Algorithm Research Using GNSS-TEC Data to Calibrate TEC Calculated by the IRI-2016 Model over China
Abstract
:1. Introduction
2. Data and Methodology
2.1. Data
2.2. Methodology
2.3. Evaluation Methodology
- Evaluation scheme for the temporal interpolation of IG-up: High-precision TEC data extracted from six GNSS stations at different latitudes are used to drive the IRI-2016 model to calculate the IG-up values at different integer hours, and the IG(t) corresponding to a 1-min sampling interval is calculated via interpolation under scheme 1, scheme 2 and scheme 3 using Expression (1). Then, the interpolated results are substituted back into the IRI-2016 model to drive the output TEC. On this basis, we calculate the mean absolute error (MAE), root mean square error (RMSE), and precision improvement (PI) of the TEC estimates obtained with different time-interval schemes using Expression (4), Expression (5), and Expression (6), respectively, to evaluate the interpolation effects of the different time-interval schemes for IG-up.
- Evaluation scheme for the spatial interpolation of IG-up: High-precision TEC data extracted from 46 GNSS stations at different latitudes are used to drive the IRI-2016 model to calculate the IG-up values at different integer hours, and Expression (2) is used to calculate an IG-up map with a spatial resolution of 2.5° in latitude and 5° in longitude within the latitudinal range of 20°N–55°N and the longitudinal range of 70°E–135°E. On this basis, the IG-up values at integer hours corresponding to 12 other GNSS stations at different latitudes are then calculated via interpolation using Expression (3). At the same time, the average value of IG-up in each latitudinal zone is calculated, and the results are then substituted back into the IRI-2016 model to drive the output TEC. The two-dimensional (2-D) distribution of the calculated TEC output is compared with that of GNSS-TEC in China, the difference (DTEC) between the calculated TEC output and GNSS-TEC is calculated, and the DTEC distributions are compared using boxplots to evaluate the effects of different spatial interpolation schemes for IG-up.
- Evaluation scheme for the integrated interpolation of IG-up in time and space: Using high-precision TEC data extracted from 12 GNSS stations at different latitudes as a reference, the IG-up values obtained using the integrated interpolation scheme are substituted back into the IRI-2016 model to drive the output TEC. Then, the accuracy indices MAE, RMSE, and PI are calculated using Expression (4), Expression (5) and Expression (6), respectively, and the linear regression correlations of the TEC values are analyzed:
3. Results and Analysis
3.1. Comparison of IG-Up Interpolation Schemes with Different Time Intervals
3.2. Comparison of Spatial Interpolation Schemes for IG-Up
3.3. Evaluation of an Integrated Scheme for Interpolating IG-Up in Time and Space
4. Conclusions
- Taking GNSS-TEC as a reference, we compared the ionospheric TEC estimates calculated using the IRI-2016 model driven by IG-up values obtained with different temporal interpolation schemes: ① The MAEs of the TEC estimates under the 1-h interpolation scheme for 2015 and 2019 are 0.5 TECu and 0.4 TECu, respectively; the MAE PIs relative to IRI-2016-TEC are 90.00% and 86.21%, respectively; the RMSEs are 0.6 TECu and 0.5 TECu, respectively; and the RMSE PIs relative to IRI-2016-TEC are 90.91% and 86.84%, respectively. ② The MAEs of the TEC estimates under the 2-h interpolation scheme for 2015 and 2019 are 0.6 TECu and 0.5 TECu, respectively; the MAE PIs relative to IRI-2016-TEC are 88.00% and 82.76%, respectively; the RMSEs are 0.9 TECu and 0.6 TECu, respectively; and the RMSE PIs relative to IRI-2016-TEC are 86.36% and 84.21%, respectively. ③ The MAEs of the TEC estimates under the 4-h interpolation scheme for 2015 and 2019 are 1.4 TECu and 0.8 TECu, respectively; the MAE PIs relative to IRI-2016-TEC are 72.0% and 72.41%, respectively; the RMSEs are 2.0 TECu and 1.1 TECu, respectively; and the RMSE PIs relative to IRI-2016-TEC are 69.70% and 71.05%, respectively. From these results, it can be seen that the 1-h interpolation scheme is the best.
- Taking GNSS-TEC as a reference, we compared the ionospheric TEC estimates calculated using the IRI-2016 model driven by IG-up values obtained with different spatial interpolation schemes. According to the boxplots of the statistical results, the median differences (DTEC) between the TEC estimates calculated using the IRI-2016 model driven by IG-up values obtained via the grid interpolation scheme with a 2.5° × 5° spatial resolution and the GNSS-TEC data are closer to zero and more stable than those corresponding to the latitudinal-zone-averaging scheme. In addition, the upper and lower quartiles of the DTEC results of the grid interpolation scheme are more concentrated than those of the latitudinal-zone-averaging scheme, indicating that the former is the optimal space interpolation scheme for the IG-up values.
- Taking GNSS-TEC as a reference, we evaluated the ionospheric TEC estimates calculated using the IRI-2016 model driven by IG-up values obtained with the optimally combined interpolation scheme: The MAE and RMSE for 2015 are 1.2 TECu and 1.4 TECu, respectively; compared with those of the original IRI-2016 model (5.6 TECu and 6.6 TECu), the PIs are 78.57% and 78.79%, respectively. The MAE and RMSE for 2019 are 0.7 TECu and 0.8 TECu, respectively; compared with those of IRI-2016 (3.1 TECu and 3.5 TECu), the PIs are 77.42% and 77.14%, respectively. The correlations of linear regression with the GNSS-TEC data reach 0.986 and 0.966 for 2015 and 2019, respectively, being more than 0.2 higher than the corresponding correlations of IRI-2016-TEC with GNSS-TEC (0.770 and 0.738). In addition, overall, the TEC estimates calculated using the IRI-2016 model driven by IG-up values obtained with the comprehensive interpolation scheme show obvious improvements in years of both high and low solar activity, although the improvement effect in a year of high solar activity is better than that in a year of low solar activity.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brunini, C.; Meza, A.; Azpilicueta, F.; Zele, M.A.V.; Gende, M.; Díaz, A. A New Ionosphere Monitoring Technology Based on GPS. Astrophys. Space Sci. 2004, 290, 415–429. [Google Scholar] [CrossRef]
- Lei, J.; Liu, L.; Wan, W.; Zhang, S.-R. Variations of electron density based on long-term incoherent scatter radar and ionosonde measurements over Millstone Hill. Radio Sci. 2005, 40, RS2008. [Google Scholar] [CrossRef]
- Sobral, J.; Abdu, M.; Muralikrishna, P.; Labelle, J.; Zamlutti, C. Rocket and ground-based electron density soundings versus IRI representation. Adv. Space Res. 2003, 31, 569–575. [Google Scholar] [CrossRef]
- An, X.; Meng, X.; Chen, H.; Jiang, W.; Xi, R.; Chen, Q. Modelling Global Ionosphere Based on Multi-Frequency, Multi-Constellation GNSS Observations and IRI Model. Remote Sens. 2020, 12, 439. [Google Scholar] [CrossRef] [Green Version]
- Georgiadou, Y.; Kleusberg, A. On the Effect of Ionospheric Delay on Geodetic Relative GPS Positioning. Manuscr. Geod. 1988, 13, 1–8. [Google Scholar]
- Wang, H.; Luo, J.; Xu, X. Ionospheric Peak Parameters Retrieved from FY-3C Radio Occultation: A Statistical Comparison with Measurements from COSMIC RO and Digisondes Over the Globe. Remote Sens. 2019, 11, 1419. [Google Scholar] [CrossRef] [Green Version]
- Bilitza, D. IRI the International Standard for the Ionosphere. Adv. Radio Sci. 2018, 16, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Bilitza, D.; Altadill, D.; Zhang, Y.; Mertens, C.; Truhlik, V.; Richards, P.; McKinnell, L.-A.; Reinisch, B. The International Reference Ionosphere 2012—A model of international collaboration. J. Space Weather Space Clim. 2014, 4, A07. [Google Scholar] [CrossRef]
- Bilitza, D.; McKinnell, L.-A.; Reinisch, B.; Fuller-Rowell, T. The international reference ionosphere today and in the future. J. Geod. 2010, 85, 909–920. [Google Scholar] [CrossRef]
- Bilitza, D.; Radicella, S.; Willoughby, A. Equatorial F2-peak parameters in the IRI model. Adv. Space Res. 2003, 31, 507–512. [Google Scholar]
- Amaechi, P.O.; Oyeyemi, E.O.; Akala, A.O.; Kaab, M.; Mazaudier, C.A. Comparison of Ionospheric Anomalies over African Equatorial/Low-latitude Region with IRI-2016 Model Predictions during the Maximum Phase of Solar Cycle 24. Adv. Space Res. 2021, 68, 1473–1484. [Google Scholar] [CrossRef]
- Bilitza, D.; Altadill, D.; Truhlik, V.; Shubin, V.; Galkin, I.; Reinisch, B.; Huang, X. International Reference Ionosphere 2016: From ionospheric climate to real-time weather predictions. Space Weather 2017, 15, 418–429. [Google Scholar] [CrossRef]
- Gulyaeva, T.; Arikan, F.; Sezen, U.; Poustovalova, L. Eight proxy indices of solar activity for the International Reference Ionosphere and Plasmasphere model. J. Atmos. Sol. Terr. Phys. 2018, 172, 122–128. [Google Scholar] [CrossRef]
- Laskar, F.; Eastes, R.; Martinis, C.; Daniell, R.; Pedatella, N.; Burns, A. Early morning equatorial ionization anomaly from GOLD observations. J. Geophys. Res. Space Phys. 2020, 125, e2019JA027487. [Google Scholar] [CrossRef]
- Cai, X.; Alan, G.; Wang, W.; Qian, L.; Liu, J. Observation of Postsunset OI 135.6 nm radiance Enhancement over South America by the GOLD Mission. J. Geophys. Res. Space Phys. 2021, 126, e2020JA028108. [Google Scholar] [CrossRef]
- Karan, D.K.; Daniell, R.E.; England, S.L.; Martinis, C.R.; Eastes, R.W.; Burns, A.G.; Mcclintock, W.E. First zonal drift velocity measurement of Equatorial Plasma Bubbles (EPBs) from a geostationary orbit using GOLD data. J. Geophys. Res. Space Phys. 2020, 125, e2020JA028173. [Google Scholar] [CrossRef]
- Martinis, C.; Daniell, R.; Eastes, R.; Norrell, J.; Smith, J.; Klenzing, J.; Solomon, S.; Burns, A. Longitudinal variation of post-sunset plasma depletions from the Global-scale Observations of the Limb and Disk (GOLD) mission. J. Geophys. Res. Space Phys. 2020, 126, e2020JA028510. [Google Scholar]
- Foster, J.; Coster, A.; Erickson, P.; Holt, J.; Lind, F.; Rideout, W.; McCready, M.; van Eyken, A.; Barnes, R.J.; Greenwald, R.; et al. Multiradar observations of the polar tongue of ionization. J. Geophys. Res Space Phys. 2005, 110, 12. [Google Scholar] [CrossRef] [Green Version]
- Jing, L.; Wenbin, W.; Shunrong, Z.; Burns, A.; Chaosong, H.; Solomon, S.C.; Yongliang, Z. Relative importance of horizontal and vertical transports to the formation of ionospheric storm-enhanced density and polar tongue of ionization. J. Geophys. Res. A Space Phys. JGR 2016, 121, 8121–8133. [Google Scholar]
- García-Rigo, A.; Monte, E.; Hernández-Pajares, M.; Juan, J.; Sanz, J.; Aragón-Angel, A.; Salazar, D. Global prediction of the vertical total electron content of the ionosphere based on GPS data. Radio Sci. 2011, 46, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Pajares, M.; Juan, J.; Sanz, J.; Aragón-àngel, à.; García-Rigo, A.; Salazar, D.; Escudero, M. The ionosphere: Effects, GPS modeling and the benefits for space geodetic techniques. J. Geod. 2011, 85, 887–907. [Google Scholar] [CrossRef]
- Mannucci, A.; Wilson, B.; Yuan, D.; Ho, C.; Lindqwister, U.; Runge, T. A global mapping technique for GPS-derived ionospheric total electron content measurements. Radio Sci. 1998, 33, 565–582. [Google Scholar] [CrossRef]
- Chen, P.; Yao, Y.; Yao, W. Global ionosphere maps based on GNSS, satellite altimetry, radio occultation and DORIS. GPS Solut. 2016, 21, 639–650. [Google Scholar] [CrossRef]
- Yang, H.; Monte-Moreno, E.; Hernández-Pajares, M.; Roma-Dollase, D. Real-time interpolation of global ionospheric maps by means of sparse representation. J. Geod. 2021, 95, 1–20. [Google Scholar]
- Goss, A.; Schmidt, M.; Erdogan, E.; Seitz, F. Global and Regional High-Resolution VTEC Modelling Using a Two-Step B-Spline Approach. Remote Sens. 2020, 12, 1198. [Google Scholar] [CrossRef] [Green Version]
- Erdogan, E.; Schmidt, M.; Goss, A.; Grres, B.; Seitz, F. Adaptive Modeling of the Global Ionosphere Vertical Total Electron Content. Remote Sens. 2020, 12, 1822. [Google Scholar] [CrossRef]
- Li, M.; Yuan, Y.; Ningbo, W.; Zishen, L.; Xingliang, H. Performance of various predicted GNSS global ionospheric maps relative to GPS and JASON TEC data. GPS Solut. 2018, 22, 55. [Google Scholar] [CrossRef]
- Huo, X.; Yuan, Y.; Ou, J.; Zhang, K. Monitoring the Daytime Variations of Equatorial Ionospheric Anomaly Using IONEX Data and CHAMP GPS Data. IEEE Trans. Geosci. Remote Sens. 2010, 49, 105–114. [Google Scholar] [CrossRef]
- Ghoddousi-Fard, R.; Héroux, P.; Danskin, D.; Boteler, D. Developing a GPS TEC mapping service over Canada. Space Weather Int. J. Res. Appl. 2011, 9, S06D11. [Google Scholar] [CrossRef]
- Ghoddousi-Fard, R. On the estimation of regional covariance functions of TEC variations over Canada. Adv. Space Res. 2020, 65, 943–958. [Google Scholar] [CrossRef]
- Pezzopane, M.; Pietrella, M.; Pignatelli, A.; Zolesi, B.; Cander, L.R. Assimilation of autoscaled data and regional and local ionospheric models as input sources for real-time 3-D International Reference Ionosphere modeling. Radio Sci. 2011, 46, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Ercha, A.; Liu, S.; Huang, W.; Jianyong, L.I.; Shi, L.Q.; Gong, J.; Chen, Y.; Shen, H.; Cai, Y.X.; Guorui, L. Ionospheric TEC data assimilation and now-casting system over. China. Chin. J. Geophys. 2018, 61, 2186–2197. [Google Scholar]
- Ercha, A.; Huang, W.; Yu, S.; Liu, S.; Shi, L. A regional ionospheric TEC mapping technique over China and adjacent areas on the basis of data assimilation. J. Geophys. Res. Space Phys. 2015, 120, 5049–5061. [Google Scholar]
- Yu, T.; Mao, T.; Wang, Y.; Zeng, Z.; Wang, J.; Fang, H. Using the GPS observations to reconstruct the ionosphere three-dimensionally with an ionospheric data assimilation and analysis system (IDAAS). Sci. China 2014, 57, 2210–2219. [Google Scholar] [CrossRef]
- Arikan, F.; Arikan, O.; Erol, C. Regularized estimation of TEC from GPS data for certain midlatitude stations and comparison with the IRI model. Adv. Space Res. 2007, 39, 867–874. [Google Scholar] [CrossRef]
- Chen, M.; Liu, L.; Xu, C.; Wang, Y. Improved IRI-2016 model based on BeiDou GEO TEC ingestion across China. GPS Solut. 2019, 24, 1–11. [Google Scholar] [CrossRef]
- Komjathy, A.; Langley, R.; Bilitza, D. Ingesting GPS-derived TEC data into the International Reference Ionosphere for single frequency radar altimeter ionospheric delay corrections. Adv. Space Res. 1998, 22, 793–801. [Google Scholar] [CrossRef] [Green Version]
- Okoh, D.; Mckinnell, L.; Cilliers, P.; Okeke, P. Using GPS-TEC data to calibrate VTEC computed with the IRI model over Nigeria. Adv. Space Res. 2013, 52, 1791–1797. [Google Scholar] [CrossRef]
- Ssessanga, N.; Kim, Y.; Kim, E.; Kim, J. Regional optimization of the IRI-2012 output (TEC, foF2) by using derived GPS-TEC. J. Korean Phys. Soc. 2015, 66, 1599–1610. [Google Scholar] [CrossRef]
- Migoya-Orué, Y.; Nava, B.; Radicella, S.; Alazo-Cuartas, K. GNSS derived TEC data ingestion into IRI 2012. Adv. Space Res. 2015, 55, 1994–2002. [Google Scholar] [CrossRef]
- Liu, L.; Yao, Y.; Zou, S.; Kong, J.; Shan, L.; Zhai, C.; Zhao, C.; Wang, Y. Ingestion of GIM-derived TEC data for updating IRI-2016 driven by effective IG indices over the European region. J. Geod. 2019, 93, 1911–1930. [Google Scholar] [CrossRef]
- Liu, R.; Smith, P.; King, J. A new solar index which leads to improved foF2 predictions using the CCIR Atlas. Telecommun. J. 1983, 50, 408–414. [Google Scholar]
- Zhao, X.; Ning, B.; Zhang, M.-L.; Hu, L. Comparison of the ionospheric F2 peak height between ionosonde measurements and IRI2016 predictions over China. Adv. Space Res. 2017, 60, 1524–1531. [Google Scholar] [CrossRef]
- Li, Z.; Yuan, Y.; Wang, N.; Hernandez-Pajares, M.; Huo, X. SHPTS: Towards a new method for generating precise global ionospheric TEC map based on spherical harmonic and generalized trigonometric series functions. J. Geod. 2015, 89, 331–345. [Google Scholar] [CrossRef]
- Yuan, Y.; Huo, X.; Zhang, B. Research Progress of Precise Models and Correction for GNSS Ionospheric Delay in China over Recent Years(in chinese). Acta Geod. Cartogr. Sin. 2017, 46, 1364–1378. [Google Scholar]
- Yuan, Y.; Huo, X.; Ou, J. Models and methods for precise determination of ionospheric delay using GPS. Prog. Nat. Sci. 2007, 17, 187–196. [Google Scholar]
- Liu, L.; Wan, W.; Chen, Y.; Le, H. Solar activity effects of the ionosphere: A brief review. Chin. Sci. Bull. 2011, 56, 1202–1211. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Wan, W.; Chen, Y.; Le, H.; Zhao, B. Recent Progresses on Ionospheric Climatology Investigations. Chin. J. Space Sci. 2012, 32, 665–680. [Google Scholar]
- Lu, G.; Wong, D. An adaptive inverse-distance weighting spatial interpolation technique. Comput. Geosci. 2008, 34, 1044–1055. [Google Scholar] [CrossRef]
- Zimmerman, D.; Pavlik, C.; Ruggles, A.; Armstrong, M. An Experimental Comparison of Ordinary and Universal Kriging and Inverse Distance Weighting. Math. Geol. 1999, 31, 375–390. [Google Scholar] [CrossRef]
- Schaer, S.; Gurtner, W.; Feltens, J. IONEX: The ionosphere map exchange format version 1. Proc. IGS AC Workshop 1998, 9, 233–247. [Google Scholar]
- Chakraborty, M. Latitudinal characteristics of GPS derived ionospheric TEC: A comparative study with IRI 2012 model. Ann. Geofis. 2014, 57, 2014. [Google Scholar]
- Kouris, S.; Xenos, T.; Polimeris, K.; Stergiou, D. TEC and foF2 variations: Preliminary results. Ann. Geophys. 2004, 47, 1325–1332. [Google Scholar]
- Venkatesh, K.; Fagundes, P.; Abreu, A.; Pillat, V. Unusual noon-time bite-outs in the ionospheric electron density around the anomaly crest locations over the Indian and Brazilian sectors during quiet conditions—A case study. J. Atmos. Sol. Terr. Phys. 2016, 147, 126–137. [Google Scholar] [CrossRef]
- Liu, L.; Chen, Y.; Zhang, R.; Le, H.; Zhang, H. Some investigations of ionospheric diunrnal variation. Rev. Geophys. Planet. Phys. 2021, 52, 15. (In Chinese) [Google Scholar]
(a) | |||||||
---|---|---|---|---|---|---|---|
MAE (TECu) | MAE PI | ||||||
Station | IRI-2016 | Scheme 1 | Scheme 2 | Scheme 3 | Scheme 1 | Scheme 2 | Scheme 3 |
GXHC | 11.5 | 0.5 | 1 | 2.8 | 95.65% | 91.30% | 75.65% |
XZNM | 4.2 | 0.5 | 0.7 | 1.3 | 88.10% | 83.33% | 69.05% |
NMAG | 3.5 | 0.4 | 0.5 | 1.0 | 88.57% | 85.71% | 71.43% |
SNXY | 3.4 | 0.4 | 0.6 | 1.1 | 88.24% | 82.35% | 67.65% |
NMTK | 3.5 | 0.4 | 0.5 | 1.0 | 88.57% | 85.71% | 71.43% |
HLHG | 3.6 | 0.5 | 0.5 | 1.0 | 86.11% | 86.11% | 72.22% |
Average | 5.0 | 0.5 | 0.6 | 1.4 | 90.00% | 88.00% | 72.00% |
(b) | |||||||
RMSE (TECu) | RMSE PI | ||||||
Station | IRI-2016 | Scheme 1 | Scheme 2 | Scheme 3 | Scheme 1 | Scheme 2 | Scheme 3 |
GXHC | 16.3 | 0.6 | 1.5 | 4.2 | 96.32% | 90.80% | 74.23% |
XZNM | 5.7 | 1.0 | 1.2 | 1.9 | 82.46% | 78.95% | 66.67% |
NMAG | 4.3 | 0.5 | 0.6 | 1.3 | 88.37% | 86.05% | 69.77% |
SNXY | 4.5 | 0.5 | 0.8 | 1.5 | 88.89% | 82.22% | 66.67% |
NMTK | 4.3 | 0.5 | 0.7 | 1.3 | 88.37% | 83.72% | 69.77% |
HLHG | 4.6 | 0.7 | 0.8 | 1.7 | 84.78% | 82.61% | 63.04% |
Average | 6.6 | 0.6 | 0.9 | 2.0 | 90.91% | 86.36% | 69.70% |
(a) | |||||||
---|---|---|---|---|---|---|---|
MAE (TECu) | MAE PI | ||||||
Station | IRI-2016 | Scheme 1 | Scheme 2 | Scheme 3 | Scheme 1 | Scheme 2 | Scheme 3 |
GXHC | 5.1 | 0.4 | 0.6 | 1.2 | 92.16% | 88.24% | 76.47% |
XZNM | 3.1 | 0.4 | 0.5 | 0.9 | 87.10% | 83.87% | 70.97% |
NMAG | 2.0 | 0.4 | 0.4 | 0.7 | 80.00% | 80.00% | 65.00% |
SNXY | 2.5 | 0.4 | 0.5 | 0.7 | 84.00% | 80.00% | 72.00% |
NMTK | 2.2 | 0.4 | 0.5 | 0.7 | 81.82% | 77.27% | 68.18% |
HLHG | 2.2 | 0.4 | 0.5 | 0.8 | 81.82% | 77.27% | 63.64% |
Average | 2.9 | 0.4 | 0.5 | 0.8 | 86.21% | 82.76% | 72.41% |
(b) | |||||||
RMSE (TECu) | RMSE PI | ||||||
Station | IRI-2016 | Scheme 1 | Scheme 2 | Scheme 3 | Scheme 1 | Scheme 2 | Scheme 3 |
GXHC | 7.3 | 0.5 | 0.7 | 1.8 | 93.15% | 90.41% | 75.34% |
XZNM | 4.2 | 0.5 | 0.6 | 1.3 | 88.10% | 85.71% | 69.05% |
NMAG | 2.5 | 0.4 | 0.5 | 0.9 | 84.00% | 80.00% | 64.00% |
SNXY | 3.1 | 0.5 | 0.6 | 0.9 | 83.87% | 80.65% | 70.97% |
NMTK | 2.7 | 0.5 | 0.5 | 0.9 | 81.48% | 81.48% | 66.67% |
HLHG | 2.7 | 0.5 | 0.5 | 1.0 | 81.48% | 81.48% | 62.96% |
Average | 3.8 | 0.5 | 0.6 | 1.1 | 86.84% | 84.21% | 71.05% |
MAE (TECu) | MAE PI | RMSE (TECu) | RMSE PI | |||
---|---|---|---|---|---|---|
Station | IRI-2016 | upda-IRI-2016 | IRI-2016 | upda-IRI-2016 | ||
GXNN | 11.2 | 2.6 | 76.79% | 13.6 | 3.2 | 76.47% |
YNJD | 11 | 2.3 | 79.09% | 13.5 | 2.8 | 79.26% |
SCNN | 10 | 2.6 | 74.00% | 12 | 3 | 75.00% |
HNLY | 5.9 | 1.9 | 67.80% | 7.5 | 2.4 | 68.00% |
SNAK | 3.6 | 1.1 | 69.44% | 4.3 | 1.2 | 72.09% |
XZSH | 3.7 | 0.5 | 86.49% | 4.5 | 0.6 | 86.67% |
NXZW | 3.6 | 0.6 | 83.33% | 4.1 | 0.7 | 82.93% |
XJQM | 3.6 | 0.5 | 86.11% | 4.2 | 0.6 | 85.71% |
BJFS | 3.6 | 0.5 | 86.11% | 4 | 0.6 | 85.00% |
XJXY | 3.6 | 0.6 | 83.33% | 4 | 0.7 | 82.50% |
NMAL | 3.6 | 0.7 | 80.56% | 4.1 | 0.8 | 80.49% |
XJBE | 3.4 | 0.4 | 88.24% | 3.9 | 0.5 | 87.18% |
Average | 5.6 | 1.2 | 78.57% | 6.6 | 1.4 | 78.79% |
MAE (TECu) | MAE PI | RMSE (TECu) | RMSE PI | |||
---|---|---|---|---|---|---|
Station | IRI-2016 | upda-IRI-2016 | IRI-2016 | upda-IRI-2016 | ||
GXNN | 4.8 | 1.2 | 75.00% | 5.8 | 1.5 | 74.14% |
YNJD | 4.6 | 0.7 | 84.78% | 5.5 | 0.9 | 83.64% |
SCNN | 4.0 | 0.7 | 82.50% | 4.7 | 0.8 | 82.98% |
HNLY | 3.5 | 1.2 | 65.71% | 4.2 | 1.5 | 64.29% |
SNAK | 2.6 | 0.5 | 80.77% | 2.9 | 0.6 | 79.31% |
XZSH | 2.7 | 0.8 | 70.37% | 3.0 | 0.9 | 70.00% |
NXZW | 2.7 | 0.6 | 77.78% | 3.0 | 0.7 | 76.67% |
XJQM | 2.4 | 0.4 | 83.33% | 2.7 | 0.5 | 81.48% |
BJFS | 2.3 | 0.5 | 78.26% | 2.6 | 0.5 | 80.77% |
XJXY | 2.5 | 0.6 | 76.00% | 2.8 | 0.7 | 75.00% |
NMAL | 2.4 | 0.7 | 70.83% | 2.7 | 0.8 | 70.37% |
XJBE | 2.4 | 0.5 | 79.17% | 2.6 | 0.6 | 76.92% |
Average | 3.1 | 0.7 | 77.42% | 3.5 | 0.8 | 77.14% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Huo, X.; Yuan, Y.; Li, Z.; Wang, N. Algorithm Research Using GNSS-TEC Data to Calibrate TEC Calculated by the IRI-2016 Model over China. Remote Sens. 2021, 13, 4002. https://doi.org/10.3390/rs13194002
Zhang W, Huo X, Yuan Y, Li Z, Wang N. Algorithm Research Using GNSS-TEC Data to Calibrate TEC Calculated by the IRI-2016 Model over China. Remote Sensing. 2021; 13(19):4002. https://doi.org/10.3390/rs13194002
Chicago/Turabian StyleZhang, Wen, Xingliang Huo, Yunbin Yuan, Zishen Li, and Ningbo Wang. 2021. "Algorithm Research Using GNSS-TEC Data to Calibrate TEC Calculated by the IRI-2016 Model over China" Remote Sensing 13, no. 19: 4002. https://doi.org/10.3390/rs13194002
APA StyleZhang, W., Huo, X., Yuan, Y., Li, Z., & Wang, N. (2021). Algorithm Research Using GNSS-TEC Data to Calibrate TEC Calculated by the IRI-2016 Model over China. Remote Sensing, 13(19), 4002. https://doi.org/10.3390/rs13194002