UAV-Borne Hyperspectral Imaging Remote Sensing System Based on Acousto-Optic Tunable Filter for Water Quality Monitoring
Abstract
:1. Introduction
2. Materials and Methods
2.1. UAV Hyperspectral Imaging System
2.1.1. Hyperspectral Imager
2.1.2. Spectral Resolution of Spectral Imager
2.2. Remote Sensing Data Acquisition Control
- (1)
- Before the implementation of the remote sensing flight test, check the system link and power it on, log in to the control computer mini-PC, start the remote sensing data acquisition control software, link the AOTF-based hyperspectral imager and AOTF RF controller, and complete the ground photographing self-test.
- (2)
- Initiate parameter configuration: according to the weather conditions of the flight test, set the integration time and gain step length of the spectral camera, and then set the spectral range and spectral segment number of the AOTF spectrometer in flight.
- (3)
- Import the preset route and waypoint information into the UAV flight control software, including longitude and latitude, altitude, yaw angle, and hover time, and start the UAV to perform flight tasks.
- (4)
- After the UAV reaches the waypoint, it triggers the RGB camera to carry out an image acquisition over a large field of view; simultaneously, the trigger command is transmitted to the spectrometer acquisition control program.
- (5)
- At the waypoint, the spectrometer acquisition control program controls the AOTF driver to turn off the RF drive signal and carry out dark background image acquisition.
- (6)
- According to the data acquisition parameter configuration, the spectrometer acquisition control program conducts high-speed data acquisition at each wavelength. In addition, in the process of data acquisition at each wavelength, the distortion model is used to carry out real-time correction, and the hyperspectral data cube is stored in a specific data structure.
- (7)
- Whether data acquisition of the last waypoint in the route has been carried out is assessed. If not, the flight proceeds to the next waypoint and repeats step (4); if completed, flight data acquisition is terminated, and the UAV returns to the ground automatically.
2.3. Data Processing Workflow
2.3.1. Data Preprocessing
2.3.2. Geometric Registration
2.3.3. Field-of-View Splicing
2.3.4. Radiation Calibration
2.3.5. Water Quality Parameter Inversion
3. Experiments and Analysis
3.1. Study Sites and Surveys
3.2. Data Preprocessing Results
3.3. Image Registration Results
3.4. Image Mosaic Results
3.5. Radiation Calibration Results
3.6. Inversion Results of Water Quality Parameters
4. Conclusions
- (1)
- The instability of water surface fluctuation may affect the results of water quality detection.
- (2)
- The sample space of remote sensing imaging water quality detection is too narrow, which affects the stability and accuracy of water quality parameter inversion model.
- (3)
- The water area of UAV single flight monitoring is limited.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Component | Parameter | Specification |
---|---|---|
UAV (WIND4) | Dimensions (mm) | 1668 (L) × 1518 (W) × 727 (H) |
Weight (without batteries) | 7.3 kg | |
Max. takeoff weight | 24.5 kg | |
Max. speed | 50 km/h (no wind) | |
Hovering accuracy | Vertical: ±0.5 m, horizontal: ±1.5 m | |
Max. wind resistance | 8 m/s | |
Max. service ceiling above sea level | 2500 m by 2170R propellers; 4500 m by 2195 propellers | |
Operating temperature | −10 to 40 °C | |
Max. transmission distance | 3.5 km | |
Gimbal (DJI Ronin-MX 3-Axis Gimbal Stabilizer) | Rotation range | pitch: −150°–270° |
roll: −110°–110° | ||
yaw: 360° | ||
Follow speed | pitch: 100°/s | |
roll: 30°/s | ||
yaw: 200°/s | ||
Stabilization accuracy | ±0.02° | |
Weight | 2.15 kg | |
Load capacity | 4.5 kg | |
RGB Camera | Resolution | 4000 × 2250 |
Aperture value | f/2.8 | |
Focal length | 4 mm | |
Weight | 80 g | |
MINI-PC | CPU | i5-7260U |
Hard disk capacity | 200 GB | |
Weight | 680 g |
Component | Parameter | Specification | Component | Parameter | Specification |
---|---|---|---|---|---|
AOTF filter (SGL30-V-12LE) | Wavelength | 400~1000 nm | Objective lens (3ghAIubL#5*9V1228-MPY) | Focal length | 12 mm |
FWHM | ≤8 nm | Image plane | 1.1″ | ||
Diffraction efficiency | ≥75% | Aperture | F2.8–F16.0 | ||
Separation angle | ≥4° | Weight | 98 g | ||
Aperture angle | ≥3.6° | Collimating lens (V5014-MP) | Focal length | 50 mm | |
Primary deflection angle | ≥2.17° | Image plane | 1″ | ||
Optical aperture | 12 mm × 12 mm | Aperture | F1.4–F16.0 | ||
Electric power | ≤4 W | Weight | 200 g | ||
Weight | 200 g | Linear polarizer (R5000490667) | Wavelength range | 300~2700 | |
AOTF driver | Frequency range | 43~156 MHz | Extinction ratio | >800:1 | |
Output power | 2.5 W | Size | 25.4 mm | ||
Input voltage | 24 V | CMOS camera (MV-CA050-20UM) | Detector | PYTHON5000 | |
Stability frequency | 10 PPM | Pixel size | 4.8 μm × 4.8 μm | ||
Frequency resolution | 0.1 MHz | Resolution | 2592 × 2048 | ||
Interface | USB 2.0 | Interface | USB 3.0 | ||
Weight | 100 g | Weight | 60 g |
References
- Zhang, H.; Zhang, B.; Wei, Z.; Wang, C.; Huang, Q. Lightweight Integrated Solution for a UAV-Borne Hyperspectral Imaging System. Remote Sens. 2020, 12, 657. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Y.; Wang, X.; Xu, Y.; Wang, S.; Jia, T.; Hu, X.; Zhao, J.; Wei, L.; Zhang, L. Mini-UAV-Borne Hyperspectral Remote Sensing from Observation and Processing to Applications. IEEE Geosci. Remote Sens. Mag. 2018, 6, 46–62. [Google Scholar] [CrossRef]
- Zheng, Y.; Yu, B. Overview of Spectrum-Dividing Technologies in Imaging Spectrometers. J. Remote Sens. 2002, 6, 75–80. [Google Scholar] [CrossRef]
- Zhiping, H.; Xiage, Q.; Yingyu, X. Staring Acousto-Optic Spectral Imaging Technology with Area FPA and Discussion on its Application of Unmanned Aerial Vehicle (UAV) Platforms. Infrared Laser Eng. 2016, 45, 1–7. [Google Scholar] [CrossRef]
- Li, Y.; Yang, C.; Zhou, C.; Su, J. Advance and Application of UAV Hyperspectral Imaging Equipment. Bull. Surv. Mapp. 2019, 9, 1–6. [Google Scholar] [CrossRef]
- Freitas, S.; Silva, H.; Almeida, J.; Silva, E. Hyperspectral Imaging for Real-Time Unmanned Aerial Vehicle Maritime Target Detection. J. Intell. Robot. Syst. 2018, 90, 551–570. [Google Scholar] [CrossRef] [Green Version]
- Headwall. Available online: https://www.headwallphotonics.com (accessed on 6 February 2021).
- Nano-Hyperspec. Available online: https://cdn2.hubspot.net/hubfs/145999/Nano-Hyperspec_Oct19.pdf (accessed on 6 February 2021).
- ITRES. Available online: https://itres.com/sensor-line-1-high-fidelity-hyperspectral-sensor-system/ (accessed on 6 February 2021).
- HySpex. Available online: https://www.hyspex.com (accessed on 6 February 2021).
- Yue, J.; Feng, H.; Jin, X.; Yuan, H.; Li, Z.; Zhou, C.; Yang, G.; Tian, Q. A Comparison of Crop Parameters Estimation Using Images from UAV-Mounted Snapshot Hyperspectral Sensor and High-Definition Digital Camera. Remote Sens. 2018, 10, 1138. [Google Scholar] [CrossRef] [Green Version]
- BaySpec. Available online: https://www.bayspec.com (accessed on 6 February 2021).
- Cubert. Available online: https://cubert-gmbh.com/ (accessed on 6 February 2021).
- Grusche, S. Basic Slit Spectroscope Reveals Three-Dimensional Scenes through Diagonal Slices of Hyperspectral Cubes. Appl. Opt. 2014, 53, 4594–4603. [Google Scholar] [CrossRef]
- Rahmlow, T.D., Jr.; Cote, W.; Johnson, R.L., Jr. Hyperspectral Imaging Using a Linear Variable Filter (LVF) Based Ultracompact Camera. In Proceedings of the Photonic Instrumentation Engineering VII, San Francisco, CA, USA, 4–6 February 2020. [Google Scholar]
- Imec-Int. Available online: https://www.imec-int.com/en/hyperspectral-imaging (accessed on 6 February 2021).
- Jaud, M.; Le Dantec, N.; Ammann, J.; Grandjean, P.; Constantin, D.; Akhtman, Y.; Barbieux, K.; Allemand, P.; Delacourt, C.; Merminod, B. Direct Georeferencing of a Pushbroom, Lightweight Hyperspectral System for Mini-UAV Applications. Remote Sens. 2018, 10, 204. [Google Scholar] [CrossRef] [Green Version]
- Abdlaty, R.; Sahli, S.; Hayward, J.; Fang, Q. Hyperspectral Imaging: Comparison of Acousto-Optic and Liquid Crystal Tunable Filters. In Proceedings of the Medical Imaging 2018: Physics of Medical Imaging, Houston, TX, USA, 12–15 February 2018. [Google Scholar]
- Makynen, J.; Holmlund, C.; Saari, H.; Ojala, K.; Antila, T. Unmanned Aerial Vehicle (UAV) Operated Megapixel Spectral Camera. In Proceedings of the Electro-Optical Remote Sensing, Photonic Technologies, and Applications V, Prague, Czech Republic, 21–22 September 2011. [Google Scholar]
- Wang, J.; Ding, N.; Zheng, Y.; Zhao, Y.; Gao, F.; Li, J.; Wang, J.; Gao, M.; Wu, J. Overall Design Technology of Hyperspectral Imaging System Based on AOTF. In Proceedings of the International Symposium on Optoelectronic Technology and Application 2014: Imaging Spectroscopy, and Telescopes and Large Optics, Beijing, China, 13–15 May 2014. [Google Scholar]
- Senop. Available online: https://senop.fi/ (accessed on 6 February 2021).
- Aasen, H.; Burkart, A.; Bolten, A.; Bareth, G. Generating 3D Hyperspectral Information with Lightweight UAV Snapshot Cameras for Vegetation Monitoring: From Camera Calibration to Quality Assurance. ISPRS J. Photogramm. 2015, 108, 245–259. [Google Scholar] [CrossRef]
- Fang, S.; Xia, X.; Xiao, Y.; Guo, R. Lens Distortion Calibration Method for Linear Array Cameras. J. Xi’an Jiaotong Univ. 2013, 47, 11–14. [Google Scholar]
- Machikhin, A.; Batshev, V.; Pozhar, V. Aberration Analysis of AOTF-Based Spectral Imaging Systems. JOSA A 2017, 34, 1109–1113. [Google Scholar] [CrossRef]
- Wei, L.; Huang, C.; Wang, Z.; Wang, Z.; Zhou, X.; Cao, L. Monitoring of Urban Black-Odor Water Based on Nemerow Index and Gradient Boosting Decision Tree Regression Using UAV-Borne Hyperspectral Imagery. Remote Sens. 2019, 11, 2402. [Google Scholar] [CrossRef] [Green Version]
- Pyo, J.C.; Ligaray, M.; Kwon, Y.S.; Ahn, M.H.; Kim, K.; Lee, H.; Kang, T.; Cho, S.B.; Park, Y.; Cho, K.H. High-Spatial Resolution Monitoring of Phycocyanin and Chlorophyll-A Using Airborne Hyperspectral Imagery. Remote Sens. 2018, 10, 1180. [Google Scholar] [CrossRef] [Green Version]
- Flynn, K.F.; Chapra, S.C. Remote Sensing of Submerged Aquatic Vegetation in a Shallow Non-Turbid River Using an Unmanned Aerial Vehicle. Remote Sens. 2014, 6, 12815–12836. [Google Scholar] [CrossRef] [Green Version]
- Giardino, C.; Bresciani, M.; Valentini, E.; Gasperini, L.; Bolpagni, R.; Brando, V.E. Airborne Hyperspectral Data to Assess Suspended Particulate Matter and Aquatic Vegetation in a Shallow and Turbid Lake. Remote Sens. Environ. 2015, 157, 48–57. [Google Scholar] [CrossRef]
- Markelin, L.; Simis, S.; Hunter, P.; Spyrakos, E.; Tyler, A.; Clewley, D.; Groom, S. Atmospheric Correction Performance of Hyperspectral Airborne Imagery over a Small Eutrophic Lake under Changing Cloud Cover. Remote Sens. 2016, 9, 2. [Google Scholar] [CrossRef] [Green Version]
- Kupssinskü, L.S.; Guimares, T.T.; De Souza, E.M.; Zanotta, D.C.; Veronez, M.R.; Gonzaga, L., Jr.; Mauad, F.F. A Method for Chlorophyll-A and Suspended Solids Prediction through Remote Sensing and Machine Learning. Sensors 2020, 20, 2125. [Google Scholar]
- Olivetti, D.; Roig, H.; Martinez, J.-M.; Borges, H.; Ferreira, A.; Casari, R.; Salles, L.; Malta, E. Low-Cost Unmanned Aerial Multispectral Imagery for Siltation Monitoring in Reservoirs. Remote Sens. 2020, 12, 1855. [Google Scholar] [CrossRef]
- Morgan, B.J.; Stocker, M.D.; Valdes-Abellan, J.; Kim, M.S.; Pachepsky, Y. Drone-Based Imaging to Assess the Microbial Water Quality in an Irrigation Pond: A Pilot Study. Sci. Total Environ. 2020, 716, 135757. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, C.P.; Zhang, L.F.; Qiao, N. Spectral Characteristics Analysis and Remote Sensing Retrieval of COD Concentration. Spectrosc. Spectrom. Anal. 2020, 40, 824–830. [Google Scholar] [CrossRef]
- Kageyama, Y.; Takahashi, J.; Nishida, M.; Kobori, B.; Nagamoto, D. Analysis of Water Quality in Miharu Dam Reservoir, Japan, Using UAV Data. IEEJ Trans. Electr. Electron. Eng. 2016, 11, S183–S185. [Google Scholar] [CrossRef]
- Wang, Z.; Kawamura, K.; Sakuno, Y.; Fan, X.; Gong, Z.; Lim, J. Retrieval of Chlorophyll-A and Total Suspended Solids Using Iterative Stepwise Elimination Partial Least Squares (ISE-PLS) Regression Based on Field Hyperspectral Measurements in Irrigation Ponds in Higashihiroshima, Japan. Remote Sens. 2017, 9, 264. [Google Scholar] [CrossRef] [Green Version]
- Wei, L.; Wang, Z.; Huang, C.; Zhang, Y.; Wang, Z.; Xia, H.; Cao, L. Transparency Estimation of Narrow Rivers by UAV-Borne Hyperspectral Remote Sensing Imagery. IEEE Access 2020, 8, 168137–168153. [Google Scholar] [CrossRef]
- Wei, L.; Huang, C.; Zhong, Y.; Wang, Z.; Hu, X.; Lin, L. Inland Waters Suspended Solids Concentration Retrieval Based on PSO-LSSVM for UAV-Borne Hyperspectral Remote Sensing Imagery. Remote Sens. 2019, 11, 1455. [Google Scholar] [CrossRef] [Green Version]
- Yu, B.; Xu, L.; Peng, J.; Hu, Z.; Wong, A. Global Chlorophyll-A Concentration Estimation from Moderate Resolution Imaging Spectroradiometer Using Convolutional Neural Networks. J. Appl. Remote Sens. 2020, 14, 034520. [Google Scholar] [CrossRef]
- Veronez, R.M.; Kupssinskü, L.S.; Guimarães, T.T.; Koste, E.C.; Da Silva, J.M.; De Souza, L.V.; Oliverio, W.F.M.; Jardim, R.S.; Koch, I.É.; De Souza, J.G.; et al. Proposal of a Method to Determine the Correlation between Total Suspended Solids and Dissolved Organic Matter in Water Bodies from Spectral Imaging and Artificial Neural Networks. Sensors 2018, 18, 159. [Google Scholar] [CrossRef] [Green Version]
- Qun’ou, J.; Lidan, X.; Siyang, S.; Meilin, W.; Huijie, X. Retrieval Model for Total Nitrogen Concentration Based on UAV Hyper Spectral Remote Sensing Data and Machine Learning Algorithms—A Case Study in the Miyun Reservoir, China. Ecol. Indic. 2021, 124, 107356. [Google Scholar] [CrossRef]
- Hafeez, S.; Wong, M.S.; Ho, H.C.; Nazeer, M.; Nichol, J.; Abbas, S.; Tang, D.; Lee, K.H.; Pun, L. Comparison of Machine Learning Algorithms for Retrieval of Water Quality Indicators in Case-II Waters: A Case Study of Hong Kong. Remote Sens. 2019, 11, 611. [Google Scholar] [CrossRef] [Green Version]
- Su, T.-C. A Study of a Matching Pixel by Pixel (MPP) Algorithm to Establish an Empirical Model of Water Quality Mapping, as Based on Unmanned Aerial Vehicle (UAV) Images. Int. J. Appl. Earth Obs. Geoinf. 2017, 58, 213–224. [Google Scholar] [CrossRef]
- Su, T.-C.; Chou, H.-T. Application of Multispectral Sensors Carried on Unmanned Aerial Vehicle (UAV) to Trophic State Mapping of Small Reservoirs: A Case Study of Tain-Pu Reservoir in Kinmen, Taiwan. Remote Sens. 2015, 7, 10078–10097. [Google Scholar] [CrossRef] [Green Version]
- Ying, H.; Xia, K.; Huang, X.; Feng, H.; Yang, Y.; Du, X.; Huang, L. Evaluation of Water Quality Based on UAV Images and the IMP-MPP Algorithm. Ecol. Inform. 2021, 61, 101239. [Google Scholar] [CrossRef]
- Dji. Available online: https://www.dji.com/cn (accessed on 6 February 2021).
- Ronin, M.X. Available online: https://store.dji.com/cn/product/ronin-mx (accessed on 6 February 2021).
- Gaponov, M.; Machikhin, A.; Pozhar, V.; Shurygin, A. Acousto-Optical Imaging Spectrometer for Unmanned Aerial Vehicles. In Proceedings of the 23rd International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, Irkutsk, Russia, 3–7 July 2017. [Google Scholar]
- Pozhar, V.; Gaponov, M.; Machikhin, A.; Shirokov, S. Hyperspectral Monitoring AOTF-Based Apparatus. In Proceedings of the V International Conference on Information Technology and Nanotechnology (ITNT-2019), Samara, Russia, 21–24 May 2019; Volume 1368, p. 022046. [Google Scholar] [CrossRef]
- He, Z.; Li, C.; Xu, R.; Lv, G.; Yuan, L.; Wang, J. The Spectrometers Based on AOTF for In-Situ Lunar Surface Measurement. In Proceedings of the Multispectral, Hyperspectral and Ultraspectral Remote Sensing Technology, Techniques and Applications VII, Honolulu, HI, USA, 24–26 September 2018; Larar, A.M., Suzuki, M., Wang, J., Eds.; International Society for Optics and Photonics: Bellingham, WA, USA, 2018; Volume 10780. [Google Scholar]
- Wang, J.; He, Z.; Shu, R. Design and Applications of Space-Borne Imaging Spectrometer Based on Acousto-Optic Tunable Filter (AOTF). In Proceedings of the Multispectral, Hyperspectral, and Ultraspectral Remote Sensing Technology, Techniques, and Applications III, Incheon, Korea, 11–14 October 2010. [Google Scholar]
- Govindaraj, R.; Ganesh, G. Development and Integration of an AOTF Based NIR Spectrophotometer. J. Opt. 2018, 47, 132–142. [Google Scholar] [CrossRef]
- Calpe-Maravilla, J.; Vila-Frances, J.; Ribes-Gomez, E.; Duran-Bosch, V.; Munoz-Mari, J.; Amoros-Lopez, J.; Gomez-Chova, L.; Tajahuerce-Romera, E. 400- To 1000-nm Imaging Spectrometer Based on Acousto-Optic Tunable Filters. J. Electron. Imaging 2006, 15, 460–471. [Google Scholar] [CrossRef]
- Abdlaty, R.; Fang, Q. Acousto-Optic Tunable Filter-Based Hyperspectral Imaging System Characterization. In Proceedings of the Deasing and Quality for Biomedical Technologies XII, San Francisco, CA, USA, 2–3 February 2019. [Google Scholar]
- Vila-Frances, J.; Calpe-Maravilla, J.; Gomez-Chova, L.; Amoros-Lopez, J. Analysis of Acousto-Optic Tunable Filter Performance for Imaging Applications. Opt. Eng. 2010, 49, 113203. [Google Scholar] [CrossRef]
- Gao, Z.; Zhang, H.; Wu, Q.; Zeng, L. Calibration and Characterization of an AOTF-Based Hyperspectral Imaging System. Acta Photonica Sin. 2015, 44, 1–7. [Google Scholar] [CrossRef]
- Del Pozo, S.; Rodríguez-Gonzálvez, P.; Hernández-López, D.; Felipe-García, B. Vicarious Radiometric Calibration of a Multispectral Camera on Board an Unmanned Aerial System. Remote Sens. 2014, 6, 1918–1937. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.M.; Chen, J.X.; Liu, Y.N.; Xue, Y.Q. Study on Two-Point Multi-Section IRFPA Nonuniformity Correction Algorithm. J. Infrared Millim. Waves. 2003, 22, 415–418. [Google Scholar]
- Laliberte, A.S.; Goforth, M.A.; Steele, C.M.; Rango, A. Multispectral Remote Sensing from Unmanned Aircraft: Image Processing Workflows and Applications for Rangeland Environments. Remote Sens. 2011, 3, 2529–2551. [Google Scholar] [CrossRef] [Green Version]
- De Oliveira, R.A.; Tommaselli, A.M.; Honkavaara, E. Geometric Calibration of a Hyperspectral Frame Camera. Photogram. Rec. 2016, 31, 325–347. [Google Scholar] [CrossRef]
- Chen, X. Image Registration Technology and Its MATLAB Programming; Publishing House of Electronics Industry: Beijing, China, 2009. [Google Scholar]
- Xu, L.; Wan, J.W.L.; Bian, T. A Continuous Method for Reducing Interpolation Artifacts in Mutual Information-Based Rigid Image Registration. IEEE Trans. Image Process. 2013, 22, 2995–3007. [Google Scholar] [CrossRef]
- Powell, M.J.D. An Efficient Method for Finding the Minimum of a Function of Several Variables without Calculating Derivatives. Comput. J. 1964, 7, 155–162. [Google Scholar] [CrossRef]
- Sun, G.; Huang, W.; Chen, P.; Gao, S.; Wang, X. Advances in UAV-Based Multispectral Remote Sensing Applications. Trans. Chin. Soc. Agric. Mach. 2018, 49, 1–17. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, D.; Tang, L.; Li, C.; Ma, L. An Approach to Stitch UAV Image with Low Overlap Based on ASIFT Algorithm. Remote Sens. Technol. Appl. 2015, 30, 725–730. [Google Scholar] [CrossRef]
- Ren, X.; Sun, M.; Zhang, X.; Liu, L. A Simplified Method for UAV Multispectral Images Mosaicking. Remote Sens. 2017, 9, 962. [Google Scholar] [CrossRef] [Green Version]
- Xing, H.; Zhao, H.; Cheng, X.; Zhang, Y.; Zhou, P. Radiometric Calibration of Hyperspectral Imaging Spectrometer Based on AOTF. Infrared Laser Eng. 2009, 38, 205–209. [Google Scholar] [CrossRef]
- Banerjee, B.P.; Raval, S.; Cullen, P.J. UAV-Hyperspectral Imaging of Spectrally Complex Environments. Int. J. Remote Sens. 2020, 41, 4136–4159. [Google Scholar] [CrossRef]
- Yang, G.; Li, C.; Wang, Y.; Yuan, H.; Feng, H.; Xu, B.; Yang, X. The DOM Generation and Precise Radiometric Calibration of a UAV-Mounted Miniature Snapshot Hyperspectral Imager. Remote Sens. 2017, 9, 642. [Google Scholar] [CrossRef] [Green Version]
- Tang, J.; Tian, G.; Wang, X.; Wang, X.; Song, Q. The Methods of Water Spectra Measurement and Analysis I: Above-Water Method. J. Remote Sens. 2004, 8, 37–44. [Google Scholar]
- Mobley, C.D. Estimation of the Remote-Sensing Reflectance from above-Surface Measurements. Appl. Opt. 1999, 38, 7442–7455. [Google Scholar] [CrossRef]
- Yao, X.; Huang, Y.; Shang, G.; Zhou, C.; Cheng, T.; Tian, Y.; Cao, W.; Zhu, Y. Evaluation of Six Algorithms to Monitor Wheat Leaf Nitrogen Concentration. Remote Sens. 2015, 7, 14939–14966. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Chen, X.; Liu, Y.; Sun, M.; Cen, H.; Wang, X. Inversion of River and Lake Water Quality Parameters by UAV Hyperspectral Imaging Technology. Yangtze River 2020, 51, 205–212. [Google Scholar] [CrossRef]
- Jiang, C.; Ma, Z.; Yang, T.; Luo, Y.; He, H. Analysis of Eutrophication and Pollution in Guanting Reservoir Based on Spectral Features. Spacecr. Recov. Remote Sens. 2020, 41, 113–122. [Google Scholar]
- Van Nguyen, M.; Lin, C.H.; Chu, H.J.; Muhamad Jaelani, L.; Aldila Syariz, M. Spectral Feature Selection Optimization for Water Quality Estimation. Int. J. Environ. Res. Public Health. 2019, 17, 272. [Google Scholar] [CrossRef] [Green Version]
- Tassan, S. Local Algorithms Using SeaWiFS Data for the Retrieval of Phytoplankton, Pigments, Suspended Sediment, and Yellow Substance in Coastal Waters. Appl. Opt. 1994, 33, 2369–2378. [Google Scholar] [CrossRef]
- O’Reilly, J.E.; Maritorena, S.; Mitchell, B.G.; Siegel, D.A.; Carder, K.L.; Garver, S.A.; Kahru, M.; McClain, C. Ocean Color Chlorophyll Algorithms for SeaWiFS. J. Geophys. Res. 1998, 103, 24937–24953. [Google Scholar] [CrossRef] [Green Version]
- Mishra, S.; Mishra, D.R. Normalized Difference Chlorophyll Index: A Novel Model for Remote Estimation of Chlorophyll-A Concentration in Turbid Productive Waters. Remote Sens. Environ. 2012, 117, 394–406. [Google Scholar] [CrossRef]
- Gower, J.F.R.; Doerffer, R.; Borstad, G.A. Interpretation of the 685 nm Peak in Water-Leaving Radiance Spectra in Terms of Fluorescence, Absorption and Scattering, and Its Observation by MERIS. Int. J. Remote Sens. 1999, 20, 1771–1786. [Google Scholar] [CrossRef]
- Gower, J.; King, S.; Borstad, G.; Brown, L. Detection of Intense Plankton Blooms Using the 709 nm Band of the MERIS Imaging Spectrometer. Int. J. Remote Sens. 2005, 26, 2005–2012. [Google Scholar] [CrossRef]
- Shen, F.; Zhou, Y.-X.; Li, D.-J.; Zhu, W.-J.; Suhyb Salama, M.S. Medium Resolution Imaging Spectrometer (MERIS) Estimation of Chlorophyll-A Concentration in the Turbid Sediment-Laden Waters of the Changjiang (Yangtze) Estuary. Int. J. Remote Sens. 2010, 31, 4635–4650. [Google Scholar] [CrossRef]
- Gitelson, A.; Keydan, G.; Shishkin, V. Inland Waters Quality Assessment from Satellite Data in Visible Range of the Spectrum. Sov. J. Remote Sens. 1985, 6, 28–36. [Google Scholar]
- Dall’Olmo, G.; Gitelson, A.A. Effect of Bio-Optical Parameter Variability on the Remote Estimation of Chlorophyll-A Concentration in Turbid Productive Waters: Experimental Results. Appl. Opt. 2005, 44, 412–422. [Google Scholar] [CrossRef] [Green Version]
- Le, C.; Li, Y.; Zha, Y.; Sun, D.; Huang, C.; Lu, H. A Four-Band Semi-Analytical Model for Estimating Chlorophyll A in Highly Turbid Lakes: The Case of Taihu Lake, China. Remote Sens. Environ. 2009, 113, 1175–1182. [Google Scholar] [CrossRef]
- Gons, H.J.; Rijkeboer, M.; Ruddick, K.G. A Chlorophyll-Retrieval Algorithm for Satellite Imagery (Medium Resolution Imaging Spectrometer) of Inland and Coastal Waters. J. Plankton Res. 2002, 24, 947–951. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.J.; Hu, B.L.; Yu, T.; Liu, Q.S.; Li, H.B.; Fan, Y. Analysis of Nitrate in Seawater of Wheat Island Based on LLE-BPNN. Spectrosc. Spectrom. Anal. 2019, 39, 1503–1508. [Google Scholar] [CrossRef]
- Guo, Y.; Hu, S.; Wu, W.; Wang, Y.; Senthilnath, J. Multitemporal Time Series Analysis Using Machine Learning Models for Ground Deformation in the Erhai Region, China. Environ. Monit. Assess. 2020, 192, 464. [Google Scholar] [CrossRef]
- Hossain, S.; Chow, C.W.K.; Hewa, G.A.; Cook, D.; Harris, M. Spectrophotometric Online Detection of Drinking Water Disinfectant: A Machine Learning Approach. Sensors 2020, 20, 6671. [Google Scholar] [CrossRef]
- Guo, Y.; Fu, Y.; Hao, F.; Zhang, X.; Wu, W.; Jin, X.; Robin Bryant, C.R.; Senthilnath, J. Integrated Phenology and Climate in Rice Yields Prediction Using Machine Learning Methods. Ecol. Indic. 2021, 120, 106935. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random Forest in Remote Sensing: A Review of Applications and Future Directions. ISPRS J. Photogramm. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Pal, M. Random Forest Classifier for Remote Sensing Classification. Int. J. Remote Sens. 2005, 26, 217–222. [Google Scholar] [CrossRef]
Water Quality Parameters | Minimum (μg/L) | Maximum (μg/L) | Mean (μg/L) | STD (μg/L) | C.V. |
---|---|---|---|---|---|
Chlorophyll-a | 26.35 | 55.65 | 36.78 | 7.48 | 20.34% |
Water Quality Parameters | Modeling Method | Train Set | Test Set | ||||
---|---|---|---|---|---|---|---|
R2 | RMSE (μg/L) | MAPE | R2 | EMSE (μg/L) | MAPE | ||
Chlorophyll-a | PSO-LSSVM | 0.7755 | 3.8113 | 7.53% | 0.6921 | 3.7413 | 7.46% |
BP | 0.7764 | 3.8038 | 6.26% | 0.7477 | 3.3865 | 6.75% | |
RF | 0.8425 | 3.1922 | 5.46% | 0.8104 | 3.2307 | 6.46% | |
PLS | 0.7643 | 3.901 | 7.56% | 0.6824 | 3.7994 | 7.44% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Yu, T.; Hu, B.; Hou, X.; Zhang, Z.; Liu, X.; Liu, J.; Wang, X.; Zhong, J.; Tan, Z.; et al. UAV-Borne Hyperspectral Imaging Remote Sensing System Based on Acousto-Optic Tunable Filter for Water Quality Monitoring. Remote Sens. 2021, 13, 4069. https://doi.org/10.3390/rs13204069
Liu H, Yu T, Hu B, Hou X, Zhang Z, Liu X, Liu J, Wang X, Zhong J, Tan Z, et al. UAV-Borne Hyperspectral Imaging Remote Sensing System Based on Acousto-Optic Tunable Filter for Water Quality Monitoring. Remote Sensing. 2021; 13(20):4069. https://doi.org/10.3390/rs13204069
Chicago/Turabian StyleLiu, Hong, Tao Yu, Bingliang Hu, Xingsong Hou, Zhoufeng Zhang, Xiao Liu, Jiacheng Liu, Xueji Wang, Jingjing Zhong, Zhengxuan Tan, and et al. 2021. "UAV-Borne Hyperspectral Imaging Remote Sensing System Based on Acousto-Optic Tunable Filter for Water Quality Monitoring" Remote Sensing 13, no. 20: 4069. https://doi.org/10.3390/rs13204069
APA StyleLiu, H., Yu, T., Hu, B., Hou, X., Zhang, Z., Liu, X., Liu, J., Wang, X., Zhong, J., Tan, Z., Xia, S., & Qian, B. (2021). UAV-Borne Hyperspectral Imaging Remote Sensing System Based on Acousto-Optic Tunable Filter for Water Quality Monitoring. Remote Sensing, 13(20), 4069. https://doi.org/10.3390/rs13204069