Climate Dynamics of the Spatiotemporal Changes of Vegetation NDVI in Northern China from 1982 to 2015
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Preprocessing
2.2.1. GIMMS NDVI3g
2.2.2. Meteorological Datasets
2.2.3. Other Geospatial Ancillary Data
2.3. Method
2.3.1. Sen Median Trend Analysis and Mann–Kendall Test
2.3.2. Piecewise Linear Regression Analysis
2.3.3. Partial Correlation Analysis and Coefficient of Variation
3. Result
3.1. Spatial Patterns and CV of NDVIgs
3.2. Temporal Variations of NDVIgs and Climatic Factors in Different Periods
3.3. Spatial Pattern and Trend of NDVIgs and Climatic Factors in Different Periods
3.4. Spatial Pattern of the Dominant Climate Factors of NDVIgs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hermance, J.F.; Augustine, D.J.; Derner, J.D. Quantifying characteristic growth dynamics in a semi-arid grassland ecosystem by predicting short-term NDVI phenology from daily rainfall: A simple four parameter coupled-reservoir model. Int. J. Remote Sens. 2015, 36, 5637–5663. [Google Scholar] [CrossRef]
- Best, R.J.; Stone, M.N.; Stachowicz, J.J. Predicting consequences of climate change for ecosystem functioning: Variation across trophic levels, species and individuals. Divers. Distrib. 2015, 21, 1364–1374. [Google Scholar] [CrossRef]
- Dai, A. Drought under global warming: A review. Wiley Interdiscip. Rev. Clim. Chang. 2011, 2, 45–65. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Jiapaer, G.; Bao, A.; Guo, H.; Ndayisaba, F. Vegetation dynamics and responses to climate change and human activities in Central Asia. Sci. Total Environ. 2017, 599, 967–980. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Pan, Y.; Zhu, X.; Li, S. Spatiotemporal variation of vegetation coverage in Qinling-Daba Mountains in relation to environmental factors. Acta Geogr. Sin. 2015, 70, 705–716. [Google Scholar]
- Fu, B.; Wang, S.; Liu, Y.; Liu, J.; Liang, W.; Miao, C. Hydrogeomorphic Ecosystem Responses to Natural and Anthropogenic Changes in the Loess Plateau of China. Annu. Rev. Earth Planet. Sci. 2017, 45, 223–243. [Google Scholar] [CrossRef]
- Qu, S.; Wang, L.; Lin, A.; Zhu, H.; Yuan, M. What drives the vegetation restoration in Yangtze River basin, China: Climate change or anthropogenic factors? Ecol. Indic. 2018, 90, 438–450. [Google Scholar] [CrossRef]
- Huete, A. ECOLOGY Vegetation’s responses to climate variability. Nature 2016, 531, 181–182. [Google Scholar] [CrossRef]
- Li, J.; Peng, S.; Li, Z. Detecting and attributing vegetation changes on China’s Loess Plateau. Agric. For. Meteorol. 2017, 247, 260–270. [Google Scholar] [CrossRef]
- Cai, H.; Yang, X.; Xu, X. Human-induced grassland degradation/restoration in the central Tibetan Plateau: The effects of ecological protection and restoration projects. Ecol. Eng. 2015, 83, 112–119. [Google Scholar] [CrossRef]
- Aredehey, G.; Mezgebu, A.; Girma, A. Land-use land-cover classification analysis of Giba catchment using hyper temporal MODIS NDVI satellite images. Int. J. Remote Sens. 2018, 39, 810–821. [Google Scholar] [CrossRef]
- Sun, W.; Wang, Y.; Fu, Y.H.; Xue, B.; Wang, G.; Yu, J.; Zuo, D.; Xu, Z. Spatial heterogeneity of changes in vegetation growth and their driving forces based on satellite observations of the Yarlung Zangbo River Basin in the Tibetan Plateau. J. Hydrol. 2019, 574, 324–332. [Google Scholar] [CrossRef]
- Myneni, R.B.; Keeling, C.D.; Tucker, C.J.; Asrar, G.; Nemani, R.R. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 1997, 386, 698–702. [Google Scholar] [CrossRef]
- Pan, N.; Feng, X.; Fu, B.; Wang, S.; Ji, F.; Pan, S. Increasing global vegetation browning hidden in overall vegetation greening: Insights from time-varying trends. Remote Sens. Environ. 2018, 214, 59–72. [Google Scholar] [CrossRef]
- Zhang, Z.; Chang, J.; Xu, C.-Y.; Zhou, Y.; Wu, Y.; Chen, X.; Jiang, S.; Duan, Z. The response of lake area and vegetation cover variations to climate change over the Qinghai-Tibetan Plateau during the past 30 years. Sci. Total Environ. 2018, 635, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Kong, D.; Zhang, Q.; Singh, V.P.; Shi, P. Seasonal vegetation response to climate change in the Northern Hemisphere (1982-2013). Glob. Planet. Chang. 2017, 148, 1–8. [Google Scholar] [CrossRef] [Green Version]
- He, B.; Chen, A.; Wang, H.; Wang, Q. Dynamic Response of Satellite-Derived Vegetation Growth to Climate Change in the Three North Shelter Forest Region in China. Remote Sens. 2015, 7, 9998–10016. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Liu, D.; Lin, H.; Montenegro, A.; Zhu, X. NDVI and vegetation phenology dynamics under the influence of sunshine duration on the Tibetan plateau. Int. J. Climatol. 2015, 35, 687–698. [Google Scholar] [CrossRef]
- Craine, J.M.; Nippert, J.B.; Elmore, A.J.; Skibbe, A.M.; Hutchinson, S.L.; Brunsell, N.A. Timing of climate variability and grassland productivity. Proc. Natl. Acad. Sci. USA 2012, 109, 3401–3405. [Google Scholar] [CrossRef] [Green Version]
- Xue, Y.; Zhang, B.; He, C.; Shao, R. Detecting Vegetation Variations and Main Drivers over the Agropastoral Ecotone of Northern China through the Ensemble Empirical Mode Decomposition Method. Remote Sens. 2019, 11, 1860. [Google Scholar] [CrossRef] [Green Version]
- Qu, S.; Wang, L.; Lin, A.; Yu, D.; Yuan, M. Distinguishing the impacts of climate change and anthropogenic factors on vegetation dynamics in the Yangtze River Basin, China. Ecol. Indic. 2020, 108, 105724. [Google Scholar] [CrossRef]
- Wu, D.; Zhao, X.; Liang, S.; Zhou, T.; Huang, K.; Tang, B.; Zhao, W. Time-lag effects of global vegetation responses to climate change. Glob. Chang. Biol. 2015, 21, 3520–3531. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhang, Y.; Liu, L.; Wu, J.; Wang, Z.; Li, S.; Zhang, H.; Zu, J.; Ding, M.; Paudel, B. Spatiotemporal Patterns of Vegetation Greenness Change and Associated Climatic and Anthropogenic Drivers on the Tibetan Plateau during 2000–2015. Remote Sens. 2018, 10, 1525. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Piao, S.; Ciais, P.; Li, J.; Friedlingstein, P.; Koven, C.; Chen, A. Spring temperature change and its implication in the change of vegetation growth in North America from 1982 to 2006. Proc. Natl. Acad. Sci. USA 2011, 108, 1240–1245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cong, N.; Shen, M.; Yang, W.; Yang, Z.; Zhang, G.; Piao, S. Varying responses of vegetation activity to climate changes on the Tibetan Plateau grassland. Int. J. Biometeorol. 2017, 61, 1433–1444. [Google Scholar] [CrossRef] [PubMed]
- Hua, T.; Wang, X. Temporal and Spatial Variations in the Climate Controls of Vegetation Dynamics on the Tibetan Plateau during 1982–2011. Adv. Atmos. Sci. 2018, 35, 1337–1346. [Google Scholar] [CrossRef]
- Sun, R.; Chen, S.; Su, H.; Hao, G. Spatiotemporal variation of vegetation coverage and its response to climate change before and after implementation of Grain for Green Project in the Loess Plateau. In Proceedings of the 2019 Ieee International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 9546–9549. [Google Scholar]
- Liu, Z.; Qiu, B.; Wang, Z.; Qi, W. Temporal and spatial variation analysis of vegetation cover in the Loess Plateau from 2001 to 2014. Remote Sens. Land Resour. 2017, 29, 192–198. [Google Scholar]
- Xu, G.; Zhang, J.; Li, P.; Li, Z.; Lu, K.; Wang, X.; Wang, F.; Cheng, Y.; Wang, B. Vegetation restoration projects and their influence on runoff and sediment in China. Ecol. Indic. 2018, 95, 233–241. [Google Scholar] [CrossRef]
- Li, G.; Sun, S.; Han, J.; Yan, J.; Liu, W.; Wei, Y.; Lu, N.; Sun, Y. Impacts of Chinese Grain for Green program and climate change on vegetation in the Loess Plateau during 1982–2015. Sci. Total Environ. 2019, 660, 177–187. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Tian, Z.; Zhang, A.; Zhao, A.; Liu, H. Impacts of Climate on Spatiotemporal Variations in Vegetation NDVI from 1982–2015 in Inner Mongolia, China. Sustainability 2019, 11, 768. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Dao, R.; Hu, Y. Vegetation Change and Driving Factors: Contribution Analysis in the Loess Plateau of China during 2000–2015. Sustainability 2019, 11, 1320. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Li, L.; Chen, X.; Zhang, R.; Yang, J. Temporal-spatial variations and influencing factors of vegetation cover in Xinjiang from 1982 to 2013 based on GIMMS-NDVI3g. Glob. Planet. Chang. 2018, 169, 145–155. [Google Scholar] [CrossRef]
- Xu, Y.; Yang, J.; Chen, Y. NDVI-based vegetation responses to climate change in an arid area of China. Theor. Appl. Climatol. 2016, 126, 213–222. [Google Scholar] [CrossRef]
- Yu, X.; Yan, Q.; Liu, Z.; Xi, L.; Wang, Y. Quantitative Estimation and Dynamic Changes of Vegetation Fractional Coverage in The Sanjiangyuan Region. Resour. Environ. Yangtze Basin 2013, 22, 66–74. [Google Scholar]
- Fassnacht, F.E.; Schiller, C.; Qu, J.; Kattenborn, T.; Zhao, X. Modis-based Grassland Trends within and Around the Kekexili Core Protection Zone of the Sanjiangyuan Nature Reserve. In Proceedings of the Igarss 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 2880–2882. [Google Scholar]
- Luo, N.; Mao, D.; Wen, B.; Liu, X. Climate Change Affected Vegetation Dynamics in the Northern Xinjiang of China: Evaluation by SPEI and NDVI. Land 2020, 9, 90. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.; Xu, X.; Guan, M.; Wang, L.; Huang, Y.; Jiang, Y. Determining the contributions of climate change and human activities to vegetation dynamics in agro-pastural transitional zone of northern China from 2000 to 2015. Sci. Total Environ. 2020, 718, 134871. [Google Scholar] [CrossRef]
- Li, K.; Tong, Z.; Liu, X.; Zhang, J.; Tong, S. Quantitative assessment and driving force analysis of vegetation drought risk to climate change:Methodology and application in Northeast China. Agric. For. Meteorol. 2020, 282, 107865. [Google Scholar] [CrossRef]
- Liang, C.; Chen, T.; Dolman, H.; Shi, T.; Wei, X.; Xu, J.; Hagan, D.F.T. Drying and Wetting Trends and Vegetation Covariations in the Drylands of China. Water 2020, 12, 933. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Li, Z.; Lu, Z. Analysis of spatiotemporal variations in land use on the Loess Plateau of China during 1986–2010. Environ. Earth Sci. 2016, 75, 997. [Google Scholar] [CrossRef]
- Sun, W.; Song, X.; Mu, X.; Gao, P.; Wang, F.; Zhao, G. Spatiotemporal vegetation cover variations associated with climate change and ecological restoration in the Loess Plateau. Agric. For. Meteorol. 2015, 209, 87–99. [Google Scholar] [CrossRef]
- Zheng, J.; Yin, Y.; Li, B. A New Scheme for Climate Regionalization in China. Acta Geogr. Sin. 2010, 65, 3–12. [Google Scholar]
- Wang, S.; Mo, X.; Liu, Z.; Baig, M.H.A.; Chi, W. Understanding long-term (1982–2013) patterns and trends in winter wheat spring green-up date over the North China Plain. Int. J. Appl. Earth Obs. Geoinf. 2017, 57, 235–244. [Google Scholar] [CrossRef]
- Holben, B.N. Characteristics of Maximum-value Composite Images from Temporal Avhrr Data. Int. J. Remote Sens. 1986, 7, 1417–1434. [Google Scholar] [CrossRef]
- Zhou, L.M.; Tucker, C.J.; Kaufmann, R.K.; Slayback, D.; Shabanov, N.V.; Myneni, R.B. Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999. J. Geophys. Res. Atmos. 2001, 106, 20069–20083. [Google Scholar] [CrossRef]
- Du, Z.; Zhao, J.; Liu, X.; Wu, Z.; Zhang, H. Recent asymmetric warming trends of daytime versus nighttime and their linkages with vegetation greenness in temperate China. Environ. Sci. Pollut. Res. 2019, 26, 35717–35727. [Google Scholar] [CrossRef]
- Hutchinson, M.F. Interpolating mean rainfall using thin plate smoothing splines. Int. J. Geogr. Inf. Syst. 1995, 9, 385–403. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, M.; Lin, Z.; Xu, X. Spatial heterogeneity of the relationship between vegetation dynamics and climate change and their driving forces at multiple time scales in Southwest China. Agric. For. Meteorol. 2018, 256, 10–21. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, Y. Does Anthropogenic Land Use Change Play a Role in Changes of Precipitation Frequency and Intensity over the Loess Plateau of China? Remote Sens. 2018, 10, 1818. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Kuang, W.; Zhang, Z.; Xu, X.; Qin, Y.; Ning, J.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; et al. Spatiotemporal characteristics, patterns and causes of land use changes in China since the late 1980s. Acta Geogr. Sin. 2014, 69, 3–14. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Griffin: London, UK, 1957; p. 298. [Google Scholar]
- Fathian, F.; Dehghan, Z.; Bazrkar, M.H.; Eslamian, S. Trends in hydrological and climatic variables affected by four variations of the Mann-Kendall approach in Urmia Lake basin, Iran. Hydrol. Sci. J. J. Des Sci. Hydrol. 2016, 61, 892–904. [Google Scholar] [CrossRef] [Green Version]
- Gocic, M.; Trajkovic, S. Analysis of changes in meteorological variables using Mann-Kendall and Sen’s slope estimator statistical tests in Serbia. Glob. Planet. Chang. 2013, 100, 172–182. [Google Scholar] [CrossRef]
- Zhao, A.; Zhang, A.; Liu, H.; Liu, Y.; Wang, H.; Wang, D. Spatiotemporal Variation of Vegetation Coverage before and after Implementation of Grain for Green Project in the Loess Plateau. J. Nat. Resour. 2017, 32, 449–460. [Google Scholar]
- Yi, L.; Ren, Z.; Zhang, C.; Liu, W. Vegetation Cover, Climate and Human Activities on the Loess Plateau. Resour. Sci. 2014, 36, 166–174. [Google Scholar]
- Fensholt, R.; Langanke, T.; Rasmussen, K.; Reenberg, A.; Prince, S.D.; Tucker, C.; Scholes, R.J.; Le, Q.B.; Bondeau, A.; Eastman, R.; et al. Greenness in semi-arid areas across the globe 1981–2007—An Earth Observing Satellite based analysis of trends and drivers. Remote Sens. Environ. 2012, 121, 144–158. [Google Scholar] [CrossRef]
- Wang, M.; Li, G.; Wang, J.; Sun, X.; Guo, Z. Spatio-Temporal Variation of the Net Primary Production in Indian and Their Relationships to Climate Factors. J. Geo-Inf. Sci. 2015, 17, 1355–1361. [Google Scholar]
- Hao, Y.H.; Cao, B.B.; Chen, X.; Yin, J.; Sun, R.L.; Yeh, T.C.J. A Piecewise Grey System Model for Study the Effects of Anthropogenic Activities on Karst Hydrological Processes. Water Resour. Manag. 2013, 27, 1207–1220. [Google Scholar] [CrossRef]
- Wang, S.; Lei, H.; Duan, L.; Liu, T.; Yang, D. Attribution of the vegetation trends in a typical desertified watershed of northeast China over the past three decades. Ecohydrology 2016, 9, 1566–1579. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, J.; Liu, L.; Wang, Z.; Ding, M.; Yang, X. NDVI-based vegetation changes and their responses to climate change from 1982 to 2011: A case study in the Koshi River Basin in the middle Himalayas. Glob. Planet. Chang. 2013, 108, 139–148. [Google Scholar] [CrossRef]
- Sun, L.; Li, Q.; Chen, J.; Niu, J. Seasonal changes in vegetation response to precipitation across eco-regions over Eurasia. Acta Ecol. Sin. 2018, 38, 8051–8059. [Google Scholar]
- Ma, L.; Qin, F.; Sun, J.; Wang, H.; Xia, H. Diurnal asymmetry of temperature and its effect on NDVI in Loess Plateau. Resour. Sci. 2018, 40, 1684–1692. [Google Scholar]
- Wu, L.; Wang, S.; Bai, X.; Tian, Y.; Luo, G.; Wang, J.; Li, Q.; Chen, F.; Deng, Y.; Yang, Y.; et al. Climate change weakens the positive effect of human activities on karst vegetation productivity restoration in southern China. Ecol. Indic. 2020, 115, 106392. [Google Scholar] [CrossRef]
- Sun, R.; Chen, S.; Su, H. Spatiotemporal variations of NDVI of different land cover types on the Loess Plateau from 2000 to 2016. Prog. Geogr. 2019, 38, 1248–1258. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Li, C.; Liu, Z.; Deng, X. Assessment of spatio-temporal variations in vegetation cover in Xinjiang from 1982 to 2013 based on GIMMS-NDVI. Acta Ecol. Sin. 2016, 36, 6198–6208. [Google Scholar]
- Deng, X.; Yao, J.; Liu, Z. Spatiotemporal Dynamic Change of Vegetation Coverage in Arid Regions in Central Asia Based on GIMMS NDVI. Arid Zone Res. 2017, 34, 10–19. [Google Scholar]
- Cao, R.; Jiang, W.; Yuan, L.; Wang, W.; Lv, Z.; Chen, Z. Inter-annual variations in vegetation and their response to climatic factors in the upper catchments of the Yellow River from 2000 to 2010. J. Geogr. Sci. 2014, 24, 963–979. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Luo, H.; Hu, T.; Shao, D.; Cui, Y.; Khan, S.; Luo, Y. Identification of the Roles of Climate Factors, Engineering Construction, and Agricultural Practices in Vegetation Dynamics in the Lhasa River Basin, Tibetan Plateau. Remote Sens. 2020, 12, 1883. [Google Scholar] [CrossRef]
- Zhao, H.; Tan, J.; Ren, Z.; Wang, Z. Spatiotemporal Characteristics of Urban Surface Temperature and Its Relationship with Landscape Metrics and Vegetation Cover in Rapid Urbanization Region. Complexity 2020, 2020. [Google Scholar] [CrossRef]
- Hu, T.; Li, X.; Gong, P.; Yu, W.; Huang, X. Evaluating the effect of plain afforestation project and future spatial suitability in Beijing. Sci. China-Earth Sci. 2020. [Google Scholar] [CrossRef]
- Vedrova, E.F.; Mukhortova, L.V.; Ivanov, V.V.; Krivobokov, L.V.; Boloneva, M.V. Post-logging organic matter recovery in forest ecosystems of eastern Baikal region. Biol. Bull. 2010, 37, 69–79. [Google Scholar] [CrossRef]
- Wang, H.; Yao, F.; Zhu, H.; Zhao, Y. Spatiotemporal Variation of Vegetation Coverage and Its Response to Climate Factors and Human Activities in Arid and Semi-Arid Areas: Case Study of the Otindag Sandy Land in China. Sustainability 2020, 12, 5214. [Google Scholar] [CrossRef]
- Batunacun; Nendel, C.; Hu, Y.; Lakes, T. Land-use change and land degradation on the Mongolian Plateau from 1975 to 2015-A case study from Xilingol, China. Land Degrad. Dev. 2018, 29, 1595–1606. [Google Scholar] [CrossRef]
- Jeong, S.-J.; Ho, C.-H.; Gim, H.-J.; Brown, M.E. Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982–2008. Glob. Chang. Biol. 2011, 17, 2385–2399. [Google Scholar] [CrossRef]
- Peng, S.; Chen, A.; Xu, L.; Cao, C.; Fang, J.; Myneni, R.B.; Pinzon, J.E.; Tucker, C.J.; Piao, S. Recent change of vegetation growth trend in China. Environ. Res. Lett. 2011, 6. [Google Scholar] [CrossRef]
- Sun, R.; Chen, S.; Su, H. Spatiotemporal variation of NDVI in different ecotypes on the Loess Plateau and its response to climate change. Geogr. Res. 2020, 39, 1200–1214. [Google Scholar]
- Jiao, K.; Gao, J.; Wu, S. Climatic determinants impacting the distribution of greenness in China: Regional differentiation and spatial variability. Int. J. Biometeorol. 2019, 63, 523–533. [Google Scholar] [CrossRef]
- Wild, M.; Gilgen, H.; Roesch, A.; Ohmura, A.; Long, C.N.; Dutton, E.G.; Forgan, B.; Kallis, A.; Russak, V.; Tsvetkov, A. From dimming to brightening: Decadal changes in solar radiation at Earth’s surface. Science 2005, 308, 847–850. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Lorenzo, A.; Enriquez-Alonso, A.; Wild, M.; Trentmann, J.; Vicente-Serrano, S.M.; Sanchez-Romero, A.; Posselt, R.; Hakuba, M.Z. Trends in downward surface solar radiation from satellites and ground observations over Europe during 1983–2010. Remote Sens. Environ. 2017, 189, 108–117. [Google Scholar] [CrossRef] [Green Version]
- Qi, Y.; Fang, S.-B.; Zhou, W.-Z. Correlative analysis between the changes of surface solar radiation and its relationship with air pollution, as well as meteorological factor in East and West China in recent 50 years. Acta Phys. Sin. 2015, 64. [Google Scholar] [CrossRef]
- Qi, Y.; Fang, S.; Zhou, W. Variation and spatial distribution of surface solar radiation in China over recent 50 years. Acta Ecol. Sin. 2014, 34, 7444–7453. [Google Scholar]
- Zhang, Z.; Lan, Y.; Zheng, Y.; Chen, L.; Song, P. Multiple regression analysis of soybean NDVI affected by meteorological factors. Trans. Chin. Soc. Agric. Eng. 2015, 31, 188–193. [Google Scholar]
- Zhang, Y.; Zhu, Z.; Liu, Z.; Zeng, Z.; Ciais, P.; Huang, M.; Liu, Y.; Piao, S. Seasonal and interannual changes in vegetation activity of tropical forests in Southeast Asia. Agric. For. Meteorol. 2016, 224, 1–10. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, C.; Wang, Z.; Chen, Y.; Gang, C.; An, R.; Li, J. Vegetation dynamics and its driving forces from climate change and human activities in the Three-River Source Region, China from 1982 to 2012. Sci. Total Environ. 2016, 563, 210–220. [Google Scholar] [CrossRef] [PubMed]
Code | Climate Condition | Code | Climate Condition |
---|---|---|---|
A1 | Cold-temperate humid zone | C4 | Warm temperate arid zone |
B1 | Middle temperate humid zone | D2 | Plateau climate sub-humid zone |
B2 | Middle temperate sub-humid zone | D3 | Plateau climate sub-arid zone |
B3 | Middle temperate sub-arid zone | D4 | Plateau climate arid zone |
B4 | Middle temperate arid zone | E1 | Subtropical humid zone |
C2 | Warm temperate sub-humid zone |
Level | 1982–2015 | 1982–1990 | 1990–2006 | 2006–2015 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NDVI 3 | Tem 4 | Pre 5 | SR 6 | NDVI | Tem | Pre | SR | NDVI | Tem | Pre | SR | NDVI | Tem | Pre | SR | |
↓ 1 p < 0.01 | 3.30 | 0.00 | 0.02 | 1.83 | 0.05 | 0.00 | 0.00 | 3.82 | 2.81 | 0.00 | 4.62 | 0.00 | 0.50 | 0.58 | 0.00 | 0.27 |
↓ p < 0.05 | 2.78 | 0.00 | 0.99 | 3.22 | 0.22 | 0.00 | 0.59 | 16.04 | 5.05 | 0.01 | 9.31 | 0.00 | 2.05 | 6.63 | 0.00 | 6.41 |
↓ p > 0.05 | 19.28 | 0.54 | 44.85 | 24.81 | 14.39 | 13.50 | 35.55 | 56.26 | 44.00 | 2.60 | 35.99 | 15.91 | 28.67 | 82.37 | 20.98 | 64.98 |
↑ 2 p > 0.05 | 30.84 | 2.58 | 47.34 | 42.55 | 71.65 | 78.39 | 63.78 | 23.88 | 41.20 | 22.51 | 47.58 | 60.74 | 52.09 | 10.42 | 65.86 | 28.32 |
↑ p < 0.05 | 10.08 | 3.43 | 5.47 | 18.47 | 10.83 | 5.81 | 0.08 | 0.00 | 4.37 | 32.97 | 2.21 | 14.55 | 11.88 | 0.00 | 11.51 | 0.02 |
↑ p < 0.01 | 33.72 | 93.45 | 1.33 | 9.12 | 2.86 | 2.30 | 0.00 | 0.00 | 2.57 | 41.91 | 0.29 | 8.80 | 4.81 | 0.00 | 1.65 | 0.00 |
1982–2015 | 1982–1990 | 1990–2006 | 2006–2015 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
RTem | RPre | RSR | RTem | RPre | RSR | RTem | RPre | RSR | RTem | RPre | RSR | |
Average value | 0.175 | 0.198 | 0.003 | 0.098 | 0.061 | −0.148 | 0.060 | 0.161 | −0.021 | 0.020 | 0.227 | 0.023 |
Pixel value > 0 (%) | 76.21 | 75.50 | 52.44 | 59.91 | 55.06 | 38.05 | 58.23 | 69.04 | 47.55 | 50.40 | 74.27 | 52.35 |
p < 0.01 (%) | 14.61 | 18.98 | 2.87 | 1.36 | 1.64 | 2.97 | 2.76 | 4.91 | 0.88 | 1.88 | 1.77 | 0.81 |
p < 0.05 (%) | 14.35 | 15.11 | 6.38 | 5.92 | 5.72 | 7.14 | 6.47 | 9.32 | 3.33 | 5.05 | 7.00 | 3.37 |
Land Cover | 1982–2015 | 1982–1990 | 1990–2006 | 2006–2015 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Tem | Pre | SR | Tem | Pre | SR | Tem | Pre | SR | Tem | Pre | SR | |
WL | 39.58 | 33.42 | 27.00 | 40.08 | 22.45 | 37.47 | 35.08 | 35.40 | 29.52 | 25.31 | 41.80 | 32.90 |
HCG | 28.68 | 52.07 | 19.25 | 27.62 | 32.90 | 39.48 | 27.71 | 47.51 | 24.78 | 24.72 | 46.65 | 28.63 |
MCG | 32.06 | 52.20 | 15.73 | 27.92 | 36.16 | 35.92 | 32.41 | 46.38 | 21.21 | 33.23 | 48.13 | 18.64 |
LCG | 46.21 | 38.23 | 15.55 | 29.82 | 29.80 | 40.38 | 39.01 | 39.80 | 21.18 | 41.50 | 38.45 | 20.05 |
ALL | 37.29 | 44.08 | 18.63 | 30.82 | 30.75 | 38.42 | 34.00 | 42.40 | 23.60 | 32.46 | 43.49 | 24.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, R.; Chen, S.; Su, H. Climate Dynamics of the Spatiotemporal Changes of Vegetation NDVI in Northern China from 1982 to 2015. Remote Sens. 2021, 13, 187. https://doi.org/10.3390/rs13020187
Sun R, Chen S, Su H. Climate Dynamics of the Spatiotemporal Changes of Vegetation NDVI in Northern China from 1982 to 2015. Remote Sensing. 2021; 13(2):187. https://doi.org/10.3390/rs13020187
Chicago/Turabian StyleSun, Rui, Shaohui Chen, and Hongbo Su. 2021. "Climate Dynamics of the Spatiotemporal Changes of Vegetation NDVI in Northern China from 1982 to 2015" Remote Sensing 13, no. 2: 187. https://doi.org/10.3390/rs13020187
APA StyleSun, R., Chen, S., & Su, H. (2021). Climate Dynamics of the Spatiotemporal Changes of Vegetation NDVI in Northern China from 1982 to 2015. Remote Sensing, 13(2), 187. https://doi.org/10.3390/rs13020187