Numerical Study of Global ELF Electromagnetic Wave Propagation with Respect to Lithosphere–Atmosphere–Ionosphere Coupling
Abstract
:1. Introduction
2. Electrokinetic Effect
3. Earth–Ionosphere Waveguide
4. Results
4.1. Case 1
4.2. Case 2
4.3. Case 3
4.4. Case 4
5. Discussions
6. Conclusions
- The coseismic EM wave with a frequency of 50 Hz and a duration of 0.04 s is simulated in multiple layers, and the modeling results indicate that it takes approximately 0.155 s to circle the Earth under the influence of the phase delay of the conductivity profiles. When the electromagnetic wave reaches heights of 60 km and 90 km, its amplitude rapidly decreases by approximately 2–3 and 4–5 orders of magnitude, respectively. The electromagnetic field distributions are roughly similar across all altitudes and initially are uncomplicated but later on become irregular.
- The Earth’s conductivity parameter dramatically influences the simulation and leads to several times of difference in the amplitude of the EM wave. Therefore, we can update the model by applying a more sophisticated and realistic conductivity model.
- The simulation results of the blasting earthquake with a short duration (0.04 s) present the periodic propagation regulation of the EM wave, which provides references for the propagation regulation of a natural earthquake of long duration (1 s).
- The electrokinetic coseismic effect model generates a one-dimensional or two-dimensional distribution of EM waves on the surface of the Earth and is coupled with the Earth–ionosphere waveguide model through boundary conditions. Although the computation is larger if the initial source on the Earth’s surface is two-dimensional, the simulation results present more details.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leonard, R.S.; Barnes, R.A. Observation of ionospheric disturbances following the Alaska earthquake. J. Geophys. Res. 1965, 70, 1250–1253. [Google Scholar] [CrossRef]
- Liu, J.Y.; Chuo, Y.J.; Shan, S.J.; Tsai, Y.B.; Chen, Y.I.; Pulinets, S.A.; Yu, S.B. Pre-earthquake ionospheric anomalies registered by continuous GPS TEC measurements. Ann. Geophys. 2004, 22, 1585–1593. [Google Scholar] [CrossRef] [Green Version]
- Zhao, B.Q.; Wang, M.; Yu, T.; Wan, W.X.; Lei, J.H.; Liu, L.B.; Ning, B.Q. Is an unusual large enhancement of ionospheric electron density linked with the 2008 great Wenchuan earthquake. J. Geophys. Res. Space Phys. 2008, 113, A11304. [Google Scholar] [CrossRef]
- Liu, J.Y.; Chen, C.H.; Sun, Y.Y.; Chen, C.H.; Tsai, H.F.; Yen, H.Y.; Chun, J.; Lastovicka, J.; Yang, Q.S.; Chen, W.S.; et al. The vertical propagation of disturbances triggered by seismic waves of the 11 March 2011 M9.0 Tohoku earthquake over Taiwan. Geophys. Res. Lett. 2016, 43, 1759–1765. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Zeren, Z.; Parrot, M.; Battiston, R.; Qian, J.; Shen, X. ULF/ELF ionospheric electric field and plasma perturbations related to Chile earthquakes. Adv. Space Res. 2011, 47, 991–1000. [Google Scholar] [CrossRef]
- Freund, F. Time-resolved study of charge generation and propagation in igneous rocks. J. Geophys. Res. Solid Earth. 2000, 105, 11001–11019. [Google Scholar] [CrossRef] [Green Version]
- Scoville, J.; Sornette, J.; Freund, F. Paradox of peroxy defects and positive holes in rocks Part II: Outflow of electric currents from stressed rocks. J. Asian Earth Sci. 2015, 114, 338–351. [Google Scholar] [CrossRef] [Green Version]
- Shalimov, S.L. Lithosphere-ionosphere relationship—A new way to predict earthquakes. Episodes 1992, 15, 252–254. [Google Scholar] [CrossRef]
- Pride, S. Governing equations for the coupled electromagnetics and acoustics of porous media. Phys. Rev. B. 1994, 50, 15678–15696. [Google Scholar] [CrossRef]
- Gao, Y.X.; Wang, D.D.; Yao, C.; Guan, W.; Hu, H.S.; Wen, J.; Zhang, W.; Tong, P.; Yang, Q.J. Simulation of seismoelectric waves using finite-difference frequency-domain method: 2-D SHTE mode. Geophys. J. Int. 2019, 216, 414–438. [Google Scholar] [CrossRef]
- Zhou, C.; Liu, Y.; Zhao, S.F.; Liu, J.; Zhang, X.M.; Huang, J.P.; Shen, X.H.; Ni, B.B.; Zhao, Z.Y. An electric field penetration model for seismo-ionospheric research. Adv. Space Res. 2017, 60, 2217–2232. [Google Scholar] [CrossRef]
- Inchin, P.A.; Snively, J.B.; Zettergren, M.D.; Komjathy, A.; Verkhoglyadova, O.P.; Ram, S.T. Modeling of Ionospheric Responses to Atmospheric Acoustic and Gravity Waves Driven by the 2015 Nepal 7.8 Gorkha Earthquake. J. Geophys. Res. Space Phys. 2020, 125, e2019JA027200. [Google Scholar] [CrossRef]
- Matsushima, M. Seismo-electromagnetic effect associated with the Izmit earthquake and its aftershocks. Bull. Seismol. Soc. Am. 2002, 92, 350–360. [Google Scholar] [CrossRef]
- Liu, J.Y.; Wang, K.; Chen, C.H.; Yang, W.H.; Yen, Y.H.; Chen, Y.I.; Hatorri, K.; Su, H.T.; Hsu, R.R.; Chang, C.H. A statistical study on ELF-whistlers/emissions and M≥5.0 earthquakes in Taiwan. J. Geophys. Res. Atmos. 2013, 118, 3760–3768. [Google Scholar] [CrossRef]
- Hayakawa, M.; Ohta, K.; Nickolaenko, A.P.; Ando, Y. Anomalous effect in Schumann resonance phenomena observed in Japan, possibly associated with the Chi-chi earthquake in Taiwan. Ann. Geophys. 2005, 23, 1335–1346. [Google Scholar] [CrossRef] [Green Version]
- Molchanov, O.A. Observation by the Intercosmos-24 satellite of ELF-VLF electromagnetic emissions associated with earthquakes. Ann. Geophys. 1993, 11, 431–440. [Google Scholar]
- Ohta, K.; Izutsu, J.; Schekotov, A.; Hayakawa, M. The ULF/ELF electromagnetic radiation before the 11 March 2011 Japanese earthquake. Radio Sci. 2013, 48, 589–596. [Google Scholar] [CrossRef]
- Thompson, A.H.; Gist, G.A. Geophysical applications of electrokinetic conversion. Lead. Edge. 1993, 12, 1169–1173. [Google Scholar] [CrossRef]
- Fan, Y.; Tang, J.; Han, B.; Cui, T.F.; Xu, Q. The background variation of natural source ELF and its EM abnormal phenomena in Yunnan earthquakes. Earthq. Res. China. 2018, 32, 135–145. [Google Scholar]
- Martner, S.T.; Sparks, N.R. The electroseismic effect. Geophysics 1959, 24, 297–308. [Google Scholar] [CrossRef]
- Nagao, T.; Orihara, Y.; Yamaguchi, T.; Takahashi, I.; Hattori, K.; Noda, Y.; Sayanagi, K.; Uyeda, S. Co-seismic geoelectric potential changes observed in Japan. Geophys. Res. Lett. 2000, 27, 1535–1538. [Google Scholar] [CrossRef]
- Pride, S.R.; Haartsen, M.W. Electroseismic wave properties. J. Acoust. Soc. Am. 1996, 100, 1301–1315. [Google Scholar] [CrossRef]
- Haines, S.S.; Pride, S.R.; Klemperer, S.L.; Biondi, B. Seismoelectric imaging of shallow targets. Geophysics 2007, 72, G9–G20. [Google Scholar] [CrossRef]
- Gao, Y.X.; Hu, H.S. Seismoelectromagnetic waves radiated by a double couple source in a saturated porous medium. Geophys. J. Int. 2010, 181, 873–896. [Google Scholar] [CrossRef] [Green Version]
- Yee, K.S. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 1966, AP-14, 302–307. [Google Scholar]
- Holland, R. THREDS: A finite-difference time-domain EMP code in 3D spherical coordinates. IEEE Trans. Nucl. Sci. 1983, 30, 4592–4595. [Google Scholar] [CrossRef]
- Simpson, J.J.; Taflove, A. Two-dimensional FDTD model of antipodal ELF propagation and Schumann resonance of the Earth. IEEE Antennas Wirel. Propag. Lett. 2002, 1, 53–56. [Google Scholar] [CrossRef] [Green Version]
- Simpson, J.J.; Taflove, A. Three-dimensional FDTD modeling of impulsive ELF propagation about the Earth-sphere. IEEE Trans. Antennas Propag. 2004, 52, 443–451. [Google Scholar] [CrossRef]
- Shaw, D.J. Introduction to Colloid and Surface Chemistry, 4th ed.; Butterworth-Heinemann: London, UK, 1992; pp. 174–188. [Google Scholar]
- Zhu, Z.; Toksoz, M.N.; Burns, D.R. Electroseismic and seismoelectric measurements of rock samples in a water tank. Geophysics 2008, 73, E153–E164. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.X.; Wang, M.Q.; Hu, H.S.; Chen, X.F. Seismoelectric responses to an explosive source in a fluid above a fluid-saturated porous medium. J. Geophys. Res. Solid Earth 2017, 122, 7190–7218. [Google Scholar] [CrossRef]
- Wait, J.R. Distortion of an ELF pulse after propagation through an antipode. J. Geophys. Res. Space Phys. 1969, 74, 2982–2986. [Google Scholar] [CrossRef]
- Greifinger, C.; Greifinger, P. Approximate method for determining ELF eigenvalues in the Earth-ionosphere waveguide. Radio Sci. 1978, 13, 831–837. [Google Scholar] [CrossRef]
- Barr, R. ELF radiation from the New Zealand power system. Planet. Space Sci. 1979, 27, 537–540. [Google Scholar] [CrossRef]
- Simpson, J.J. Global FDTD Maxwell’s Equations Modeling of Electromagnetic Propagation from Currents in the Lithosphere. IEEE Trans. Antennas Propag. 2008, 56, 199–203. [Google Scholar] [CrossRef]
- Cole, R.K. The Schumann resonances. J. Res. Natl. Bur. Stand. Sect. D. 1965, 69, 1345–1349. [Google Scholar] [CrossRef]
- Mushtak, V.C.; Williams, E.R. ELF propagation parameters for uniform models of the Earth–ionosphere waveguide. J. Atmos. Sol.-Terr. Phys. 2002, 64, 1989–2001. [Google Scholar] [CrossRef]
- Qian, Q.H.; Chen, S.H. Blasting Vibration Effect. Blasting 2004, 21, 1–5. (In Chinese) [Google Scholar]
- Bohnhoff, M.; Dresen, G.; Ellsworth, W.L.; Ito, H. Passive seismic monitoring of natural and induced earthquakes: Case studies, future directions and socio-economic relevance. In New Frontiers in Integrated Solid Earth Sciences, 1st ed.; Sierd, C., Jörg, N., Eds.; Springer: Amsterdam, The Netherlands, 2009; Volume 1, pp. 261–285. [Google Scholar]
- Zhang, Z.C.; Chen, Y.M.; Liu, H.L. Numerical analysis and evaluation of simulation of nature earthquake by millisecond blasting technique. Rock Soil Mech. 2013, 34, 265–274. (In Chinese) [Google Scholar]
- Simpson, J.J.; Taflove, A. Efficient modeling of impulsive ELF antipodal propagation about the Earth sphere using an optimized two-dimensional geodesic FDTD grid. IEEE Antennas Wirel. Propag. Lett. 2004, 3, 215–218. [Google Scholar] [CrossRef] [Green Version]
- Qu, X.; Xue, B.; Fang, G. The propagation model and characteristics for extremely low frequency electromagnetic wave in Earth-ionosphere system and its application in geophysics prospecting. J. Electromagn. Waves Appl. 2018, 32, 319–331. [Google Scholar] [CrossRef]
- Wang, Y.; Xia, H.; Cao, Q. Analysis of ELF propagation along the Earth surface using the FDTD model based on the spherical triangle meshing. IEEE Antennas Wirel. Propag. Lett. 2009, 8, 1017–1020. [Google Scholar] [CrossRef]
- Boldyrev, A.I.; Vyazilov, A.E.; Ivanov, V.N.; Kemaev, R.V.; Korovin, V.Y.; Melyashinskii, A.V.; Pamukhin, K.V.; Panov, V.N.; Shvyrev, Y.N. Registration of weak ULF/ELF oscillations of the surface electric field strength. Geomagn. Aeron. 2016, 56, 503–512. [Google Scholar] [CrossRef]
- Greenberg, E.; Price, C.; Yair, Y.; Ganot, M.; Bór, J.; Sátori, G. ELF transients associated with sprites and elves in eastern Mediterranean winter thunderstorms. J. Atmos. Sol.-Terr. Phys. 2007, 69, 1569–1586. [Google Scholar] [CrossRef]
- Choudhury, A.; Guha, A.; De, B.K.; Roy, R. A statistical study on precursory effects of earthquakes observed through the atmospheric vertical electric field in northeast India. Ann. Geophys. 2013, 56, 1861–1867. [Google Scholar]
- Blecki, J.; Parrot, M.; Wronowski, R. ELF and VLF signatures of sprites registered onboard the low altitude satellite DEMETER. Ann. Geophys. 2009, 27, 2599–2605. [Google Scholar] [CrossRef] [Green Version]
- Nemec, F.; Santolik, O.; Hospodarsky, G.; Hajos, M.; Demekhov, A.; Kurth, W.; Parrot, M.; Hartley, D. Whistler mode quasiperiodic emissions: Contrasting Van Allen Probes and DEMETER occurrence rates. J. Geophys. Res. Space Phys. 2020, 125. [Google Scholar] [CrossRef]
- Simpson, J.J.; Taflove, A. Electrokinetic effect of the Loma Prieta earthquake calculated by an entire-Earth FDTD solution of Maxwell’s equations. Geophys. Res. Lett. 2005, 32, L09302. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Cao, Q. Analysis of seismic electromagnetic phenomena using the FDTD method. IEEE Trans. Antennas Propag. 2011, 59, 4171–4180. [Google Scholar] [CrossRef]
- Molchanov, O.A.; Hayakawa, M.; Rafalsky, V.A. Penetration characteristics of electromagnetic emissions from an underground seismic source into the atmosphere, ionosphere, and magnetosphere. J. Geophys. Res. 1995, 100, 1691–1712. [Google Scholar] [CrossRef]
- Venegas-Aravena, P.; Cordaro, E.G.; Laroze, D. A review and upgrade of the Lithospheric dynamics in context of the Seismo-electromagnetic Theory. Nat. Hazards Earth Syst. Sci. 2019, 19, 1639–1651. [Google Scholar] [CrossRef] [Green Version]
Parameter | Symbol | Sandstone 1 | Sandstone 2 |
---|---|---|---|
Pore fluid density (kg/m3) | ρf | 1000 | 1000 |
Solid grain density (kg/m3) | ρs | 2650 | 2650 |
Pore fluid bulk modulus (GPa) | Kf | 2.25 | 2.25 |
Solid grain bulk modulus (GPa) | Ks | 35.7 | 35.7 |
Frame bulk modulus (GPa) | Kb | 17.91 | 4.51 |
Shear modulus (GPa) | G | 17.79 | 3.55 |
Tortuosity | α∞ | 3 | 1.52 |
Fluid viscosity (Pa·s) | η | 10−3 | 2 × 10−3 |
Pore fluid permittivity (F/m) | εf | 80 | 77 |
Solid grain permittivity (F/m) | εs | 4 | 4 |
Pore fluid salinity (mol/L) | C0 | 10−3 | 10−1 |
Porosity | φ | 0.15 | 0.33 |
Permeability (m2) | κ0 | 10−13 | 10−11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Zhou, C.; Zhao, S.; Xu, X.; Liu, M.; Liu, Y.; Liao, L.; Shen, X. Numerical Study of Global ELF Electromagnetic Wave Propagation with Respect to Lithosphere–Atmosphere–Ionosphere Coupling. Remote Sens. 2021, 13, 4107. https://doi.org/10.3390/rs13204107
Wang Z, Zhou C, Zhao S, Xu X, Liu M, Liu Y, Liao L, Shen X. Numerical Study of Global ELF Electromagnetic Wave Propagation with Respect to Lithosphere–Atmosphere–Ionosphere Coupling. Remote Sensing. 2021; 13(20):4107. https://doi.org/10.3390/rs13204107
Chicago/Turabian StyleWang, Zhuangkai, Chen Zhou, Shufan Zhao, Xiang Xu, Moran Liu, Yi Liu, Li Liao, and Xuhui Shen. 2021. "Numerical Study of Global ELF Electromagnetic Wave Propagation with Respect to Lithosphere–Atmosphere–Ionosphere Coupling" Remote Sensing 13, no. 20: 4107. https://doi.org/10.3390/rs13204107
APA StyleWang, Z., Zhou, C., Zhao, S., Xu, X., Liu, M., Liu, Y., Liao, L., & Shen, X. (2021). Numerical Study of Global ELF Electromagnetic Wave Propagation with Respect to Lithosphere–Atmosphere–Ionosphere Coupling. Remote Sensing, 13(20), 4107. https://doi.org/10.3390/rs13204107