SS-MLP: A Novel Spectral-Spatial MLP Architecture for Hyperspectral Image Classification
Abstract
:1. Introduction
2. MLP
3. Methodology
3.1. Pixel Embedding
3.2. SS-MLP Block
3.3. Classifying HSIs Using the Proposed SS-MLP
4. Experimental Results
4.1. Datasets
- UP: This hyperspectral scene was captured in 2001 by the reflective optics spectrographic imaging system (ROSIS)-03 airborne instrument, which covers an urban area surrounding the Engineering School of the University of Pavia in the city of Pavia, Northern Italy. The spatial dimensions of this scene are pixels, with a 1.3 m ground sampling distance (GSD). The data cube contains a total of 115 spectral reflectance bands in the wavelength range from 0.43 to 0.86 m (VNIR). Before the experiments, 12 very noisy bands were removed. Therefore, the data dimensionality is . There are mainly 9 categories of ground materials in the scene.
- UH: This hyperspectral scene was gathered by the Compact Airborne Spectrographic Imager (CASI)-1500 sensor on June 23, 2012 between 17:37:10 and 17:39:50 UTC, which covers the campus of University of Houston and the neighboring urban area in the city of Texas, United States. It consists of pixels with a GSD of 2.5 m. The considered scene contains 144 spectral reflectance bands in the wavelength range from 0.38 to 1.05 m (VNIR), forming a data cube of dimension . This dataset was provided by the 2013 IEEE Geoscience and Remote Sensing Society (GRSS) data fusion contest and has been calibrated to at-sensor spectral radiance units. There are mainly 15 categories of ground materials in this dataset.
- IP: This hyperspectral scene was acquired in 1992 by the airborne visible/ infrared imaging spectrometer (AVIRIS) sensor, which covers the agricultural Indian Pines test site in northwestern Indiana, United States. This hyperspectral scene mainly comprises crops of regular geometry and irregular forest regions. The spatial dimensions of this scene are pixels, with a 20 m GSD. In addition, it consists of 224 spectral reflectance bands in the wavelength range from 0.4 to 2.5 m, spanning the VNIR-SWIR. In our experiments, four null bands and other 20 water absorption bands (104–108, 150–163, and 220) have been removed, keeping the rest 200 bands for analysis. Therefore, the data dimensionality is . There are mainly 16 categories of ground materials in the data.
4.2. Evaluation Metrics
4.3. Parameter Analysis
4.4. Comparison Methods
- DenseNet [56]: A deep&dense CNN which employs shortcut connections between layers to avoid the vanishing model gradient and enhance network generalization. It exploits both low-level and high-level features extracted from HSI data for classification.
- FDMFN [57]: A fully dense multiscale fusion network which exploits the complementary and correlated multiscale features from different convolution layers for HSI classification. With the fully dense connectivity pattern, any two layers in the network are connected to ensure maximum information flow.
- MSRN [58]: A multiscale residual network which integrates multiscale filter banks ( and filters) into depthwise convolution operations, in order to not only learn multiscale information from HSI data but also reduce the computational cost of the network.
- DPRN [59]: A deep pyramidal residual network which is made up several pyramidal bottleneck residual blocks. As the network depth increases, more feature maps are generated to improve the diversity of high-level spectral–spatial features.
- SSSERN [60]: A spatial–spectral squeeze-and-excitation residual network which extracts distinguishable features through spatial and spectral attention mechanisms, emphasizing meaningful features and suppressing unnecessary ones in the spatial and spectral domains simultaneously.
4.5. Comparison Results
5. Discussion
5.1. Ablation Analysis of the Proposed SS-MLP
5.2. Impact of SeMLP and SaMLP
5.3. Impact of Activation Function
5.4. Analysis of Learning Curves of SS-MLP
5.5. Analysis of General Applicability
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Training Details of the Compared Methods
Appendix B. Classification Maps for the HYRANK Dataset
References
- Tai, X.; Li, M.; Xiang, M.; Ren, P. A mutual guide framework for training hyperspectral image classifiers with small data. IEEE Trans. Geosci. Remote Sens. 2021, 1–17. [Google Scholar] [CrossRef]
- Hu, X.; Zhong, Y.; Wang, X.; Luo, C.; Zhao, J.; Lei, L.; Zhang, L. SPNet: Spectral patching end-to-end classification network for UAV-borne hyperspectral imagery with high spatial and spectral resolutions. IEEE Trans. Geosci. Remote Sens. 2021, 1–17. [Google Scholar] [CrossRef]
- Shimoni, M.; Haelterman, R.; Perneel, C. Hypersectral imaging for military and security applications: Combining myriad processing and sensing techniques. IEEE Geosci. Remote Sens. Mag. 2019, 7, 101–117. [Google Scholar] [CrossRef]
- Han, Y.; Gao, Y.; Zhang, Y.; Wang, J.; Yang, S. Hyperspectral sea ice image classification based on the spectral-spatial-joint feature with deep learning. Remote Sens. 2019, 11, 2170. [Google Scholar] [CrossRef] [Green Version]
- Ghamisi, P.; Plaza, J.; Chen, Y.; Li, J.; Plaza, A.J. Advanced spectral classifiers for hyperspectral images: A review. IEEE Geosci. Remote Sens. Mag. 2017, 5, 8–32. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Tan, K.; Du, Q.; Chen, Y.; Du, P. Caps-TripleGAN: GAN-assisted CapsNet for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 7232–7245. [Google Scholar] [CrossRef]
- Lu, B.; Dao, P.D.; Liu, J.; He, Y.; Shang, J. Recent advances of hyperspectral imaging technology and applications in agriculture. Remote Sens. 2020, 12, 2659. [Google Scholar] [CrossRef]
- Jia, J.; Chen, J.; Zheng, X.; Wang, Y.; Guo, S.; Sun, H.; Jiang, C.; Karjalainen, M.; Karila, K.; Duan, Z.; et al. Tradeoffs in the spatial and spectral resolution of airborne hyperspectral imaging systems: A crop identification case study. IEEE Trans. Geosci. Remote Sens. 2021, 1–18. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Zhou, P.; Han, J.; Cheng, G.; Zhang, B. Learning compact and discriminative stacked autoencoder for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 4823–4833. [Google Scholar] [CrossRef]
- Mou, L.; Ghamisi, P.; Zhu, X.X. Deep recurrent neural networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3639–3655. [Google Scholar] [CrossRef] [Green Version]
- Hang, R.; Liu, Q.; Hong, D.; Ghamisi, P. Cascaded recurrent neural networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 5384–5394. [Google Scholar] [CrossRef] [Green Version]
- Imani, M.; Ghassemian, H. An overview on spectral and spatial information fusion for hyperspectral image classification: Current trends and challenges. Inf. Fusion 2020, 59, 59–83. [Google Scholar] [CrossRef]
- Vali, A.; Comai, S.; Matteucci, M. Deep learning for land use and land cover classification based on hyperspectral and multispectral earth observation data: A review. Remote Sens. 2020, 12, 2495. [Google Scholar] [CrossRef]
- Cao, X.; Zhou, F.; Xu, L.; Meng, D.; Xu, Z.; Paisley, J. Hyperspectral image classification with Markov random fields and a convolutional neural network. IEEE Trans. Image Process. 2018, 27, 2354–2367. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Xiao, L.; Yang, J.; Chan, J.C.W. Content-guided convolutional neural network for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2020, 58, 6124–6137. [Google Scholar] [CrossRef]
- Jia, S.; Liao, J.; Xu, M.; Li, Y.; Zhu, J.; Sun, W.; Jia, X.; Li, Q. 3-D Gabor convolutional neural network for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2021, 1–16. [Google Scholar] [CrossRef]
- Aptoula, E.; Ozdemir, M.C.; Yanikoglu, B. Deep learning with attribute profiles for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1970–1974. [Google Scholar] [CrossRef]
- Huang, L.; Chen, Y. Dual-path siamese CNN for hyperspectral image classification with limited training samples. IEEE Geosci. Remote Sens. Lett. 2020, 18, 518–522. [Google Scholar] [CrossRef]
- Paoletti, M.E.; Haut, J.M.; Plaza, J.; Plaza, A. A new deep convolutional neural network for fast hyperspectral image classification. ISPRS J. Photogramm. Remote. Sens. 2018, 145, 120–147. [Google Scholar] [CrossRef]
- Sellami, A.; Farah, M.; Farah, I.R.; Solaiman, B. Hyperspectral imagery classification based on semi-supervised 3-D deep neural network and adaptive band selection. Expert Syst. Appl. 2019, 129, 246–259. [Google Scholar] [CrossRef]
- Roy, S.K.; Krishna, G.; Dubey, S.R.; Chaudhuri, B.B. HybridSN: Exploring 3-D–2-D CNN feature hierarchy for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 2019, 17, 277–281. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Dou, S.; Wang, S. Alternately updated spectral–spatial convolution network for the classification of hyperspectral images. Remote Sens. 2019, 11, 1794. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Ding, M.; Pižurica, A. Deep feature fusion via two-stream convolutional neural network for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2019, 58, 2615–2629. [Google Scholar] [CrossRef] [Green Version]
- Cao, F.; Guo, W. Deep hybrid dilated residual networks for hyperspectral image classification. Neurocomputing 2020, 384, 170–181. [Google Scholar] [CrossRef]
- Dong, Z.; Cai, Y.; Cai, Z.; Liu, X.; Yang, Z.; Zhuge, M. Cooperative spectral–spatial attention dense network for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 2020, 18, 866–870. [Google Scholar] [CrossRef]
- Zhang, C.; Li, G.; Du, S. Multi-scale dense networks for hyperspectral remote sensing image classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 9201–9222. [Google Scholar] [CrossRef]
- Xu, Q.; Wang, D.; Luo, B. Faster multiscale capsule network with octave convolution for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 2020, 18, 361–365. [Google Scholar] [CrossRef]
- Wang, W.Y.; Li, H.C.; Deng, Y.J.; Shao, L.Y.; Lu, X.Q.; Du, Q. Generative adversarial capsule network with ConvLSTM for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 2020, 18, 523–527. [Google Scholar] [CrossRef]
- Mou, L.; Lu, X.; Li, X.; Zhu, X.X. Nonlocal graph convolutional networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2020, 58, 8246–8257. [Google Scholar] [CrossRef]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- He, J.; Zhao, L.; Yang, H.; Zhang, M.; Li, W. HSI-BERT: Hyperspectral image classification using the bidirectional encoder representation from transformers. IEEE Trans. Geosci. Remote Sens. 2019, 58, 165–178. [Google Scholar] [CrossRef]
- Tolstikhin, I.; Houlsby, N.; Kolesnikov, A.; Beyer, L.; Zhai, X.; Unterthiner, T.; Yung, J.; Steiner, A.; Keysers, D.; Uszkoreit, J.; et al. Mlp-mixer: An all-mlp architecture for vision. arXiv 2021, arXiv:2105.01601. [Google Scholar]
- Liu, H.; Dai, Z.; So, D.R.; Le, Q.V. Pay attention to MLPs. arXiv 2021, arXiv:2105.08050. [Google Scholar]
- Touvron, H.; Bojanowski, P.; Caron, M.; Cord, M.; El-Nouby, A.; Grave, E.; Joulin, A.; Synnaeve, G.; Verbeek, J.; Jégou, H. Resmlp: Feedforward networks for image classification with data-efficient training. arXiv 2021, arXiv:2105.03404. [Google Scholar]
- Collobert, R.; Bengio, S. Links between perceptrons, MLPs and SVMs. In Proceedings of the Twenty-First International Conference on Machine Learning, Banff, AB, Canada, 4–8 July 2004; p. 23. [Google Scholar]
- Ding, X.; Zhang, X.; Han, J.; Ding, G. RepMLP: Re-parameterizing convolutions into fully-connected layers for image recognition. arXiv 2021, arXiv:2105.01883. [Google Scholar]
- Chen, S.; Xie, E.; Ge, C.; Liang, D.; Luo, P. Cyclemlp: A mlp-like architecture for dense prediction. arXiv 2021, arXiv:2107.10224. [Google Scholar]
- Yu, T.; Li, X.; Cai, Y.; Sun, M.; Li, P. S2-MLP: Spatial-shift MLP architecture for vision. arXiv 2021, arXiv:2106.07477. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of the International Conference on Neural Information Processing Systems (NIPS), Lake Tahoe, NV, USA, 3–6 December 2012; pp. 1097–1105. [Google Scholar]
- Yang, J.; Zhao, Y.Q.; Chan, J.C.W. Learning and transferring deep joint spectral–spatial features for hyperspectral classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4729–4742. [Google Scholar] [CrossRef]
- Xu, Y.; Li, Z.; Li, W.; Du, Q.; Liu, C.; Fang, Z.; Zhai, L. Dual-channel residual network for hyperspectral image classification with noisy labels. IEEE Trans. Geosci. Remote Sens. 2021, 1–11. [Google Scholar] [CrossRef]
- Oord, A.V.D.; Kalchbrenner, N.; Vinyals, O.; Espeholt, L.; Graves, A.; Kavukcuoglu, K. Conditional image generation with PixelCNN decoders. arXiv 2016, arXiv:1606.05328. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Chen, Y.; Zhu, K.; Zhu, L.; He, X.; Ghamisi, P.; Benediktsson, J.A. Automatic design of convolutional neural network for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 7048–7066. [Google Scholar] [CrossRef]
- Zhu, M.; Jiao, L.; Liu, F.; Yang, S.; Wang, J. Residual spectral–spatial attention network for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2020, 59, 449–462. [Google Scholar] [CrossRef]
- Ge, Z.; Cao, G.; Zhang, Y.; Li, X.; Shi, H.; Fu, P. Adaptive hash attention and lower triangular network for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2021, 1–19. [Google Scholar] [CrossRef]
- Hendrycks, D.; Gimpel, K. Gaussian error linear units (gelus). arXiv 2016, arXiv:1606.08415. [Google Scholar]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Ba, J.L.; Kiros, J.R.; Hinton, G.E. Layer normalization. arXiv 2016, arXiv:1607.06450. [Google Scholar]
- Ghamisi, P.; Benediktsson, J.A.; Cavallaro, G.; Plaza, A. Automatic framework for spectral–spatial classification based on supervised feature extraction and morphological attribute profiles. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2147–2160. [Google Scholar] [CrossRef]
- Ghamisi, P.; Maggiori, E.; Li, S.; Souza, R.; Tarablaka, Y.; Moser, G.; De Giorgi, A.; Fang, L.; Chen, Y.; Chi, M.; et al. New frontiers in spectral-spatial hyperspectral image classification: The latest advances based on mathematical morphology, Markov random fields, segmentation, sparse representation, and deep learning. IEEE Geosci. Remote Sens. Mag. 2018, 6, 10–43. [Google Scholar] [CrossRef]
- Hang, R.; Li, Z.; Ghamisi, P.; Hong, D.; Xia, G.; Liu, Q. Classification of hyperspectral and LiDAR data using coupled CNNs. IEEE Trans. Geosci. Remote Sens. 2020, 58, 4939–4950. [Google Scholar] [CrossRef] [Green Version]
- Rasti, B.; Hong, D.; Hang, R.; Ghamisi, P.; Kang, X.; Chanussot, J.; Benediktsson, J.A. Feature extraction for hyperspectral imagery: The evolution from shallow to deep: Overview and toolbox. IEEE Geosci. Remote Sens. Mag. 2020, 8, 60–88. [Google Scholar] [CrossRef]
- Mei, S.; Li, X.; Liu, X.; Cai, H.; Du, Q. Hyperspectral image classification using attention-based bidirectional long short-term memory network. IEEE Trans. Geosci. Remote Sens. 2021, 1–12. [Google Scholar] [CrossRef]
- Paoletti, M.E.; Haut, J.M.; Plaza, J.; Plaza, A. Deep&dense convolutional neural network for hyperspectral image classification. Remote Sens. 2018, 10, 1454. [Google Scholar]
- Meng, Z.; Li, L.; Jiao, L.; Feng, Z.; Tang, X.; Liang, M. Fully dense multiscale fusion network for hyperspectral image classification. Remote Sens. 2019, 11, 2718. [Google Scholar] [CrossRef] [Green Version]
- Gao, H.; Yang, Y.; Li, C.; Gao, L.; Zhang, B. Multiscale residual network with mixed depthwise convolution for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2021, 59, 3396–3408. [Google Scholar] [CrossRef]
- Paoletti, M.E.; Haut, J.M.; Fernandez-Beltran, R.; Plaza, J.; Plaza, A.J.; Pla, F. Deep pyramidal residual networks for spectral–spatial hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 740–754. [Google Scholar] [CrossRef]
- Wang, L.; Peng, J.; Sun, W. Spatial–spectral squeeze-and-excitation residual network for hyperspectral image classification. Remote Sens. 2019, 11, 884. [Google Scholar] [CrossRef] [Green Version]
Class No. | Class Name | Training | Test |
---|---|---|---|
1 | Asphalt | 548 | 6304 |
2 | Meadows | 540 | 18,146 |
3 | Gravel | 392 | 1815 |
4 | Trees | 524 | 2912 |
5 | Metal Sheets | 265 | 1113 |
6 | Bare Soil | 532 | 4572 |
7 | Bitumen | 375 | 981 |
8 | Bricks | 514 | 3364 |
9 | Shado ws | 231 | 795 |
Total | 3921 | 40,002 |
Class No. | Class Name | Training | Test |
---|---|---|---|
1 | Healthy Grass | 198 | 1053 |
2 | Stressed Grass | 190 | 1064 |
3 | Synthetic Grass | 192 | 505 |
4 | Trees | 188 | 1056 |
5 | Soil | 186 | 1056 |
6 | Water | 182 | 143 |
7 | Residential | 196 | 1072 |
8 | Commercial | 191 | 1053 |
9 | Road | 193 | 1059 |
10 | Highway | 191 | 1036 |
11 | Railway | 181 | 1054 |
12 | Parking Lot1 | 192 | 1041 |
13 | Parking Lot2 | 184 | 285 |
14 | Tennis Court | 181 | 247 |
15 | Running Track | 187 | 473 |
Total | 2832 | 12,197 |
Class No. | Class Name | Training | Test |
---|---|---|---|
1 | Alfalfa | 26 | 20 |
2 | Corn-notill | 726 | 702 |
3 | Corn-mintill | 431 | 399 |
4 | Corn | 132 | 105 |
5 | Grass/pasture | 255 | 228 |
6 | Grass/trees | 372 | 358 |
7 | Grass/pasture-mowed | 14 | 14 |
8 | Hay-windrowed | 254 | 224 |
9 | Oats | 10 | 10 |
10 | Soybean-notill | 522 | 450 |
11 | Soybean-mintill | 1270 | 1185 |
12 | Soybean-clean | 300 | 293 |
13 | Wheat | 109 | 96 |
14 | Woods | 648 | 617 |
15 | Buildings-Grass-Trees-Drives | 197 | 189 |
16 | Stone-Steel Towers | 60 | 33 |
Total | 5326 | 4923 |
Number of Blocks | UP | UH | IP |
---|---|---|---|
1 | 91.86 ± 2.52 | 85.54 ± 0.37 | 68.65 ± 0.65 |
2 | 93.91 ± 1.86 | 85.86 ± 0.96 | 67.17 ± 1.54 |
3 | 96.23 ± 0.51 | 84.96 ± 0.56 | 66.14 ± 1.26 |
D | UP | UH | IP |
---|---|---|---|
24 | 96.23 ± 0.51 | 85.86 ± 0.96 | 68.65 ± 0.65 |
48 | 95.56 ± 1.20 | 85.54 ± 0.76 | 66.94 ± 1.12 |
72 | 95.74 ± 0.62 | 85.40 ± 0.59 | 67.76 ± 1.36 |
96 | 96.01 ± 0.35 | 85.03 ± 0.32 | 67.53 ± 0.83 |
Class | DenseNet | FDMFN | MSRN | DPRN | SSSERN | SS-MLP |
---|---|---|---|---|---|---|
1 | 88.99 ± 2.16 | 83.72 ± 2.19 | 90.88 ± 2.04 | 88.05 ± 1.58 | 93.32 ± 1.19 | 91.63 ± 1.63 |
2 | 98.74 ± 0.19 | 94.78 ± 3.72 | 98.91 ± 0.19 | 98.66 ± 0.41 | 97.45 ± 1.92 | 97.94 ± 0.95 |
3 | 76.13 ± 4.92 | 74.18 ± 6.25 | 67.81 ± 5.46 | 69.84 ± 4.57 | 88.94 ± 5.49 | 84.40 ± 1.96 |
4 | 95.82 ± 1.84 | 97.14 ± 0.81 | 97.39 ± 0.73 | 96.59 ± 0.49 | 94.91 ± 1.18 | 94.64 ± 0.70 |
5 | 99.34 ± 0.27 | 99.28 ± 0.13 | 99.34 ± 0.12 | 99.44 ± 0.16 | 97.84 ± 1.09 | 97.97 ± 0.73 |
6 | 60.15 ± 5.25 | 85.28 ± 5.54 | 64.57 ± 4.80 | 73.77 ± 8.07 | 81.85 ± 6.88 | 98.50 ± 0.81 |
7 | 94.52 ± 2.91 | 94.86 ± 2.63 | 90.66 ± 2.97 | 89.72 ± 2.73 | 99.82 ± 0.12 | 99.84 ± 0.21 |
8 | 97.72 ± 0.74 | 98.06 ± 0.49 | 98.53 ± 0.37 | 96.69 ± 1.05 | 98.67 ± 0.42 | 98.73 ± 0.49 |
9 | 96.10 ± 1.69 | 97.06 ± 0.54 | 97.36 ± 0.57 | 96.68 ± 0.58 | 97.94 ± 0.62 | 95.67 ± 0.83 |
OA | 91.33 ± 0.65 | 91.63 ± 1.46 | 91.94 ± 0.63 | 92.28 ± 1.30 | 94.63 ± 0.96 | 96.23 ± 0.51 |
AA | 89.72 ± 0.83 | 91.59 ± 0.48 | 89.49 ± 0.77 | 89.94 ± 1.52 | 94.53 ± 1.04 | 95.48 ± 0.29 |
Kappa × 100 | 88.08 ± 0.91 | 88.78 ± 1.85 | 88.94 ± 0.90 | 89.46 ± 1.81 | 92.71 ± 1.29 | 94.93 ± 0.68 |
F1-score | 90.46 ± 1.04 | 90.64 ± 1.10 | 90.52 ± 0.55 | 90.40 ± 1.34 | 94.36 ± 0.92 | 94.12 ± 0.62 |
Parameters (M) | 1.65 | 0.54 | 0.06 | 1.96 | 0.15 | 0.06 |
Time (s) | 311.88 | 106.11 | 101.48 | 766.84 | 131.89 | 90.66 |
Class | DenseNet | FDMFN | MSRN | DPRN | SSSERN | SS-MLP |
---|---|---|---|---|---|---|
1 | 82.03 ± 0.65 | 82.64 ± 0.39 | 82.51 ± 0.31 | 82.32 ± 0.44 | 81.79 ± 0.46 | 82.74 ± 0.26 |
2 | 85.13 ± 0.04 | 84.40 ± 0.88 | 84.55 ± 0.64 | 84.47 ± 0.33 | 84.66 ± 0.65 | 84.87 ± 0.56 |
3 | 92.24 ± 2.82 | 89.07 ± 4.08 | 92.55 ± 3.44 | 92.55 ± 2.11 | 97.31 ± 3.52 | 97.39 ± 2.32 |
4 | 91.29 ± 0.92 | 92.86 ± 0.52 | 90.55 ± 2.28 | 91.63 ± 1.50 | 90.30 ± 1.00 | 91.10 ± 1.35 |
5 | 99.70 ± 0.52 | 100.0 ± 0.00 | 99.17 ± 0.70 | 99.00 ± 0.41 | 99.92 ± 0.07 | 99.66 ± 0.37 |
6 | 94.13 ± 4.35 | 97.76 ± 1.95 | 98.32 ± 2.10 | 97.62 ± 2.37 | 96.92 ± 1.44 | 96.50 ± 1.08 |
7 | 84.76 ± 1.03 | 85.28 ± 2.49 | 83.60 ± 1.58 | 88.08 ± 1.39 | 85.73 ± 2.84 | 83.99 ± 2.29 |
8 | 71.42 ± 3.22 | 72.93 ± 13.49 | 73.77 ± 4.77 | 73.87 ± 3.45 | 70.41 ± 3.71 | 77.02 ± 0.98 |
9 | 73.05 ± 2.34 | 80.51 ± 2.83 | 82.97 ± 4.66 | 80.59 ± 3.00 | 79.11 ± 3.25 | 77.15 ± 2.48 |
10 | 60.31 ± 4.76 | 60.10 ± 3.16 | 61.45 ± 5.36 | 63.84 ± 2.21 | 66.20 ± 1.11 | 67.07 ± 1.17 |
11 | 80.65 ± 2.18 | 80.15 ± 2.95 | 80.68 ± 6.58 | 70.53 ± 2.96 | 82.41 ± 1.44 | 89.68 ± 5.13 |
12 | 90.93 ± 6.60 | 93.05 ± 3.04 | 95.97 ± 2.19 | 91.32 ± 3.19 | 94.14 ± 3.62 | 95.52 ± 1.69 |
13 | 80.14 ± 1.94 | 86.39 ± 3.24 | 88.84 ± 3.44 | 78.81 ± 0.79 | 75.58 ± 2.57 | 80.56 ± 3.35 |
14 | 97.98 ± 1.45 | 95.06 ± 6.16 | 92.39 ± 5.20 | 86.96 ± 2.09 | 99.84 ± 0.20 | 99.92 ± 0.16 |
15 | 82.62 ± 8.94 | 85.41 ± 7.59 | 96.83 ± 2.14 | 68.37 ± 7.45 | 99.53 ± 0.83 | 87.61 ± 7.44 |
OA | 82.84 ± 0.71 | 84.04 ± 1.04 | 84.91 ± 0.64 | 82.64 ± 0.52 | 84.99 ± 0.45 | 85.86 ± 0.96 |
AA | 84.42 ± 0.82 | 85.71 ± 0.88 | 86.94 ± 0.89 | 83.33 ± 0.25 | 86.92 ± 0.44 | 87.38 ± 1.08 |
Kappa × 100 | 81.44 ± 0.77 | 82.77 ± 1.10 | 83.73 ± 0.70 | 81.22 ± 0.56 | 83.78 ± 0.47 | 84.70 ± 1.02 |
F1-score | 84.17 ± 1.09 | 83.15 ± 1.34 | 84.49 ± 0.87 | 82.59 ± 0.93 | 84.54 ± 1.09 | 85.24 ± 1.18 |
Parameters (M) | 1.66 | 0.54 | 0.06 | 1.98 | 0.16 | 0.04 |
Time (s) | 224.06 | 78.49 | 72.12 | 554.79 | 96.14 | 55.36 |
Class | DenseNet | FDMFN | MSRN | DPRN | SSSERN | SS-MLP |
---|---|---|---|---|---|---|
1 | 36.00 ± 26.53 | 80.00 ± 25.10 | 56.00 ± 29.22 | 59.00 ± 20.59 | 96.00 ± 3.74 | 96.00 ± 4.90 |
2 | 56.41 ± 12.54 | 61.14 ± 14.75 | 58.01 ± 4.94 | 61.14 ± 8.73 | 44.36 ± 12.36 | 59.26 ± 9.53 |
3 | 42.26 ± 4.77 | 54.14 ± 11.19 | 47.67 ± 7.59 | 48.77 ± 5.95 | 46.27 ± 9.36 | 47.52 ± 3.55 |
4 | 82.29 ± 13.12 | 73.33 ± 10.02 | 57.90 ± 12.08 | 53.52 ± 4.52 | 75.43 ± 9.18 | 70.67 ± 7.36 |
5 | 27.02 ± 1.23 | 27.46 ± 0.21 | 27.46 ± 0.21 | 27.46 ± 0.21 | 27.46 ± 0.21 | 27.63 ± 0.00 |
6 | 96.70 ± 2.89 | 98.32 ± 0.92 | 95.25 ± 2.60 | 94.47 ± 1.05 | 97.15 ± 1.43 | 97.49 ± 1.42 |
7 | 100.0 ± 0.00 | 100.0 ± 0.00 | 100.0 ± 0.00 | 100.0 ± 0.00 | 100.0 ± 0.00 | 100.0 ± 0.00 |
8 | 99.82 ± 0.22 | 99.91 ± 0.18 | 99.91 ± 0.18 | 99.82 ± 0.36 | 99.91 ± 0.18 | 100.0 ± 0.00 |
9 | 100.0 ± 0.00 | 100.0 ± 0.00 | 100.0 ± 0.00 | 100.0 ± 0.00 | 100.0 ± 0.00 | 98.00 ± 4.00 |
10 | 86.93 ± 3.12 | 80.89 ± 2.00 | 85.07 ± 2.99 | 86.36 ± 4.33 | 81.78 ± 2.92 | 90.67 ± 1.79 |
11 | 52.19 ± 2.24 | 52.02 ± 1.50 | 54.84 ± 2.22 | 51.90 ± 0.89 | 54.58 ± 3.88 | 48.25 ± 3.84 |
12 | 18.84 ± 5.41 | 23.89 ± 8.32 | 14.54 ± 4.75 | 14.27 ± 2.95 | 20.89 ± 6.41 | 58.98 ± 9.36 |
13 | 98.54 ± 1.41 | 99.17 ± 0.42 | 98.54 ± 1.56 | 97.50 ± 2.60 | 96.88 ± 1.47 | 97.71 ± 0.78 |
14 | 90.15 ± 3.14 | 92.58 ± 2.02 | 85.77 ± 4.61 | 93.03 ± 2.17 | 95.40 ± 1.99 | 96.34 ± 1.40 |
15 | 59.26 ± 7.80 | 61.80 ± 16.15 | 77.04 ± 7.72 | 48.78 ± 5.77 | 56.83 ± 7.94 | 77.99 ± 17.48 |
16 | 100.0 ± 0.00 | 100.0 ± 0.00 | 100.0 ± 0.00 | 100.0 ± 0.00 | 100.0 ± 0.00 | 98.18 ± 2.42 |
OA | 64.48 ± 1.32 | 66.37 ± 2.78 | 64.97 ± 0.78 | 64.56 ± 1.63 | 64.00 ± 1.38 | 68.65 ± 0.65 |
AA | 71.65 ± 2.07 | 75.29 ± 3.25 | 72.37 ± 1.80 | 71.00 ± 1.57 | 74.56 ± 1.12 | 79.04 ± 1.20 |
Kappa × 100 | 60.02 ± 1.52 | 62.02 ± 3.09 | 60.42 ± 0.87 | 59.86 ± 1.83 | 59.48 ± 1.65 | 64.81 ± 0.71 |
F1-score | 62.16 ± 1.05 | 65.71 ± 3.13 | 64.13 ± 2.06 | 63.05 ± 1.26 | 63.13 ± 1.73 | 71.46 ± 0.88 |
Parameters (M) | 1.67 | 2.30 | 0.06 | 2.11 | 0.17 | 0.02 |
Time (s) | 431.76 | 215.41 | 132.69 | 724.57 | 192.84 | 95.49 |
Dataset | Skip Connection | Layer Normalization | Dropout | OA(%) |
---|---|---|---|---|
✗ | ✗ | ✗ | 56.61 ± 33.38 | |
UP | ✓ | ✗ | ✗ | 90.34 ± 1.07 |
✓ | ✓ | ✗ | 94.13 ± 0.87 | |
✓ | ✓ | ✓ | 96.23 ± 0.51 | |
✗ | ✗ | ✗ | 79.92 ± 0.77 | |
UH | ✓ | ✗ | ✗ | 82.15 ± 1.15 |
✓ | ✓ | ✗ | 83.97 ± 1.33 | |
✓ | ✓ | ✓ | 85.86 ± 0.96 | |
✗ | ✗ | ✗ | 62.60 ± 1.53 | |
IP | ✓ | ✗ | ✗ | 63.15 ± 1.46 |
✓ | ✓ | ✗ | 66.85 ± 2.03 | |
✓ | ✓ | ✓ | 68.65 ± 0.65 |
Dataset | SeMLP | SaMLP | OA |
---|---|---|---|
✓ | ✗ | 87.66 ± 2.38 | |
UP | ✗ | ✓ | 93.25 ± 1.82 |
✓ | ✓ | 96.23 ± 0.51 | |
✓ | ✗ | 85.30 ± 0.62 | |
UH | ✗ | ✓ | 83.81 ± 0.54 |
✓ | ✓ | 85.86 ± 0.96 | |
✓ | ✗ | 63.15 ± 0.51 | |
IP | ✗ | ✓ | 66.59 ± 1.31 |
✓ | ✓ | 68.65 ± 0.65 |
Dataset | SS-MLP-ReLU | SS-MLP-GELU |
---|---|---|
UP | 96.08 ± 0.43 | 96.23 ± 0.51 |
UH | 85.78 ± 0.82 | 85.86 ± 0.96 |
IP | 68.65 ± 0.73 | 68.65 ± 0.65 |
Method | OA (%) | Parameters (M) |
---|---|---|
DenseNet | 48.23 ± 1.89 | 1.66 |
FDMFN | 49.95 ± 2.60 | 0.54 |
MSRN | 47.73 ± 1.17 | 0.15 |
DPRN | 52.40 ± 0.93 | 2.10 |
SSSERN | 48.48 ± 3.20 | 0.16 |
SS-MLP | 53.48 ± 0.84 | 0.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, Z.; Zhao, F.; Liang, M. SS-MLP: A Novel Spectral-Spatial MLP Architecture for Hyperspectral Image Classification. Remote Sens. 2021, 13, 4060. https://doi.org/10.3390/rs13204060
Meng Z, Zhao F, Liang M. SS-MLP: A Novel Spectral-Spatial MLP Architecture for Hyperspectral Image Classification. Remote Sensing. 2021; 13(20):4060. https://doi.org/10.3390/rs13204060
Chicago/Turabian StyleMeng, Zhe, Feng Zhao, and Miaomiao Liang. 2021. "SS-MLP: A Novel Spectral-Spatial MLP Architecture for Hyperspectral Image Classification" Remote Sensing 13, no. 20: 4060. https://doi.org/10.3390/rs13204060
APA StyleMeng, Z., Zhao, F., & Liang, M. (2021). SS-MLP: A Novel Spectral-Spatial MLP Architecture for Hyperspectral Image Classification. Remote Sensing, 13(20), 4060. https://doi.org/10.3390/rs13204060