Modeling Spatiotemporal Population Changes by Integrating DMSP-OLS and NPP-VIIRS Nighttime Light Data in Chongqing, China
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data Sources
2.3. Data Preprocessing
3. Methods
3.1. Integrating DMSP-OLS and NPP-VIIRS NTL Data
- (1)
- Spatial Resampling Using a KD MethodGiven that the blur of DMSP NTL image is a Gaussian point-spread function, the influence of neighborhood NTL brightness should be taken into account during the conversion of VIIRS spatial resolution. This paper adopted a quartic kernel function to realize as follows:
- (2)
- Logarithmic TransformationLogarithmic transformation of NPP-VIIRS data can better suppress the sharp radiance jump within urban core areas and strengthen the radiance variance within suburban and rural areas [37]. Therefore, we performed a logarithmic transformation for VIIRS data as follows:
- (3)
- Conversion of the VIIRS NTL ValueBoth DMSP and VIIRS products provide NTL data in 2012 and 2013 and the monthly VIIRS data in 2013 include all months, while the monthly data in 2012 are only available from April to December. Considering that a slight seasonal difference may exist in annual VIIRS data, 2013 data were used to determine the relationship between the two data sets. We observed a positive correlation between DMSP and processed VIIRS value (Figure 2).
3.2. Modeling the Spatiotemporal Dynamics of Population
3.3. Evaluation of Model Accuracy
4. Results
4.1. Integration Model
4.1.1. Integration Model
4.1.2. Accuracy Assessment
4.2. Modeled Spatial Distribution of Population
4.2.1. Random-Effect Model
4.2.2. Accuracy Assessment
4.2.3. Spatial Distribution of Population in Chongqing
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hu, H. The distribution of population in China, with statistics and maps. Acta Geogr. Sin. 1935, 2, 33–74. [Google Scholar]
- Grether, J.-M.; Mathys, N. Is the World’s economic centre of gravity already in Asia? Area 2010, 42, 47–50. [Google Scholar] [CrossRef]
- Quah, D. The global economy’s shifting centre of gravity. Glob. Policy 2011, 2, 3–9. [Google Scholar] [CrossRef]
- Powell, J.J.W. Comparative education in an age of competition and collaboration. Comp. Edu. 2020, 56, 57–78. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Su, S. Determinants of urban expansion and their relative importance: A comparative analysis of 30 major metropolitans in China. Habitat Int. 2016, 58, 89–107. [Google Scholar] [CrossRef]
- Cai, H.; Yang, X.; Wang, K.; Xiao, L. Is forest restoration in the Southwest China Karst promoted mainly by climate change or human-induced factors? Remote Sens. 2014, 6, 9895–9910. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Zhao, H.; Su, X.; Deng, L.; Dong, S.; Zhang, X. Spatio-temporal variability in rangeland conditions associated with climate change in the Altun mountain national nature reserve on the Qinghai-Tibet plateau over the past 15 years. Rangel. J. 2015, 37. [Google Scholar] [CrossRef]
- Xianfeng, L.; Zhu, X.; Pan, Y.; Shuangshuang, L.; Yuqi, M.; Juan, N. Spatiotemporal variation of vegetation coverage in Qinling-Daba mountains in relation to environmental factors. Acta Geogr. Sin. 2015, 70, 705–716. [Google Scholar] [CrossRef]
- Li, W.; Li, X.; Tan, M.; Wang, Y. Influences of population pressure change on vegetation greenness in China’s mountainous areas. Ecol. Evol. 2017, 7, 9041–9053. [Google Scholar] [CrossRef]
- Li, S.; Sun, Z.; Tan, M.; Li, X. Effects of rural–urban migration on vegetation greenness in fragile areas: A case study of Inner Mongolia in China. J. Geogr. Sci. 2016, 26, 313–324. [Google Scholar] [CrossRef] [Green Version]
- Lei, Z.; Dayong, Z. Relationship between ecological civilization and balanced population development in China. Energy Proced. 2011, 5, 2532–2535. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Niu, S. Evolutional analysis of coupling between population and resource-environment in China. Proced. Environ. Sci. 2012, 12, 793–801. [Google Scholar] [CrossRef] [Green Version]
- Ryan, S.J.; Palace, M.W.; Hartter, J.; Diem, J.E.; Chapman, C.A.; Southworth, J. Population pressure and global markets drive a decade of forest cover change in Africa’s Albertine rift. Appl. Geogr. 2017, 81, 52–59. [Google Scholar] [CrossRef]
- Grau, H.R.; Aide, M. Globalization and land-use transitions in Latin America. Ecol. Soc. 2008, 13, 16. [Google Scholar] [CrossRef] [Green Version]
- Aide, T.M.; Clark, M.L.; Ricardo Grau, H.; Lopez-Carr, D.; Levy, M.A.; Redo, D.; Bonilla-Moheno, M.; Riner, G.; Andrade-Nunez, M.J.; Muniz, M. Deforestation and reforestation of Latin America and the Caribbean (2001–2010). Biotropica 2013, 45, 262–271. [Google Scholar] [CrossRef]
- Alahmadi, M.; Atkinson, P.; Martin, D. Estimating the spatial distribution of the population of Riyadh, Saudi Arabia using remotely sensed built land cover and height data. Comp. Environ. Urban Syst. 2013, 41, 167–176. [Google Scholar] [CrossRef]
- Azar, D.; Engstrom, R.; Graesser, J.; Comenetz, J. Generation of fine-scale population layers using multi-resolution satellite imagery and geospatial data. Remote Sens. Environ. 2013, 130, 219–232. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, Q.; Liu, Y.; Li, J.; Ren, W. Index System and Transferring Methods to Build the National Society and Economy Grid atabase. J. Geo-Inf. Sci. 2011, 13, 573–578. [Google Scholar]
- Tan, M.; Li, X.; Li, S.; Xin, L.; Wang, X.; Li, Q.; Li, W.; Li, Y.; Xiang, W. Modeling population density based on nighttime light images and land use data in China. Appl. Geogr. 2018, 90, 239–247. [Google Scholar] [CrossRef]
- Tritsch, I.; Le Tourneau, F.-M. Population densities and deforestation in the Brazilian Amazon: New insights on the current human settlement patterns. Appl. Geogr. 2016, 76, 163–172. [Google Scholar] [CrossRef] [Green Version]
- Tan, M.; Li, X.; Lu, C.; Luo, W.; Kong, X.; Ma, S. Urban population densities and their policy implications in China. Habitat Int. 2008, 32, 471–484. [Google Scholar] [CrossRef]
- Zeng, C.; Zhou, Y.; Wang, S.; Yan, F.; Zhao, Q. Population spatialization in China based on night-time imagery and land use data. Int. J. Remote Sens. 2011, 32, 9599–9620. [Google Scholar] [CrossRef]
- Chowdhury, P.K.R.; Maithani, S.; Dadhwal, V.K. Estimation of urban population in Indo-Gangetic plains using night-time OLS data. Int. J. Remote Sens. 2012, 33, 2498–2515. [Google Scholar] [CrossRef]
- Yang, X.; Yue, W.; Gao, D. Spatial improvement of human population distribution based on multi-sensor remote-sensing data: An input for exposure assessment. Int. J. Remote Sens. 2013, 34, 5569–5583. [Google Scholar] [CrossRef]
- Hu, Y.; Zhao, G.; Zhang, Q. Spatial distribution of population data based on nighttime light and LUC data in the Sichuanchongqing region. J. Geo. Inform. Sci. 2018, 20, 68–78. [Google Scholar]
- Liu, Y.; Wang, J.; Wang, Z. Simulation of the spatial pattern of population of urban and rural residents in Huang-Huai-Hai area based on NPP/VIIRS nighttime lights. Areal Res. Develop. 2019, 38, 176–180. [Google Scholar]
- Wang, M.; Wang, J. Spatialization of township-level population based on nighttime light and land use data in Shandong province. J. Geo Inform. Sci. 2019, 21, 699–709. [Google Scholar]
- Sutton, P. Modeling population density with night-time satellite imagery and GIS. Comp. Environ. Urb. Syst. 1997, 21, 227–244. [Google Scholar] [CrossRef]
- Amaral, S.; Câmara, G.; Monteiro, A.M.V.; Quintanilha, J.A.; Elvidge, C.D. Estimating population and energy consumption in Brazilian Amazonia using DMSP night-time satellite data. Comp. Environ. Urb. Syst. 2005, 29, 179–195. [Google Scholar] [CrossRef]
- Zhou, Y.; Smith, S.J.; Elvidge, C.D.; Zhao, K.; Thomson, A.; Imhoff, M. A cluster-based method to map urban area from DMSP/OLS nightlights. Remote Sens. Environ. 2014, 147, 173–185. [Google Scholar] [CrossRef]
- Tian, Y.; Yue, T.; Zhu, L.; Clinton, N. Modeling population density using land cover data. Ecol. Model. 2005, 189, 72–88. [Google Scholar] [CrossRef]
- Wang, L.; Wang, S.; Zhou, Y.; Liu, W.; Hou, Y.; Zhu, J.; Wang, F. Mapping population density in China between 1990 and 2010 using remote sensing. Remote Sens. Environ. 2018, 210, 269–281. [Google Scholar] [CrossRef]
- Elvidge, C.; Baugh, K.; Zhizhin, M.; Hsu, F.-C. Why VIIRS data are superior to DMSP for mapping nighttime lights. Proc. Asia Pac. Adv. Netw. 2013, 35, 62–69. [Google Scholar] [CrossRef] [Green Version]
- Shi, K.; Chen, Y.; Yu, B.; Xu, T.; Yang, C.; Li, L.; Huang, C.; Chen, Z.; Liu, R.; Wu, J. Detecting spatiotemporal dynamics of global electric power consumption using DMSP-OLS nighttime stable light data. Appl. Energy 2016, 184, 450–463. [Google Scholar] [CrossRef]
- Zhao, M.; Zhou, Y.; Li, X.; Cao, W.; He, C.; Yu, B.; Li, X.; Elvidge, C.D.; Cheng, W.; Zhou, C. Applications of satellite remote sensing of nighttime light observations: Advances, challenges, and perspectives. Remote Sens. 2019, 11, 1971. [Google Scholar] [CrossRef] [Green Version]
- Small, C.; Elvidge, C.D.; Baugh, K. Urban Remote Sensing Event (JURSE), 2013 Joint. In Mapping Urban Structure and Spatial Connectivity with VIIRS and OLS Night Light Imagery, Urban Remote Sensing Event (JURSE); IEEE: New York, NY, USA, 2013; pp. 230–233. [Google Scholar]
- Zhao, M.; Zhou, Y.; Li, X.; Zhou, C.; Cheng, W.; Li, M.; Huang, K. Building a Series of Consistent Night-Time Light Data (1992–2018) in Southeast Asia by Integrating DMSP-OLS and NPP-VIIRS. IEEE Trans. Geosci. Remote Sens. 2020, 58, 1843–1856. [Google Scholar] [CrossRef]
- Zheng, Q.; Weng, Q.; Wang, K. Developing a new cross-sensor calibration model for DMSP-OLS and Suomi-NPP VIIRS night-light imageries. ISPRS J. Photogramm. Remote Sens. 2019, 153, 36–47. [Google Scholar] [CrossRef]
- Zhu, X.; Ma, M.; Yang, H.; Ge, W. Modeling the spatiotemporal dynamics of gross domestic product in China using extended temporal coverage nighttime light data. Remote Sens. 2017, 9, 626. [Google Scholar] [CrossRef] [Green Version]
- Shao, X.; Cao, C.; Zhang, B.; Qiu, S.; Elvidge, C.; Hendy, M. Radiometric calibration of DMSP-OLS sensor using VIIRS day/night band. Proc. SPIE Int. Soc. Opt. Eng. 2014, 9264. [Google Scholar] [CrossRef]
- Li, X.; Li, D.; Xu, H.; Wu, C. Intercalibration between DMSP/OLS and VIIRS night-time light images to evaluate city light dynamics of Syria’s major human settlement during Syrian civil war. Int. J. Remote Sens. 2017, 38, 5934–5951. [Google Scholar] [CrossRef]
- Yang, J.; Li, Y.; Wang, R. Sichuan and chongqing: Strategic fulcrum of the belt and road initiatives and Yangtze river economic zone. Reform Econ. Syst. 2015, 4, 58–64. [Google Scholar]
- Baugh, K.; Elvidge, C.; Tilottama, G.; Ziskin, D. Development of a 2009 stable lights product using DMSP-OLS data. Proc. Asia Pac. Adv. Netw. 2010, 30. [Google Scholar] [CrossRef]
- Xuecao, L.; Zhou, Y. A stepwise calibration of global DMSP/OLS stable nighttime light data (1992–2013). Remote Sens. 2017, 9, 637. [Google Scholar] [CrossRef] [Green Version]
- Elvidge, C.D.; Baugh, K.E.; Dietz, J.B.; Bland, T.; Sutton, P.C.; Kroehl, H.W. Radiance calibration of DMSP-OLS low-light imaging data of human settlements. Remote Sens. Environ. 1999, 68, 77–88. [Google Scholar] [CrossRef]
- Wu, R.; Yang, D.; Dong, J.; Zhang, L.; Xia, F. Regional inequality in China based on NPP-VIIRS night-time light imagery. Remote Sens. 2018, 10, 240. [Google Scholar] [CrossRef] [Green Version]
- Shi, K.; Yu, B.; Huang, Y.; Hu, Y.; Yin, B.; Chen, Z.; Chen, L.; Wu, J. Evaluating the ability of NPP-VIIRS nighttime light data to estimate the gross domestic product and the electric power consumption of China at multiple scales: A comparison with DMSP-OLS data. Remote Sens. 2014, 6, 1705–1724. [Google Scholar] [CrossRef] [Green Version]
- Tuan, Y.F. Geography, phenomenology, and the study of human nature. Can. Geogr./Le Geographe Canadien 1971, 15, 181–192. [Google Scholar] [CrossRef]
- Bright, E.A.; Rose, A.N.; Urban, M.L. LandScan 2015, 2015th ed.; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2016. [Google Scholar]
- Zhuo, L.; Zhang, X.; Zheng, J.; Tao, H.; Guo, Y. An EVI-based method to reduce saturation of DMSP/OLS nighttime light data. Acta Geogr. Sin. 2015, 70, 1339–1350. [Google Scholar]
- Kyba, C.; Kuester, T.; Sanchez de Miguel, A.; Baugh, K.; Jechow, A.; Hölker, F.; Bennie, J.; Elvidge, C.; Gaston, K.; Guanter, L. Artificially lit surface of Earth at night increasing in radiance and extent. Sci. Adv. 2017, 3, e1701528. [Google Scholar] [CrossRef] [Green Version]
Land Use | Cultivated Land | Forest | Grass Land | Water | Residential Land | Unused Land |
---|---|---|---|---|---|---|
Correlation coefficient | 0.399 *** | −0.311 *** | −0.160 ** | 0.471 *** | 0.577 *** | 0.180 ** |
County | Mean NTL for DMSP-OLS Data | Mean NTL for Adjusted NPP-VIIRS Data | RE (%) |
---|---|---|---|
Xiushan | 1.14 | 1.29 | 13.41 |
Youyang | 0.50 | 0.59 | 17.76 |
Jiangjin | 2.97 | 3.54 | 19.13 |
Nanchuan | 1.67 | 1.85 | 11.31 |
Yongchuan | 5.79 | 6.70 | 15.75 |
Pengshui | 0.47 | 0.45 | −4.64 |
Wulong | 1.34 | 1.24 | −7.43 |
Banan | 5.29 | 5.83 | 10.16 |
Qianjiang | 1.67 | 1.59 | −4.70 |
Rongchang | 4.57 | 5.18 | 13.46 |
Bishan | 11.90 | 12.42 | 4.38 |
Dadukou | 37.05 | 38.42 | 3.70 |
Nan’an | 37.45 | 35.73 | −4.58 |
Jiulongpo | 29.55 | 30.85 | 4.39 |
Yuzhong | 57.76 | 57.90 | 0.24 |
Jiangbei | 31.31 | 32.20 | 2.84 |
Shapingba | 36.30 | 35.14 | −3.18 |
Fengdu | 1.07 | 1.15 | 7.55 |
Beibei | 14.65 | 14.40 | −1.67 |
Changshou | 8.45 | 8.55 | 1.16 |
Shizhu | 0.92 | 0.98 | 5.48 |
Yubei | 14.95 | 14.98 | 0.20 |
Tongnan | 2.06 | 2.11 | 2.65 |
Tongliang | 5.50 | 5.59 | 1.69 |
Hechuan | 3.61 | 3.94 | 9.22 |
Dianjiang | 3.45 | 3.20 | −7.34 |
Zhongxian | 1.43 | 1.47 | 2.51 |
Wanzhou | 2.94 | 2.66 | −9.54 |
Liangping | 2.36 | 2.24 | −5.17 |
Yunyang | 1.31 | 1.12 | −15.00 |
Fengjie | 1.21 | 1.17 | −3.32 |
Kaizhou | 1.52 | 1.50 | −1.38 |
Wuxi | 1.59 | 1.18 | −26.00 |
Wushan | 0.62 | 0.61 | −2.29 |
Chengkou | 0.19 | 0.27 | 42.46 |
Fuling | 4.05 | 3.98 | −1.73 |
Dazu | 5.60 | 6.11 | 9.09 |
Qijiang | 2.80 | 3.21 | 14.66 |
MRE(%) | - | - | 8.19 |
Variable | Coefficient | Std. Error | T Value | p > |t| |
---|---|---|---|---|
the NT of cultivated land | 0.0002 | 0.0002 | 1.47 | 0.142 |
the NT of forest | −0.001 ** | 0.000 | −2.19 | 0.028 |
the NL of residential land | 0.261 *** | 0.023 | 11.54 | 0.000 |
the ND of cultivated land | −0.001 | 0.002 | −0.41 | 0.685 |
the ND of grassland | 0.005 | 0.003 | 1.45 | 0.147 |
the NPA of 0–300 m | 0.081 *** | 0.019 | 4.30 | 0.000 |
the NPA of 300–500 m | 0.015 ** | 0.007 | 2.28 | 0.023 |
the NPA of 500–1000 m | 0.007 ** | 0.004 | 1.99 | 0.046 |
the NPA of >1000 m | −0.010 ** | 0.004 | −2.52 | 0.012 |
Con | 44.861 *** | 6.501 | 6.90 | 0.000 |
Sigma_u | 15.474 | |||
Sigma_e | 5.842 | |||
Rho | 0.875 |
RE | Seriously Underestimated | Generally Underestimated | Relatively Accurate | Generally Overestimated | Seriously Overestimated |
---|---|---|---|---|---|
(−100% to −50%] | (−50% to −20%] | (−20% to 20%] | (20% to 50%] | (50% to −100%] | |
Number of villages and townships | 12 | 30 | 69 | 27 | 12 |
Regional Division | Population Density | Land Area (2000) | Land Area (2005) | Land Area (2010) | Land Area (2015) | Land Area (2018) |
---|---|---|---|---|---|---|
(persons/km2) | (103 km2) | (103 km2) | (103 km2) | (103 km2) | (103 km2) | |
Low-density | <50 | 14.18 | 14.91 | 15.12 | 16.59 | 16.06 |
50–200 | 21.46 | 22.43 | 24.53 | 25.50 | 25.01 | |
Intermediate-density | 200–500 | 32.32 | 30.96 | 29.65 | 26.14 | 26.71 |
500–1500 | 12.71 | 12.24 | 10.82 | 11.52 | 11.67 | |
High-density | 1500–3000 | 0.80 | 0.85 | 0.97 | 1.14 | 1.16 |
>3000 | 0.27 | 0.35 | 0.65 | 0.84 | 1.12 |
Regional Division | Mean Population Density (people/km2) | Total Population (104 people) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
2000 | 2005 | 2010 | 2015 | 2018 | 2000 | 2005 | 2010 | 2015 | 2018 | |
Low-altitude | 550.58 | 554.00 | 585.39 | 626.88 | 647.08 | 1829.08 | 1838.12 | 1944.31 | 2079.00 | 2145.08 |
Medium-altitude | 232.66 | 227.09 | 226.76 | 227.34 | 223.70 | 685.90 | 669.81 | 665.13 | 656.15 | 645.57 |
High-altitude | 64.45 | 60.94 | 59.29 | 58.06 | 58.78 | 113.65 | 110.02 | 102.65 | 93.52 | 95.46 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, D.; Wang, Y.; Yang, Q.; Su, K.; Zhang, H.; Li, Y. Modeling Spatiotemporal Population Changes by Integrating DMSP-OLS and NPP-VIIRS Nighttime Light Data in Chongqing, China. Remote Sens. 2021, 13, 284. https://doi.org/10.3390/rs13020284
Lu D, Wang Y, Yang Q, Su K, Zhang H, Li Y. Modeling Spatiotemporal Population Changes by Integrating DMSP-OLS and NPP-VIIRS Nighttime Light Data in Chongqing, China. Remote Sensing. 2021; 13(2):284. https://doi.org/10.3390/rs13020284
Chicago/Turabian StyleLu, Dan, Yahui Wang, Qingyuan Yang, Kangchuan Su, Haozhe Zhang, and Yuanqing Li. 2021. "Modeling Spatiotemporal Population Changes by Integrating DMSP-OLS and NPP-VIIRS Nighttime Light Data in Chongqing, China" Remote Sensing 13, no. 2: 284. https://doi.org/10.3390/rs13020284
APA StyleLu, D., Wang, Y., Yang, Q., Su, K., Zhang, H., & Li, Y. (2021). Modeling Spatiotemporal Population Changes by Integrating DMSP-OLS and NPP-VIIRS Nighttime Light Data in Chongqing, China. Remote Sensing, 13(2), 284. https://doi.org/10.3390/rs13020284