Comparison of Hydrological Patterns between Glacier-Fed and Non-Glacier-Fed Lakes on the Southeastern Tibetan Plateau
Abstract
:1. Introduction
2. Study Area
3. Data and Methods
3.1. Yearly Data for Lake Inundation
3.2. Altimeter Data for Measuring Lake Levels
correction + Ionosphere correction + Electromagnetic bias
3.3. Meteorological Data
4. Results
4.1. Accuracy Assessment of Lake Level
4.2. Interannual Lake Areal Variations
4.3. Fluctuations of the Lake Level
5. Discussion
5.1. Driving Forces
5.2. Lake Volume Changes and Glacier Contributions
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Qiu, J. China: The third pole. Nat. News 2008, 454, 393–396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Dou, H. China Lake Catalogue; Science Press: Beijing, China, 1998. (In Chinese) [Google Scholar]
- Sun, F.; Ma, R.; He, B.; Zhao, X.; Zeng, Y.; Zhang, S.; Tang, S. Changing Patterns of Lakes on The Southern Tibetan Plateau Based on Multi-Source Satellite Data. Remote Sens. 2020, 12, 3450. [Google Scholar] [CrossRef]
- Yao, T.; Thompson, L.; Yang, W.; Yu, W.; Gao, Y.; Guo, X.; Yang, X.; Duan, K.; Zhao, H.; Xu, B. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Clim. Chang. 2012, 2, 663–667. [Google Scholar] [CrossRef]
- Guo, W.; Xu, J.; Liu, S.; Shangguan, D.; Wu, L.; Yao, X.; Zhao, J.; Liu, Q.; Jiang, Z.; Li, P. The Second Glacier Inventory Dataset of China (Version 1.0); Cold and Arid Regions Science Data Center at Lanzhou: Lanzhou, China, 2014. [Google Scholar]
- Biskop, S.; Maussion, F.; Krause, P.; Fink, M. What are the key drivers of regional differences in the water balance on the Tibetan Plateau? Hydrol. Earth Syst. Sci. Discuss. 2015, 12, 4271–4314. [Google Scholar]
- Li, B.; Zhang, J.; Yu, Z.; Liang, Z.; Chen, L.; Acharya, K. Climate change driven water budget dynamics of a Tibetan inland lake. Glob. Planet. Chang. 2017, 150, 70–80. [Google Scholar] [CrossRef]
- Tong, K.; Su, F.; Xu, B. Quantifying the contribution of glacier meltwater in the expansion of the largest lake in Tibet. J. Geophys. Res. Atmos. 2016, 121, 11158–11173. [Google Scholar] [CrossRef]
- Wang, X.; Gong, P.; Zhao, Y.; Xu, Y.; Cheng, X.; Niu, Z.; Luo, Z.; Huang, H.; Sun, F.; Li, X. Water-level changes in China’s large lakes determined from ICESat/GLAS data. Remote Sens. Environ. 2013, 132, 131–144. [Google Scholar] [CrossRef]
- Cai, X.; Feng, L.; Hou, X.; Chen, X. Remote sensing of the water storage dynamics of large lakes and reservoirs in the Yangtze River Basin from 2000 to 2014. Sci. Rep. 2016, 6, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X. Dynamic Changes of Typical Inland Lakes on Tibetan Plateau Using Multi-Sensor Remote Sensing Data. Master’s Thesis, Northwest A&F University, Xianyang, China, 2015. (In Chinese). [Google Scholar]
- Sun, F.; Zhao, Y.; Gong, P.; Ma, R.; Dai, Y. Monitoring dynamic changes of global land cover types: Fluctuations of major lakes in China every 8 days during 2000–2010. Chin. Sci. Bull. 2014, 59, 171–189. [Google Scholar] [CrossRef]
- Zhang, G.; Xie, H.; Yao, T.; Kang, S. Water balance estimates of ten greatest lakes in China using ICESat and Landsat data. Chin. Sci. Bull. 2013, 58, 3815–3829. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Yao, T.; Shum, C.; Yi, S.; Yang, K.; Xie, H.; Feng, W.; Bolch, T.; Wang, L.; Behrangi, A. Lake volume and groundwater storage variations in Tibetan Plateau’s endorheic basin. Geophys. Res. Lett. 2017, 44, 5550–5560. [Google Scholar] [CrossRef]
- Song, C.; Ye, Q.; Sheng, Y.; Gong, T. Combined ICESat and CryoSat-2 altimetry for accessing water level dynamics of Tibetan lakes over 2003–2014. Water 2015, 7, 4685–4700. [Google Scholar] [CrossRef] [Green Version]
- Song, C.; Huang, B.; Ke, L. Modeling and analysis of lake water storage changes on the Tibetan Plateau using multi-mission satellite data. Remote Sens. Environ. 2013, 135, 25–35. [Google Scholar] [CrossRef]
- Zhang, G.; Xie, H.; Kang, S.; Yi, D.; Ackley, S.F. Monitoring lake level changes on the Tibetan Plateau using ICESat altimetry data (2003–2009). Remote Sens. Environ. 2011, 115, 1733–1742. [Google Scholar] [CrossRef]
- Meng, K.; Shi, X.; Wang, E.; Liu, F. High-altitude salt lake elevation changes and glacial ablation in Central Tibet, 2000–2010. Chin. Sci. Bull. 2012, 57, 525–534. [Google Scholar] [CrossRef] [Green Version]
- Lei, Y.; Yang, K.; Wang, B.; Sheng, Y.; Bird, B.W.; Zhang, G.; Tian, L. Response of inland lake dynamics over the Tibetan Plateau to climate change. Clim. Chang. 2014, 125, 281–290. [Google Scholar] [CrossRef]
- Song, C.; Huang, B.; Richards, K.; Ke, L.; Hien Phan, V. Accelerated lake expansion on the Tibetan Plateau in the 2000s: Induced by glacial melting or other processes? Water Resour. Res. 2014, 50, 3170–3186. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Wang, L.; Zhang, Y.; Guo, Y.; Li, X.; Liu, W. Exploring the water storage changes in the largest lake (Selin Co) over the Tibetan Plateau during 2003–2012 from a basin-wide hydrological modeling. Water Resour. Res. 2015, 51, 8060–8086. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Xie, M.; Wu, Y. Quantitative analysis of lake area variations and the influence factors from 1971 to 2004 in the Nam Co basin of the Tibetan Plateau. Chin. Sci. Bull. 2010, 55, 1294–1303. [Google Scholar] [CrossRef]
- Luo, P.; Mu, D.; Xue, H.; Ngo-Duc, T.; Dang-Dinh, K.; Takara, K.; Nover, D.; Schladow, G. Flood inundation assessment for the Hanoi Central Area, Vietnam under historical and extreme rainfall conditions. Sci. Rep. 2018, 8, 1–11. [Google Scholar] [CrossRef]
- Lyu, J.; Mo, S.; Luo, P.; Zhou, M.; Shen, B.; Nover, D. A quantitative assessment of hydrological responses to climate change and human activities at spatiotemporal within a typical catchment on the Loess Plateau, China. Quat. Int. 2019, 527, 1–11. [Google Scholar] [CrossRef]
- Huo, A.; Peng, J.; Cheng, Y.; Luo, P.; Zhao, Z.; Zheng, C. Hydrological Analysis of Loess Plateau Highland Control Schemes in Dongzhi Plateau. Front. Earth Sci. 2020, 8, 637. [Google Scholar] [CrossRef]
- Pekel, J.-F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Liu, S.; Huang, Z.; Jing, L.; Zhao, M.; Peng, X.; Yan, W.; Wu, Y.; Lv, Y.; Smith, A.R. Inland water bodies in China: Features discovered in the long-term satellite data. Proc. Natl. Acad. Sci. USA 2019, 116, 25491–25496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urban, T.J.; Schutz, B.E.; Neuenschwander, A.L. A survey of ICESat coastal altimetry applications: Continental coast, open ocean island, and inland river. TAO Terr. Atmos. Ocean. Sci. 2008, 19, 1. [Google Scholar] [CrossRef] [Green Version]
- Song, C.; Sheng, Y. Contrasting evolution patterns between glacier-fed and non-glacier-fed lakes in the Tanggula Mountains and climate cause analysis. Clim. Chang. 2016, 135, 493–507. [Google Scholar] [CrossRef]
- Birkett, C. The contribution of TOPEX/POSEIDON to the global monitoring of climatically sensitive lakes. J. Geophys. Res. Ocean. 1995, 100, 25179–25204. [Google Scholar] [CrossRef]
- Zhang, B.; Wu, Y.; Zhu, L.; Wang, J.; Li, J.; Chen, D. Estimation and trend detection of water storage at Nam Co Lake, central Tibetan Plateau. J. Hydrol. 2011, 405, 161–170. [Google Scholar] [CrossRef]
- Zwally, H.J.; Schutz, B.; Abdalati, W.; Abshire, J.; Bentley, C.; Brenner, A.; Bufton, J.; Dezio, J.; Hancock, D.; Harding, D. ICESat’s laser measurements of polar ice, atmosphere, ocean, and land. J. Geodyn. 2002, 34, 405–445. [Google Scholar] [CrossRef] [Green Version]
- Allen, R.; Pereira, L.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements—FAO Irrigation and Drainage Paper 56, 2004th ed.; Food and Agriculture Organization of the United Nations: Rome, Italy, 1998. [Google Scholar]
Name | Longitude (°) | Latitude (°) | Area (km2) | Level (m) | Glacier-Fed Type | Altimeter Data(Time Range)/Number of Datasets |
---|---|---|---|---|---|---|
/ | 90.33 | 31.33 | 3.16 | N | CryoSat (January 2011–Feburary 2020)/3 | |
Bamu Co | 90.59 | 31.26 | 232.38 | 4568.12 | N | CryoSat (January 2011–Feburary 2020)/21 |
Jiangchai Co | 90.46 | 32.16 | 30.69 | 4660.59 | Y | CryoSat (January 2011–Feburary 2020)/13 |
Xuguo Co | 90.34 | 31.95 | 34.79 | 4609.97 | N | CryoSat (May 2011–Feburary 2020)/6 ICESat (Feburary 2004–October 2009)/12 |
Zige Tangco | 90.86 | 32.08 | 229.35 | 4573.20 | N | CryoSat (November 2010–November 2020)/23 ICESat (November 2003–March 2008)/6 |
Daru Co | 90.74 | 31.72 | 66.21 | 4688.78 | N | CryoSat (October 2011–November 2020)/4 |
90.97 | 31.68 | 12.21 | 4680.16 | Y | CryoSat (April 2011–September 2020)/4 | |
Dung Co | 91.15 | 31.70 | 144.74 | 4554.79 | N | CryoSat (October 2011–March 2017)/4 |
Jang Co | 90.82 | 31.55 | 39.32 | 4602.60 | N | CryoSat (January 2011–April 2020)/9 ICESat (November 2003–March 2008)/4 |
Pung Co | 90.97 | 31.51 | 165.47 | 4537.96 | Y | CryoSat (January 2011–May 2020)/17 |
Ngoin Co | 91.50 | 31.47 | 80.07 | 4526.05 | N | CryoSat (December 2010–December 2020)/29 |
Bong Co | 91.15 | 31.22 | 145.94 | 4666.82 | Y | CryoSat (March 2011–September 2020)/14 |
Neri Punco | 91.47 | 31.30 | 86.98 | 4529.05 | Y | CryoSat (December 2010–January 2020)/22 |
Shen Co | 90.48 | 31.01 | 49.75 | 4734.94 | N | CryoSat (September 2013–September 2018)/4 ICESat (November 2006–April 2007)/2 |
Jiuru Co | 89.92 | 31.00 | 41.28 | 4687.27 | N | CryoSat (October 2011–November 2019)/11 |
/ | 90.97 | 30.99 | 6.25 | N | CryoSat (March 2011–April 2018)/4 | |
Nam Co | 90.65 | 30.71 | 2005.36 | 4726.54 | Y | CryoSat (November 2010–December 2020)/53 ICESat (Feburary 2003–October 2009)/18 |
Namka Co | 89.79 | 31.85 | 26.81 | 4538.85 | N | CryoSat (December 2010–November 2020)/12 ICESat (October 2004–March 2008)/6 |
Dongqia Co | 90.40 | 31.78 | 65.16 | 4624.30 | N | CryoSat (January 2011–April 2020)/27 ICESat (Feburary 2003–September 2003)/4 |
Selin Co | 88.93 | 31.82 | 2153.44 | 4548.00 | Y | CryoSat (July 2010–October 2020)/50 ICESat (March 2003–March 2009)/23 |
Pacuo | 90.04 | 31.92 | 12.25 | 4589.00 | N | CryoSat (Jun 2012–November 2016)/5 |
Tso Ngön | 88.76 | 31.58 | 286.09 | 4565.53 | Y | CryoSat (November 2010–November 2020)/21 |
Bangkog Co | 89.49 | 31.73 | 122.80 | 4526.54 | N | CryoSat (January 2011–December 2020)/20 |
Mugqu Co | 89.03 | 31.04 | 81.65 | 4675.04 | Y | CryoSat (Aug 2012–October 2013)/3 |
Gomang Co | 89.20 | 31.22 | 110.10 | 4634.29 | N | CryoSat (April 2012–Feburary 2019)/9 |
Puga Co | 89.55 | 31.11 | 40.88 | 4794.84 | N | CryoSat (May 2011–Jun 2019)/10 |
Ringco Kongma | 89.67 | 30.94 | 126.84 | 4661.45 | N | CryoSat (September 2010–October 2020)/23 |
Ringco Ogma | 89.83 | 30.93 | 63.25 | 4661.47 | N | CryoSat (April 2011–May 2020)/8 |
Glacier-Fed Lakes | Non-Glacier-Fed Lakes | |||
---|---|---|---|---|
V (km2/y) | p-Value < 0.05 | V (km2/y) | p-Value < 0.05 | |
1989–1992 | 30.98 | Y | 27.34 | Y |
1992–1998 | −5.61 | N | −6.75 | Y |
1998–2005 | 85.65 | Y | 39.75 | Y |
2005–2010 | 18.98 | Y | 3.57 | N |
2010–2017 | 3.25 | N | −7.35 | Y |
2017–2019 | 26.65 | N | 6.88 | N |
Altimetry | ICESat (2003–2009) | CryoSat (2010–2020) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Lake type | Glacier-fed | Non-glacier-fed | Glacier-fed | Non-glacier-fed | |||||||||||
Name | Nam Co | Selin Co | Xuguo Co | Zige Tangco | Neri Punco | Pung Co | Selin Co | Puga Co | Ringco Ogma | Bamu Co | Bangkog Co | Ngoin Co | Namka Co | Dongqia Co | Ringco Kongma |
Level rate (m/y) | 0.22 | 0.63 | 0.24 | 0.38 | −0.16 | −0.15 | 0.19 | −0.22 | −0.24 | −0.17 | −0.11 | −0.11 | −0.14 | −0.18 | −0.22 |
Average annual area (km2) | 2005.36 | 2153.44 | 34.79 | 229.35 | 93.31 | 177.82 | 2404.68 | 40.88 | 67.43 | 253.32 | 126.96 | 85.40 | 29.53 | 72.51 | 138.16 |
Average growth rate 1 (m/y) | 0.43 | 0.36 | 0.16 | −0.17 | |||||||||||
Whole area 2 (km2) | 4158.80 | 264.14 | 2675.80 | 814.18 | |||||||||||
Changed volume 3 (Gt/y) | 1.80 | 0.10 | 0.42 | −0.14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, F.; He, B.; Liu, C.; Zeng, Y. Comparison of Hydrological Patterns between Glacier-Fed and Non-Glacier-Fed Lakes on the Southeastern Tibetan Plateau. Remote Sens. 2021, 13, 4024. https://doi.org/10.3390/rs13204024
Sun F, He B, Liu C, Zeng Y. Comparison of Hydrological Patterns between Glacier-Fed and Non-Glacier-Fed Lakes on the Southeastern Tibetan Plateau. Remote Sensing. 2021; 13(20):4024. https://doi.org/10.3390/rs13204024
Chicago/Turabian StyleSun, Fangdi, Bin He, Caixia Liu, and Yuchao Zeng. 2021. "Comparison of Hydrological Patterns between Glacier-Fed and Non-Glacier-Fed Lakes on the Southeastern Tibetan Plateau" Remote Sensing 13, no. 20: 4024. https://doi.org/10.3390/rs13204024
APA StyleSun, F., He, B., Liu, C., & Zeng, Y. (2021). Comparison of Hydrological Patterns between Glacier-Fed and Non-Glacier-Fed Lakes on the Southeastern Tibetan Plateau. Remote Sensing, 13(20), 4024. https://doi.org/10.3390/rs13204024