Sensitivity Analysis of Bistatic Scattering for Soil Moisture Retrieval
Abstract
:1. Introduction
2. Simulation of Bistatic Scattering Using AIEM
3. Analysis Methodology
3.1. Sensitivity Index
3.2. Quality Index
4. Results and Discussion
4.1. Single-Polarized Simulation and Choice of Polarization
4.2. Combination of Dual-Polarized Simulation
4.2.1. Dual Polarization Combination Simulation Case 1
4.2.2. Dual Polarization Combination Simulation Case 2
4.3. Combination of Dual-Angular Simulation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Famiglietti, J.S.; Rudnicki, J.W.; Rodell, M. Variability in surface moisture content along a hillslope transect: Rattlesnake Hill. Texas. J. Hydrol. 1998, 210, 259–281. [Google Scholar] [CrossRef] [Green Version]
- Unninayar, S.; Olsen, L. Monitoring, observations, and remote sensing global dimensions. In Encyclopedia of Ecology; Academic Press: Oxford, UK, 2008; pp. 2425–2446. [Google Scholar] [CrossRef]
- Holzman, M.E.; Rivas, R.; Piccolo, M.C. Estimating soil moisture and the relationship with crop yield using surface temperature and vegetation index. Int. J. Appl. Earth Observ. Geoinf. 2014, 28, 181–192. [Google Scholar] [CrossRef]
- Brocca, L.; Ciabatta, L.; Massari, C.; Camici, S.; Tarpanelli, A. Soil moisture for hydrological applications: Open questions and new opportunities. Water 2017, 9, 140. [Google Scholar] [CrossRef]
- Sprenger, M.; Leistert, H.; Gimbel, K.; Weiler, M. Illuminating hydrological processes at the soil-vegetation-atmosphere interface with water stable isotopes. Rev. Geophys. 2016, 54, 674–704. [Google Scholar] [CrossRef] [Green Version]
- Petropoulos, G.P.; Srivastava, P.K.; Piles, M.; Pearson, S. Earth observation-based operational estimation of soil moisture and evapotranspiration for agricultural crops in support of sustainable water management. Sustainability 2018, 10, 181. [Google Scholar] [CrossRef] [Green Version]
- Camps, A.; Park, H.; Pablos, M.; Foti, G.; Gommenginger, C.P.; Liu, P.W.; Judge, J. Sensitivity of GNSS-R spaceborne observations to soil moisture and vegetation. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2016, 10, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Brigioni, M.; Pettinato, S.; Macelloni, G.; Paloscia, S.; Pampaloni, P.; Pierdicca, N.; Ticconi, F. Sensitivity of bistatic scattering to soil moisture and surface roughness of bare soils. Int. J. Remote Sens. 2010, 31, 4227–4255. [Google Scholar] [CrossRef]
- Zeng, J.Y.; Chen, K.S.; Bi, H.Y.; Chen, Q.; Yang, X.F. Radar response of off-specular bistatic scattering to soil moisture and surface roughness at L-band. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1945–1949. [Google Scholar] [CrossRef]
- Jackson, T.J.; Cosh, M.H.; Bindlish, R.; Stark, P.J.; Bosch, D.D.; Seyfried, M.D.; Goodrich, C.; Moran, M.S.; Du, J. Validation of advanced microwave scanning radiometer soil moisture products. IEEE Trans. Geosci. Remote Sens. 2010, 12, 4256–4272. [Google Scholar] [CrossRef]
- Li, L.; Gaiser, P.W.; Gao, B.C.; Bevilacqua, R.M.; Jackson, T.J.; Njoku, E.G.; Rudiger, C.; Calvet, J.C.; Bindlish, R. WindSat Global Soil Moisture Retrieval and Validation. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2224–2241. [Google Scholar] [CrossRef]
- Sano, E.E.; Moran, M.S.; Huete, A.R.; Miura, T. C and multiangle Ku-band synthetic aperture radar data for bare soil moisture estimation in agricultural areas. Remote Sens. Environ. 1998, 64, 77–90. [Google Scholar] [CrossRef] [Green Version]
- Oveisgharan, S.; Haddad, Z.; Turk, J.; Rodriguez, E.; Li, L. Soil moisture and vegetation water content retrieval using QuikSCAT data. Remote Sens. 2018, 10, 636. [Google Scholar] [CrossRef] [Green Version]
- Fatras, C.; Borderies, P.; Frappart, F.; Mougin, E.; Blumstein, D.; Niño, F. Impact of surface soil moisture variations on radar altimetry echoes at Ku and Ka bands in semi-arid areas. Remote Sens. 2018, 10, 582. [Google Scholar] [CrossRef] [Green Version]
- Moran, M.S.; Vidal, A.; Troufleau, D.; Inoue, Y.; Mitchell, T.A. Ku- and C-Band SAR for Discriminating Agricultural Crop and Soil Conditions. IEEE Trans. Geosci. Remote Sens. 1998, 36, 265–272. [Google Scholar] [CrossRef]
- Baffelli, S.; Frey, O.; Werner, C.; Hajnsek, I. Polarimetric Calibration of the Ku-Band Advanced Polarimetric Radar Interferometer. IEEE Trans. Geosci. Remote Sens. 2018, 56, 2295–2311. [Google Scholar] [CrossRef] [Green Version]
- Chen, K.S.; Wu, T.-D.; Tsang, L.; Li, Q.; Shi, J.; Fung, A.K. Emission of rough surfaces calculated by the integral equation method with comparison to three-dimensional moment method simulations. I EEE Trans. Geosci. Remote Sens. 2003, 41, 90–101. [Google Scholar] [CrossRef]
- Peplinski, N.R.; Ulaby, F.T.; Dobson, M.C. Dielectric properties of soils in the 0.3–1.3-GHz range. IEEE Trans. Geosci. Remote Sens. 1995, 33, 803–807. [Google Scholar] [CrossRef]
- Yardim, C.; Johnson, J.T.; Burkholder, R.J.; Teixeira, F.L.; Pierdicca, N. An intercomparison of models for predicting bistatic scattering from rough surfaces. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 2759–2762. [Google Scholar] [CrossRef]
- Zeng, J.Y.; Chen, K.S.; Bi, H.Y.; Zhao, T.J.; Yang, X.F. A comprehensive analysis of rough soil surface scattering and emission predicted by AIEM with comparison to numerical simulations and experimental measurements. IEEE Trans. Geosci. Remote Sens. 2017, 55, 1696–1708. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, K.S.; Liu, Y.; Zeng, J.Y.; Xu, P.; Li, Z.L. On angular features of radar bistatic scattering from rough surface. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3223–3235. [Google Scholar] [CrossRef]
- Pierdicca, N.; Pulvirenti, L.; Ticconi, F.; Brogioni, M. Radar bistatic configurations for soil moisture retrieval: A simulation study. IEEE Trans. Geosci. Remote Sens. 2008, 46, 3252–3264. [Google Scholar] [CrossRef]
- Johnson, J.T.; Ouellette, J. Polarization features in bistatic scattering from rough surfaces. IEEE Trans. Geosci. Remote Sens. 2014, 52, 1616–1626. [Google Scholar] [CrossRef]
- Comite, D.; Pierdicca, N. Monostatic and bistatic scattering modeling of the anisotropic rough soil. IEEE Trans. Geosci. Remote Sens. 2019, 57, 2543–2556. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, T.; Hajnsek, I.; Chen, K.-S. Sensitivity Analysis of Bistatic Scattering for Soil Moisture Retrieval. Remote Sens. 2021, 13, 188. https://doi.org/10.3390/rs13020188
Li T, Hajnsek I, Chen K-S. Sensitivity Analysis of Bistatic Scattering for Soil Moisture Retrieval. Remote Sensing. 2021; 13(2):188. https://doi.org/10.3390/rs13020188
Chicago/Turabian StyleLi, Tingting, Irena Hajnsek, and Kun-Shan Chen. 2021. "Sensitivity Analysis of Bistatic Scattering for Soil Moisture Retrieval" Remote Sensing 13, no. 2: 188. https://doi.org/10.3390/rs13020188
APA StyleLi, T., Hajnsek, I., & Chen, K. -S. (2021). Sensitivity Analysis of Bistatic Scattering for Soil Moisture Retrieval. Remote Sensing, 13(2), 188. https://doi.org/10.3390/rs13020188