote sensing techniques for global assessment of water footprint of crops. Remote Sens. 2010, 2, 1177–1196. [Google Scholar] [CrossRef] [Green Version]
- Van Dijk, A.I.J.M.; Schellekens, J.; Yebra, M.; Beck, H.E.; Renzullo, L.J.; Weerts, A.; Donchyts, G. Global 5 km resolution estimates of secondary evaporation including irrigation through satellite data assimilation. Hydrol. Earth Syst. Sci. 2018, 22, 4959–4980. [Google Scholar] [CrossRef] [Green Version]
- Van Eekelen, M.W.; Bastiaanssen, W.G.; Jarmain, C.; Jackson, B.; Ferreira, F.; Van der Zaag, P.; Okello, A.S.; Bosch, J.; Dye, P.; Boastidas-Obando, E.; et al. A novel approach to estimate direct and indirect water withdrawals from satellite measurements: A case study from the Incomati basin. Agric. Ecosyst. Environ. 2015, 200, 126–142. [Google Scholar] [CrossRef] [Green Version]
- Bastiaanssen, W.G.M.; Menenti, M.; Feddes, R.A.; Holtslag, A.A.M. A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. J. Hydrol. 1998, 212, 198–212. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M.; Pelgrum, H.; Wang, J.; Ma, Y.; Moreno, J.F.; Roerink, G.J.; van der Wal, T. A remote sensing surface energy balance algorithm for land (SEBAL): 2. Validation. J. Hydrol. 1998, 212, 213–229. [Google Scholar] [CrossRef]
- Hain, C.R.; Crow, W.T.; Anderson, M.C.; Yilmaz, M.T. Diagnosing neglected soil moisture source–sink processes via a thermal infrared–based two-source energy balance model. J. Hydrometeorol. 2015, 16, 1070–1086. [Google Scholar] [CrossRef]
- Peña-Arancibia, J.L.; Mainuddin, M.; Kirby, J.M.; Chiew, F.H.; McVicar, T.R.; Vaze, J. Assessing irrigated agriculture’s surface water and groundwater consumption by combining satellite remote sensing and hydrologic modelling. Sci. Total. Environ. 2016, 542, 372–382. [Google Scholar] [CrossRef] [PubMed]
- Olivera-Guerra, L.; Merlin, O.; Er-Raki, S. Irrigation retrieval from Landsat optical/thermal data integrated into a crop water balance model: A case study over winter wheat fields in a semi-arid region. Remote Sens. Environ. 2020, 239, 111627. [Google Scholar] [CrossRef] [Green Version]
- Vogels, M.F.A.; de Jong, S.M.; Sterk, G.; Wanders, N.; Bierkens, M.F.P.; Addink, E.A. An object-based image analysis approach to assess irrigation-water consumption from MODIS products in Ethiopia. Int. J. Appl. Earth Obs. Geoinf. 2020, 88, 102067. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M.; Karimi, P.; Rebelo, L.M.; Duan, Z.; Senay, G.; Muthuwatte, L.; Smakhtin, V. Earth observation based assessment of the water production and water consumption of Nile basin agro-ecosystems. Remote Sens. 2014, 6, 10306–10334. [Google Scholar] [CrossRef] [Green Version]
- Maselli, F.; Battista, P.; Chiesi, M.; Rapi, B.; Angeli, L.; Fibbi, L.; Magno, R.; Gozzini, B. Use of sentinel-2 MSI data to monitor crop irrigation in Mediterranean areas. Int. J. Appl. Earth Obs. Geoinf. 2020, 93, 102216. [Google Scholar] [CrossRef]
- Aragon, B.; Houborg, R.; Tu, K.; Fisher, J.B.; McCabe, M. CubeSats enable high spatiotemporal retrievals of crop-water use for precision agriculture. Remote Sens. 2018, 10, 1867. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.V.; Peters-Lidard, C.D.; Santanello, J.A.; Reichle, R.H.; Draper, C.S.; Koster, R.D. Evaluating the utility of satellite soil moisture retrievals over irrigated areas and the ability of land data assimilation methods to correct for unmodelled processes. Hydrol. Earth Syst. Sci. 2015, 19, 4463–4478. [Google Scholar] [CrossRef] [Green Version]
- Escorihuela, M.J.; Quintana-Segui, P. Comparison of remote sensing and simulated soil moisture data sets in Mediterranean landscapes. Remote Sens. Environ. 2016, 180, 99–114. [Google Scholar] [CrossRef] [Green Version]
- Malbéteau, Y.; Merlin, O.; Balsamo, G.; Er-Raki, S.; Khabba, S.; Walker, J.P.; Jarlan, L. Towards a surface soil moisture product at high spatio-temporal resolution: Temporally-interpolated spatially-disaggregated SMOS data. J. Hydrometeorol. 2018, 19, 183–200. [Google Scholar] [CrossRef]
- Singh, D.; Gupta, P.K.; Pradhan, R.; Dubey, A.K.; Singh, R.P. Discerning shifting irrigation practices from passive microwave radiometry over Punjab and Haryana. J. Water Clim. Chang. 2017, 8, 303–319. [Google Scholar] [CrossRef] [Green Version]
- Lawston, P.M.; Santanello, J.A.; Kumar, S.V. Irrigation signals detected from SMAP soil moisture retrievals. Geophys. Res. Lett. 2017, 44, 11860–11867. [Google Scholar] [CrossRef] [Green Version]
- Fontanet, M.; Fernàndez-Garcia, D.; Ferrer, F. The value of satellite remote sensing soil moisture data and the DISPATCH algorithm in irrigation fields. Hydrol. Earth Syst. Sci. 2018, 22, 5889–5900. [Google Scholar] [CrossRef] [Green Version]
- Merlin, O.; Chehbouni, G.; Walker, J.P.; Panciera, R.; Kerr, Y.H. A simple method for downscaling passive microwave based soil moisture. IEEE Geosci. Remote. Sens. Lett. 2008, 46, 786–796. [Google Scholar] [CrossRef] [Green Version]
- Dari, J.; Quintana-Seguí, P.; Escorihuela, M.J.; Stefan, V.; Brocca, L.; Morbidelli, R. Detecting and mapping irrigated areas in a Mediterranean environment by using remote sensing soil moisture and a land surface model. J. Hydrol. 2021, 596, 126129. [Google Scholar] [CrossRef]
- El Hajj, M.; Baghdadi, N.; Belaud, G.; Zribi, M.; Cheviron, B.; Courault, D.; Charron, F. Irrigated grassland monitoring using a time series of TerraSAR-X and COSMO-SkyMed X-band SAR data. Remote Sens. 2014, 6, 10002–10032. [Google Scholar] [CrossRef] [Green Version]
- El Hajj, M.; Baghdadi, N.; Zribi, M.; Bazzi, H. Synergetic use of Sentinel1 and Sentinel2 images for operational soil moisture mapping at high spatial resolution over agricultural areas. Remote Sens. 2017, 9, 1292. [Google Scholar] [CrossRef] [Green Version]
- Santi, E.; Dabboor, M.; Pettinato, S.; Paloscia, S. Combining machine learning and compact polarimetry for estimating soil moisture from C-Band SAR data. Remote Sens. 2019, 11, 2451. [Google Scholar] [CrossRef] [Green Version]
- Gao, Q.; Zribi, M.; Escorihuela, M.; Baghdadi, N. Synergetic use of Sentinel-1 and Sentinel-2 data for soil moisture mapping at 100 m resolution. Sensors 2017, 17, 1966. [Google Scholar] [CrossRef] [Green Version]
- Bauer-Marschallinger, B.; Freeman, V.; Cao, S.; Paulik, C.; Schaufler, S.; Stachl, T.; Modanesi, S.; Massari, C.; Ciabatta, L.; Brocca, L. Toward global soil moisture monitoring with sentinel-1: Harnessing assets and overcoming obstacles. IEEE Trans. Geosci. Remote Sens. 2018, 57, 520–539. [Google Scholar] [CrossRef]
- Bousbih, S.; Zribi, M.; El Hajj, M.; Baghdadi, N.; Lili-Chabaane, Z.; Gao, Q.; Fanise, P. Soil moisture and irrigation mapping in a semi-arid region based on the synergic use of Sentinel-1 and Sentinel-2 data. Remote Sens. 2018, 10, 1953. [Google Scholar] [CrossRef] [Green Version]
- Gao, Q.; Zribi, M.; Escorihuela, M.; Baghdadi, N.; Segui, P. Irrigation mapping using Sentinel-1 time series at field scale. Remote Sens. 2018, 10, 1495. [Google Scholar] [CrossRef] [Green Version]
- Bazzi, H.; Baghdadi, N.; Ienco, D.; El Hajj, M.; Zribi, M.; Belhouchette, H.; Escorihuela, M.J.; Demarez, V. Mapping irrigated areas using sentinel-1 time series in Catalonia, Spain. Remote Sens. 2019, 11, 1836. [Google Scholar] [CrossRef] [Green Version]
- Bazzi, H.; Baghdadi, N.; Fayad, I.; Zribi, M.; Belhouchette, H.; Demarez, V. Near real-time irrigation detection at plot scale using sentinel-1 data. Remote Sens. 2020, 12, 1456. [Google Scholar] [CrossRef]
- Dari, J.; Brocca, L.; Quintana-Seguí, P.; Casadei, S.; Escorihuela, M.J.; Stefan, V.; Morbidelli, R. Double-scale analysis on the detectability of irrigation signals from remote sensing soil moisture over an area with complex topography in central Italy. Adv. Water Resour. 2021. under review. [Google Scholar]
- Brocca, L.; Tarpanelli, A.; Filippucci, P.; Dorigo, W.; Zaussinger, F.; Gruber, A.; Fernández-Prieto, D. How much water is used for irrigation? A new approach exploiting coarse resolution satellite soil moisture products. Int. J. Appl. Earth Obs. Geoinf. 2018, 73C, 752–766. [Google Scholar] [CrossRef]
- Jalilvand, E.; Tajrishy, M.; Hashemi, S.A.G.; Brocca, L. Quantification of irrigation water using remote sensing of soil moisture in a semi-arid region. Remote. Sens. Environ. 2019, 231, 111226. [Google Scholar] [CrossRef]
- Zhang, X.; Qiu, J.; Leng, G.; Yang, Y.; Gao, Q.; Fan, Y.; Luo, J. The potential utility of satellite soil moisture retrievals for detecting irrigation patterns in China. Water 2018, 10, 1505. [Google Scholar] [CrossRef] [Green Version]
- Zaussinger, F.; Dorigo, W.; Gruber, A.; Tarpanelli, A.; Filippucci, P.; Brocca, L. Estimating irrigation water use over the contiguous United States by combining satellite and reanalysis soil moisture data. Hydrol. Earth Syst. Sci. 2019, 23, 897–923. [Google Scholar] [CrossRef] [Green Version]
- Zohaib, M.; Choi, M. Satellite-based global-scale irrigation water use and its contemporary trends. Sci. Total. Environ. 2020, 714, 136719. [Google Scholar] [CrossRef] [PubMed]
- Dari, J.; Brocca, L.; Quintana-Seguí, P.; Escorihuela, M.J.; Stefan, V.; Morbidelli, R. Exploiting high-resolution remote sensing soil moisture to estimate irrigation water amounts over a mediterranean region. Remote Sens. 2020, 12, 2593. [Google Scholar] [CrossRef]
- Zappa, L.; Schlaffer, S.; Bauer-Marschallinger, B.; Nendel, C.; Zimmerman, B.; Dorigo, W. Detection and quantification of irrigation water amounts at 500 m using sentinel-1 surface soil moisture. Remote Sens. 2021, 13, 1727. [Google Scholar] [CrossRef]
- Tapley, B.D.; Bettadpur, S.; Ries, J.C.; Thompson, P.F.; Watkins, M.M. GRACE measurements of mass variability in the Earth system. Science 2004, 305, 503–505. [Google Scholar] [CrossRef] [Green Version]
- Landerer, F.W.; Flechtner, F.M.; Save, H.; Webb, F.H.; Bandikova, T.; Bertiger, W.I.; Bettadpur, S.V.; Byun, S.H.; Dahle, C.; Dobslaw, H.; et al. Extending the global mass change data record: GRACE Follow-On instrument and science data performance. Geophys. Res. Let. 2020, 47, e2020GL088306. [Google Scholar] [CrossRef]
- Rodell, M.; Famiglietti, J.S.; Wiese, D.N.; Reager, J.T.; Beaudoing, H.K.; Landerer, F.W.; Lo, M.H. Emerging trends in global freshwater availability. Nature 2018, 557, 651–659. [Google Scholar] [CrossRef]
- Save, H.; Bettadpur, S.; Tapley, B.D. High-resolution CSR GRACE RL05 mascons. J. Geophys. Res. Solid Earth 2016, 121, 7547–7569. [Google Scholar] [CrossRef]
- Kueppers, L.M.; Snyder, M.A.; Sloan, L.C. Irrigation cooling effect: Regional climate forcing by land-use change. Geophys. Res. Let. 2007, 34, L03703. [Google Scholar] [CrossRef] [Green Version]
- Lobell, D.; Bala, G.; Mirin, A.; Phillips, T.; Maxwell, R.; Rotman, D. Regional differences in the influence of irrigation on climate. J. Clim. 2009, 22, 2248–2255. [Google Scholar] [CrossRef]
- Wada, Y.; Bierkens, M.F.P.; De Roo, A.; Dirmeyer, P.A.; Famiglietti, J.S.; Hanasaki, N.; Konar, M.; Liu, J.; Müller Schmied, H.; Oki, T.; et al. Human–water interface in hydrological modelling: Current status and future directions. Hydrol. Earth Syst. Sci. 2017, 21, 4169–4193. [Google Scholar] [CrossRef] [Green Version]
- Ozdogan, M.; Rodell, M.; Beaudoing, H.K.; Toll, D. Simulating the effects of irrigation over the US in a land surface model based on satellite derived agricultural data. J. Hydrometeor. 2010, 11, 171–184. [Google Scholar] [CrossRef]
- Chen, F.; Mitchell, K.; Schaake, J.; Xue, Y.; Pan, H.L.; Koren, V.; Duan, Q.Y.; Ek, M.; Betts, A. Modeling of land surface evaporation by four schemes and comparison with fife observations. J. Geophys. Res.-Atmos. 1996, 101, 7251–7268. [Google Scholar] [CrossRef] [Green Version]
- Evans, J.P.; Zaitchik, B.F. Modeling the large-scale water balance impact of different irrigation systems. Water Resour. Res. 2008, 44, W08448. [Google Scholar] [CrossRef] [Green Version]
- Lawston, P.M.; Santanello, J.A.; Zaitchik, B.F.; Rodell, M. Impact of irrigation methods on land surface model spinup and initialization of WRF forecasts. J. Hydrometeorol. 2015, 16, 1135–1154. [Google Scholar] [CrossRef]
- Pokhrel, Y.; Hanasaki, N.; Koirala, S.; Cho, J.; Yeh, P.J.F.; Kim, H.; Kanae, S.; Oki, T. Incorporating anthropogenic water regulation modules into a land surface model. J. Hydrometeorol. 2012, 13, 255–269. [Google Scholar] [CrossRef] [Green Version]
- De Rosnay, P.; Polcher, J.; Laval, K.; Sabre, M. Integrated parameterization of irrigation in the land surface model ORCHIDEE. Validation over Indian Peninsula. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef]
- Girotto, M.; De Lannoy, G.J.M.; Reichle, R.H.; Rodell, M.; Draper, C.; Bhanja, S.N.; Mukherjee, A. Benefits and pitfalls of GRACE data assimilation: A case study of terrestrial water storage depletion in India. Geophys. Res. Lett. 2017, 44, 4107–4115. [Google Scholar] [CrossRef] [Green Version]
- Nie, W.; Zaitchik, B.F.; Rodell, M.; Kumar, S.V.; Anderson, M.C.; Hain, C. Groundwater withdrawals under drought: Reconciling GRACE and land surface models in the United States High Plains Aquifer. Water Resour. Res. 2018, 54, 5282–5299. [Google Scholar] [CrossRef]
- Nie, W.; Zaitchik, B.F.; Rodell, M.; Kumar, S.V.; Arsenault, K.R.; Li, B.; Getirana, A. Assimilating GRACE into a land surface model in the presence of an irrigation-induced groundwater trend. Water Resour. Res. 2019, 55, 11274–11294. [Google Scholar] [CrossRef]
- Cook, B.I.; Shukla, S.P.; Puma, M.J.; Nazarenko, L.S. Irrigation as an historical climate forcing. Clim. Dyn. 2015, 44, 1715–1730. [Google Scholar] [CrossRef] [Green Version]
- Lee, E.; Sacks, W.J.; Chase, T.N.; Foley, J.A. Simulated impacts of irrigation on the atmospheric circulation over Asia. J. Geophys. Res. 2011, 116, D08114. [Google Scholar] [CrossRef] [Green Version]
- Boucher, O.; Myhre, G.; Myhre, A. Direct human influence of irrigation on atmospheric water vapour and climate. Clim. Dyn. 2004, 22, 597–603. [Google Scholar] [CrossRef]
- Badger, A.M.; Dirmeyer, P.A. Climate response to Amazon forest replacement by heterogeneous crop cover. Hydrol. Earth Syst. Sci. 2015, 19, 4547–4557. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.-M.; Lak, B.; Eijsvogels, L.M.; Wesselink, P.; van der Sluis, L.W.M. Comparison of the cleaning efficacy of different final irrigation techniques. J. Endod. 2012, 38, 838–841. [Google Scholar] [CrossRef]
- Tang, J.-L.; Zhang, B.; Zepp, H. Estimation of irrigation flow by hydrograph analysis in a complex agricultural catchment in subtropical China. Hydrol. Process. 2007, 21, 1280–1288. [Google Scholar] [CrossRef]
- Haddeland, I.; Lettenmaier, D.P.; Skaugen, T. Effects of irrigation on the water and energy balances of the Colorado and Mekong river basins. J. Hydrol. 2006, 324, 210–223. [Google Scholar] [CrossRef]
- Yilmaz, M.T.; Anderson, M.C.; Zaitchik, B.; Hain, C.R.; Crow, W.T.; Ozdogan, M.; Chun, J.A.; Evans, J. Comparison of prognostic and diagnostic surface flux modeling approaches over the Nile River basin. Water Resour. Res. 2014, 50, 386–408. [Google Scholar] [CrossRef]
- Li, J.; Mahalov, A.; Hyde, P. Impacts of agricultural irrigation on ozone concentrations in the Central Valley of California and in the contiguous United States based on WRF-Chem simulations. Agric. For. Meteorol. 2016, 221, 34–49. [Google Scholar] [CrossRef] [Green Version]
- Mahalov, A.; Li, J.; Hyde, P. Regional impacts of irrigation in Mexico and southwestern U.S. on hydrometeorological fields in the North American Monsoon region. J. Hydrometeorol. 2016, 17, 2981–2995. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Zhang, Z.; Save, H.; Sun, A.Y.; Schmied, H.M.; Van Beek, L.P.; Wiese, D.N.; Wada, Y.; Long, D.; Reedy, R.C.; et al. Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data. Proc. Natl. Acad. Sci. USA 2018, 115, E1080–E1089. [Google Scholar] [CrossRef] [Green Version]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; van Griensven, A.; Liew, M.W.V.; et al. SWAT: Model use, calibration, and validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Alcamo, J.; Döll, P.; Henrichs, T.; Kaspar, F.; Lehner, B.; Rösch, T.; Siebert, S. Development and testing of the WaterGAP 2 global model of water use and availability. Hydrolog. Sci. J. 2003, 48, 317–337. [Google Scholar] [CrossRef]
- Wisser, D.; Frolking, S.; Douglas, E.M.; Fekete, B.M.; Schumann, A.H.; Vörösmarty, C.J. The significance of local water resources captured in small reservoirs for crop production–A global-scale analysis. J. Hydrol. 2010, 384, 264–275. [Google Scholar] [CrossRef] [Green Version]
- Sanz, D.; Calera, A.; Castaño, S.; Gómez-Alday, J.J. Knowledge, participation and transparency in groundwater management. Water Policy 2016, 18, 111–125. [Google Scholar] [CrossRef]
- WUEMoCA. Available online: https://wuemoca.geo.uni-halle.de/app/ (accessed on 29 July 2021).
- FAO. WaPOR Database Methodology; Version 2 release; FAO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- Foster, T.; Mieno, T.; Brozovic, N. Satellite-based monitoring of irrigation water use: Assessing measurement errors and their implications for agricultural water management policy. Water Resour. Res. 2020, 56. [Google Scholar] [CrossRef]
- García-Mollá, M.; Sanchis-Ibor, C.; Avellà-Reus, L.; Albiac, J.; Isidoro, D.; Lecina, S. Spain. In Irrigation in the Mediterranean; Springer: Berlin/Heidelberg, Germany, 2019; pp. 89–121. [Google Scholar] [CrossRef]
- Linés, C.; Iglesias, A.; Garrote, L.; Sotés, V.; Werner, M. Do users benefit from additional information in support of operational drought management decisions in the Ebro basin? Hydrol. Earth Syst. Sci. 2018, 22, 5901–5917. [Google Scholar] [CrossRef] [Green Version]
- Molle, F.; Sanchis-Ibor, C. Irrigation policies in the mediterranean: Trends and challenges. In Irrigation in the Mediterranean: Technologies, Institutions and Policies, Global Issues in Water Policy; Molle, F., Sanchis-Ibor, C., Avellà-Reus, L., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 279–313. [Google Scholar] [CrossRef]
- Lagouarde, J.-P.; Bhattacharya, B.; Crébassol, P.; Gamet, P.; Adlakha, D.; Murthy, C.; Singh, S.; Mishra, M.; Nigam, R.; Raju, P.; et al. Indo-french high-resolution thermal infrared space mission for earth natural resources assessment and monitoring-concept and definition of TRISHNA. In Proceedings of the ISPRS-GEOGLAM-ISRS Joint International Workshop on “Earth Observations for Agricultural Monitoring”, New Delhi, India, 18–20 February 2019; p. 403. [Google Scholar] [CrossRef] [Green Version]
- Koetz, B.; Bastiaanssen, W.; Berger, M.; Defourney, P.; Del Bello, U.; Drusch, M.; Drinkwater, M.; Duca, R.; Fernandez, V.; Ghent, D.; et al. High spatio-temporal resolution land surface temperature mission—a copernicus candidate mission in support of agricultural monitoring. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 5 November 2018; pp. 8160–8162. [Google Scholar] [CrossRef]
- Senay, G.B.; Friedrichs, M.; Singh, R.K.; Velpuri, N.M. Evaluating Landsat 8 evapotranspiration for water use mapping in the Colorado River Basin. Remote Sens. Environ. 2016, 185, 171–185. [Google Scholar] [CrossRef] [Green Version]
- Guzinski, R.; Nieto, H.; Sandholt, I.; Karamitilios, G. Modelling high-resolution actual evapotranspiration through sentinel-2 and sentinel-3 data fusion. Remote Sens. 2020, 12, 1433. [Google Scholar] [CrossRef]
- Velpuri, N.M.; Senay, G.B.; Schauer, M.; Garcia, C.A.; Singh, R.K.; Friedrichs, M.; Kagone, S.; Haynes, J.; Conlon, T. Evaluation of hydrologic impact of an irrigation curtailment program using Landsat satellite data. Hydrol. Process. 2020, 34, 1697–1713. [Google Scholar] [CrossRef] [Green Version]
- Ragettli, S.; Herberz, T.; Siegfried, T. An unsupervised classification algorithm for multi-temporal irrigated area mapping in central Asia. Remote Sens. 2018, 10, 1823. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Azzari, G.; Lobell, D.B. Crop type mapping without field-level labels: Random forest transfer and unsupervised clustering techniques. Remote Sens. Environ. 2019, 222, 303–317. [Google Scholar] [CrossRef]
- Chou, C.; Ryu, D.; Lo, M.H.; Wey, H.W.; Malano, H.M. Irrigation-induced land–atmosphere feedbacks and their impacts on Indian summer monsoon. J. Clim. 2018, 31, 8785–8801. [Google Scholar] [CrossRef]
- Famiglietti, J.S. The global groundwater crisis. Nat. Clim. Chang. 2014, 4, 945–948. [Google Scholar] [CrossRef]
- Modanesi, S.; Massari, C.; Gruber, A.; Lievens, H.; Tarpanelli, A.; Morbidelli, R.; De Lannoy, G.J.M. Optimizing a backscatter forward operator using Sentinel-1 data over irrigated land. Hydrol. Earth Syst. Sci. Discuss. 2021, 1–39. [Google Scholar] [CrossRef]
- Chew, C.C.; Small, E.E. Soil moisture sensing using spaceborne GNSS reflections: Comparison of CYGNSS reflectivity to SMAP soil moisture. Geophys. Res. Lett. 2018, 45, 4049–4057. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Lakshmi, V. Use of cyclone global navigation satellite system (CyGNSS) observations for estimation of soil moisture. Geophys. Res. Let. 2018, 45, 8272–8282. [Google Scholar] [CrossRef] [Green Version]
- ROSE-L. 2018, Copernicus L-band SAR Mission Requirements Document, ESA, ESA-EOPSM-CLIS-MRD-3371, NISAR, 2018. NASA-ISRO SAR (NISAR) Mission Science Users’ Handbook. NASA Jet Propulsion Laboratory. 261p. 2018. Available online: https://nisar.jpl.nasa.gov/system/documents/files/26_NISAR_FINAL_9-6-19.pdf (accessed on 13 October 2021).
Technique | Spatial Scale/Sampling (Sensor Used) | Key Results | Reference |
---|---|---|---|
VIS/NIR | 30 m Landsat | Mapping | Thenkabail et al. (2006), Peña-Arancibia et al. (2014), Deines et al. (2017), Deines et al. (2019) |
250 m, 500 m MODIS, MERIS | Mapping | Ambika et al. (2016), Ozdogan and Gutman (2008), Pervez et al. (2010), Salmon et al. (2015) | |
~1 km AVHHR | Mapping | Thenkabail et al. (2006) | |
30 m HJ-1A/B | Mapping | Jin et al. (2016) | |
30 m MODIS + Landsat OLI | Mapping | Chen et al. (2018) | |
500 m MODIS | Quantification | Vogels et al. (2020) | |
20 m—plot scale Sentinel 2 | Quantification | Maselli et al. (2020) | |
Mix of VIS/NIR, MW, LSM and EBM | ~30 min Meteosat-9 ET + Water balance | Quantification | Romaguera et al. (2014) |
Basin-scale MODIS plus WEAP and MODFLOW models | Quantification | Le Page et al. (2012) | |
~25 km ERA5 + MODIS | Mapping | Zohaib et al. (2019) | |
30 m SEBS + Landsat | Mapping | Pun et al. (2017) | |
30 m Landsat data + SWAP | Quantification | Droogers et al. (2010), Olivera-Guerra et al. 2020 | |
500m Noah-MP + MODIS | Mapping and quantification | Ozdogan et al. (2010) | |
Basin-wide results MODIS, MeteoSat Second Generation (MSG), SEBAL | Quantification | Van Eekelen et al. (2015) | |
0.05° ALEXI based on GOES satellite + Noah LSM | Quantification | Yilmaz et al. (2014) | |
~4 km ALEXI based on GOES satellite + Noah LSM | Quantification | Hain et al. (2015) | |
MODIS ET + Hydrological model Basin scale | Quantification | Peña-Arancibia et al. | |
3 m CubSats + PT-JPL model | Quantification | Aragon et al. (2018) | |
1 km ET-Look | Quantification | Bastiaanssen et al. (2014) | |
MW+LSM | ~25–50 km AMSR-E, AMSR2, ASCAT, SMOS, WindSat + Noah LSM | Mapping | Kumar at al. (2015) |
1/5/25 km AMSR2, ASCAT, SMOS + SURFEX LSM | Mapping | Escorihuela and Quintana-Seguí (2016) | |
25 km AMSR2, ASCAT, SMAP + MERRA-2 reanalysis | Quantification | Zaussinger et al. (2019) | |
1/9/12.5 km ASCAT, Sentinel-1, SMAP, SMOS + SURFEX LSM | Mapping | Dari et al. (2021) | |
Gravimetric measurements + LSM | 0.125° Noah-MP +GRACE | Quantification | Nie et al. (2019) |
36 km CLSM + GRACE | Quantification | Girotto et al. (2017) | |
MW + VIS/NIR | 1–25 km AMSR-E + SPOT-VEG | Mapping | Singh et al. (2017) |
10–20 m Sentinel 1 + Sentinel 2 | Mapping | Ferrant et al. (2017), Ferrant et al. (2019), Pageot et al. (2020), Le Page et al. (2020) | |
Plot-scale Sentinel 1 + Sentinel 2 | Mapping | Bousbih et al. (2018) | |
Plot-scale Sentinel 1 + Sentinel 2 | Mapping | Bazzi et al. (2019) | |
Plot-scale Sentinel 1 + Sentinel 2 | Mapping | Bazzi et al. (2020) | |
30 m Sentinel 1 + Landsat | Mapping | Demarez et al. (2019) | |
MW | 3 m TSK 8 m CSK | Mapping | El Hajj et al. (2014) |
9 km SMAP | Mapping | Lawston et al. (2017) | |
Plot-scale Sentinel 1 | Mapping | Gao et al. (2018) | |
25 km AMSR2, ASCAT, SMAP, SMOS | Quantification | Brocca et al. (2018) | |
25 km AMSR2 | Quantification | Jalilvand et al. (2019) | |
1 km SMOS | Mapping | Malbéteau et al. (2018) | |
0.25° AMSR-E, AMSR2, ASCAT, ESA CCI | Mapping | Zhang et al. (2018) | |
1 km SMAP, SMOS | Quantification | Dari et al. (2020) | |
500 m Sentinel 1 | Quantification | Zappa et al. (2021) |
Irrigation Mapping | Irrigation Quantity | Irrigation Timing | |
---|---|---|---|
Products at local/field scale in support of water management and agriculture (approx. <100 m) | With SAR and thermal data (up to 30 m with Landsat and S2-S3, 10–100 m with SAR S1 data) | Up to 10–100 m with SAR data and 30 m with visible and near-infrared sensors. Accuracy limited by the temporal resolution of the sensors and noise. | With SAR and thermal and optical data depending on the location. Limited to temporal resolution larger than a day. |
Products at national/basin scale in support of water management (500 m–1 km) | With SAR (e.g., S1) and thermal data (e.g., MODIS, S2–S3) and their combination. Suitable for relatively large agricultural areas | With SAR (e.g., S1) and thermal data (e.g., MODIS, Landsat, S2, S3) and their combination. Accuracy depends upon satellite revisit time and noise. Cloud cover can be an issue. | Daily with thermal data (e.g., MODIS). Weekly and sub-weekly with SAR depending on the location and other visible and near-infrared observations such as S2 and S3 depending on the cloud cover. |
Products at regional/global level (>10 km) | With active and passive coarse-scale microwave observations limited to large and intensive irrigated areas much larger than the product spatial resolution (large and intensively irrigated areas of India, USA, China, Brazil). With any optical, near-infrared sensor | With active and passive coarse-scale microwave observations, limited to large and intensive irrigated areas much larger than the product spatial resolution. Noise can be an issue. With any visible and near-infrared sensor. Gravimetric measurements (GRACE). | With coarse-scale microwave observations, potentially daily if the signal is sufficiently strong with respect to the noise and with thermal data. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Massari, C.; Modanesi, S.; Dari, J.; Gruber, A.; De Lannoy, G.J.M.; Girotto, M.; Quintana-Seguí, P.; Le Page, M.; Jarlan, L.; Zribi, M.; et al. A Review of Irrigation Information Retrievals from Space and Their Utility for Users. Remote Sens. 2021, 13, 4112. https://doi.org/10.3390/rs13204112
Massari C, Modanesi S, Dari J, Gruber A, De Lannoy GJM, Girotto M, Quintana-Seguí P, Le Page M, Jarlan L, Zribi M, et al. A Review of Irrigation Information Retrievals from Space and Their Utility for Users. Remote Sensing. 2021; 13(20):4112. https://doi.org/10.3390/rs13204112
Chicago/Turabian StyleMassari, Christian, Sara Modanesi, Jacopo Dari, Alexander Gruber, Gabrielle J. M. De Lannoy, Manuela Girotto, Pere Quintana-Seguí, Michel Le Page, Lionel Jarlan, Mehrez Zribi, and et al. 2021. "A Review of Irrigation Information Retrievals from Space and Their Utility for Users" Remote Sensing 13, no. 20: 4112. https://doi.org/10.3390/rs13204112