Improving Estimates of Natural Resources Using Model-Based Estimators: Impacts of Sample Design, Estimation Technique, and Strengths of Association
Abstract
:1. Introduction
2. Theoretical Background
3. Materials and Methods
3.1. Simulated Raster Surfaces
3.2. Sample Designs
3.3. Model Calibration and Estimation
3.4. Evaluation
4. Results
4.1. Allocation of Sample Units
4.2. Model Calibration and Functional Relationships
4.3. Estimates Using NAIP Bands as Predictors
4.4. Impact of Spreading Sample Units in Feature Space
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thompson, M.P.; Wei, Y.; Calkin, D.E.; O’connor, C.D.; Dunn, C.J.; Anderson, N.M.; Hogland, J.S. Risk Management and Analytics in Wildfire Response. Curr. For. Rep. 2019, 5, 226–239. [Google Scholar] [CrossRef] [Green Version]
- Hogland, J.; Dunn, C.J.; Johnston, J.D. 21st Century Planning Techniques for Creating Frie-Resilient forest in the American West. Forests 2021, 12, 1084. [Google Scholar] [CrossRef]
- Hogland, J.; Affleck, D.L.R.; Anderson, N.; Seielstad, C.; Dobrowski, S.; Graham, J.; Smith, R. Estimating Forest Characteristics for Longleaf Pine Restoration Using Normalized Remotely Sensed Imagery in Florida USA. Forests 2020, 11, 426. [Google Scholar] [CrossRef]
- McRoberts, R. Probability- and model-based approaches to inference for proportion forest using satellite imagery as ancillary data. Remote Sens. Environ. 2010, 114, 1017–1025. [Google Scholar] [CrossRef]
- McRoberts, R. Satellite image-based maps: Scientific inference or pretty pictures? Remote Sens. Environ. 2011, 115, 715–724. [Google Scholar] [CrossRef]
- Grafström, A.; Shao, X.; Nylander, M.; Petersson, H. A new sampling strategy for forest inventories applied to the temporary clusters of the Swedish national forest inventory. Can. J. For. Res. 2017, 47, 1161–1167. [Google Scholar] [CrossRef]
- Gregoire, T.; Valentine, H. Sampling Strategies for Natural Resources and the Environment; Chapman & Hall: Boca Raton, FL, USA; London, UK; New York, NY, USA, 2008; 474p. [Google Scholar]
- Gregoire, T. Design-based and model-based inference in survey sampling: Appreciating the difference. Can. J. For. Res. 1998, 28, 1429–1447. [Google Scholar] [CrossRef]
- Stehman, S.; Czaplewski, R. Design and analysis for thematic map accuracy assessment: Fundamental principles. Remote Sens. Environ. 1998, 64, 331–344. [Google Scholar] [CrossRef]
- Crowson, M.; Hagensieker, R.; Waske, B. Mapping Land cover change in northern Brazil with limited training data. Int. J. Appl. Eaarth Obs. GeoInf. 2019, 78, 202–214. [Google Scholar] [CrossRef]
- Foody, G.; Mathur, A. The use of small training sets containing mixed pixels for accurate hard image classification: Training on mixed spectral responses for classification by a SVM. Remote Sens. Environ. 2006, 103, 179–189. [Google Scholar] [CrossRef]
- Xie, Y.; Lark, T.; Brown, J.F.; Gibbs, H. Mapping irrigated cropland extent across the conterminous United States at 30 m resolution using a semi-automatic training approach on Google Earth Engine. ISPRS J. Photogramm. Remote Sens. 2019, 155, 136–149. [Google Scholar] [CrossRef]
- Houborg, R.; McCabe, M. A hybrid training approach for leaf area index estimation via Cubist and random forests. Machine-learning 2018, 135, 173–188. [Google Scholar] [CrossRef]
- Kavzoglu, T. Increasing the accuracy of neural network classifications using refined training data. Environ. Model. Softw. 2009, 24, 850–858. [Google Scholar] [CrossRef]
- Lesparre, J.; Gorte, B. Using mixed pixels for the training of a maximum likelihood classification. Int. Soc. Photogramm. Remote Sens. 2006, 36, 6. [Google Scholar]
- Stehman, S. Basic probability sampling designs for thematic map accuracy assessment. Remote Sens. 1999, 20, 2423–2441. [Google Scholar] [CrossRef]
- Comber, A.; Fisher, P.; Brunsdon, C.; Khmag, A. Spatial analysis of remote sensing image classification accuracy. Remote Sens. Environ. 2012, 127, 237–246. [Google Scholar] [CrossRef] [Green Version]
- Stehman, S. Model-assisted estimation as a unifying framework for estimating the area of land cover and land-cover change from remote sensing. Remote Sens. Environ. 2009, 113, 2455–2462. [Google Scholar] [CrossRef]
- Stehman, S. Sampling designs for accuracy assessment of land cover. Int. J. Remote. Sens. 2009, 3, 5243–5272. [Google Scholar] [CrossRef]
- Tille, Y.; Wilhelm, M. Probability Sampling Designs: Principles for Choice of Design and Balancing. Stat. Sci. 2017, 32, 176–189. [Google Scholar] [CrossRef] [Green Version]
- Stevens, D.L.; Olsen, A.R. Spatially-balanced sampling of natural resources. J. Am. Stat. Assoc. 2004, 99, 262–277. [Google Scholar] [CrossRef]
- Grafstrmöm, A.; Lundström, N.L.P. Why well spread probability samples are balanced. Open J. Stat. 2013, 3, 36–41. [Google Scholar] [CrossRef] [Green Version]
- Edwards, T.; Cutler, D.; Zimmermann, N.E.; Geiser, L.; Moisen, G.G. Effects of sample survey design on the accuracy of classification tree models in species distribution models. Ecol. Modeling 2006, 199, 132–141. [Google Scholar] [CrossRef]
- Brus, D.J. Sampling for digital soil mapping: A tutorial supported by R scripts. Geoderma 2019, 338, 464–480. [Google Scholar] [CrossRef]
- McRoberts, R.E.; Walter, B. Statistical inference for remote sensing-based estimates of net deforestation. Remote Sens. Environ. 2012, 124, 394–401. [Google Scholar] [CrossRef]
- Sarndal, C.E. Design-based and Model-based Inference in Survey Sampling. Scand. J. Statist. 1978, 5, 27–52. [Google Scholar]
- Shi, Y.; Cameron, J.; Heckathorn, D.D. Model-Based and Design Based Inference: Reducing Bias Due to Differential Recruitment in Respondent-Driven Sampling. Sociol. Methods Res. 2016, 48, 13–33. [Google Scholar] [CrossRef]
- Sterba, S. Alternative Model_Based and Design-Based Frameworks for Inference From Samples to Populations: From Polarization to Integration. Multivar. Behav. Res. 2009, 44, 711–740. [Google Scholar] [CrossRef]
- Rao, J.N.K.; Molina, I. Small Area Estimation, 2nd ed.; Wiley and Sons: Hoboken, NJ, USA, 2015; p. 441. [Google Scholar]
- Hogland, J.; Anderson, N.; St. Peters, J.; Drake, J.; Medley, P. Mapping Forest Characteristics at Fine Resolution across Large Landscapes of the Southeastern United States Using NAIP Imagery and FIA Field Plot Data. ISPRS Int. J. Geo-Inf. 2018, 7, 140. [Google Scholar] [CrossRef] [Green Version]
- Hogland, J.; Anderson, N.; Affleck, D.L.R.; St. Peter, J. Using Forest Inventory Data with Landsat 8 imagery to Map Longleaf Pine Forest Characteristics in Georgia, USA. Remote Sens. 2019, 11, 1803. [Google Scholar] [CrossRef] [Green Version]
- Neter, J.; Kutner, M.; Nachtsheim, C.; Wasserman, W. Applied Linear Statistical Models, 4th ed.; McGraw Hill: Boston, MA, USA, 1996; p. 1408. [Google Scholar]
- Bishop, C.M. Pattern Recognition and Machine Learning; Springer Science and Business Media, LLC.: Singapore, 2006; p. 738. [Google Scholar]
- Wood, S.N.; Augustin, N.H. GAMs with integrated model selection using penalized regression splines and applications to environmental modeling. Ecol. Modeling 2002, 157, 157–177. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- National Agriculture Imagery Program [NAIP]. National Agriculture Imagery Program (NAIP) Information Sheet. 2012. Available online: http://www.fsa.usda.gov/Internet/FSA_File/naip_info_sheet_2013.pdf (accessed on 14 May 2014).
- Moran, P. Notes on Continuous Stochastic Phenomena. Biometrika 1950, 37, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Kincaid, T.M.; Olsen, A.R. Spsurvey: Spatial Survey Design and Analysis. R Package Version 4.1.0 2019. Available online: https://cran.r-project.org/web/packages/spsurvey/index.html (accessed on 27 September 2021).
- TIGER 2017. TIGER/Line Shapefiles (Machine Readable Data Files)/Prepared by the U.S. Census Bureau. Available online: https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html (accessed on 27 April 2019).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2014; Available online: http://www.R-project.org/ (accessed on 28 April 2018).
- Wood, S.N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. (B) 2011, 73, 3–36. [Google Scholar] [CrossRef] [Green Version]
- Karatzoglou, A.; Smola, A.; Hornik, K.; Zeileis, A. Kernlab—An S4 Package for Kernel Methods. R. J. Stat. Softw. 2004, 11, 1–20. [Google Scholar]
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S, 4th ed.; Springer: New York, NY, USA, 2002; p. 495. [Google Scholar]
- Liaw, A.; Wiener, M. Classification and Regression by random forest. R News 2002, 2, 18–22. [Google Scholar]
- Johnson, R.; Wichern, D. Applied Multivariate Statistical Analysis, 5th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2002; p. 767. [Google Scholar]
- Kermorvant, C.; D’Amico, F.; Bru, N.; Caill-Milly, N.; Robertson, B. Spatially balanced sampling designs for environmental surveys. Environ. Monit. Assess. 2019, 191, 524–531. [Google Scholar] [CrossRef]
- Opsomer, J.D.; Breidt, F.J.; Moisen, G.G.; Kauermann, G. Model-Assisted Estimation of Forest Resources With Generalized Additive Models. J. Am. Stat. Assoc. 2007, 102, 400–416. [Google Scholar] [CrossRef] [Green Version]
- Breidt, F.J.; Opsomer, J.E. Model-Assisted Survey Estimation with Modern Prediction Techniques. Stat. Sci. 2017, 32, 190–205. [Google Scholar] [CrossRef]
- Opitz, D.; Maclin, R. Popular ensemble methods: An empirical study. JAIR 1999, 11, 169–198. [Google Scholar] [CrossRef]
- Breiman, L. Stacked regressions. Mach. Learn. 1999, 24, 49–64. [Google Scholar] [CrossRef] [Green Version]
- Hogland, J.; Anderson, N. Function Modeling Improves the Efficiency of Spatial Modeling Using Big Data from Remote Sensing. Big Data Cogn. Comput. 2017, 1, 3. [Google Scholar] [CrossRef] [Green Version]
SC1 | % Noise | GAM | RF | SVM | NN | LN | EX |
---|---|---|---|---|---|---|---|
Linear | 20 | SRS | GRTS *** | GRTS *** | GRT S * | SRS | GRTS *** |
40 | GRTS | GRTS | GRTS *** | SRS | GRTS | GRTS ** | |
60 | GRTS | GRTS * | GRTS *** | GRTS * | RSNR | GRTS *** | |
80 | SYS | SYS | GRTS ** | GRTS | SYS | GRTS * | |
Squared | 20 | GRTS * | GRTS *** | GRTS *** | GRTS | GRTS *** | GRTS *** |
40 | SYS | GRTS *** | GRTS ** | GRTS | GRTS * | GRTS *** | |
60 | GRTS | GRTS * | GRTS * | SYS | GRTS | GRTS *** | |
80 | SRS | GRTS | GRTS* | GRTS | GRTS | GRTS * | |
Nonlinear | 20 | GRTS * | GRTS * | SYS | RSNR * | GRTS | GRTS * |
40 | GRTS ** | GRTS | GRTS | GRTS | GRTS | GRTS | |
60 | GRTS | GRTS | RSNR | GRTS | GRTS | GRTS | |
80 | GRTS | GRTS * | RSNR | GRTS | GRTS | GRTS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hogland, J.; Affleck, D.L.R. Improving Estimates of Natural Resources Using Model-Based Estimators: Impacts of Sample Design, Estimation Technique, and Strengths of Association. Remote Sens. 2021, 13, 3893. https://doi.org/10.3390/rs13193893
Hogland J, Affleck DLR. Improving Estimates of Natural Resources Using Model-Based Estimators: Impacts of Sample Design, Estimation Technique, and Strengths of Association. Remote Sensing. 2021; 13(19):3893. https://doi.org/10.3390/rs13193893
Chicago/Turabian StyleHogland, John, and David L. R. Affleck. 2021. "Improving Estimates of Natural Resources Using Model-Based Estimators: Impacts of Sample Design, Estimation Technique, and Strengths of Association" Remote Sensing 13, no. 19: 3893. https://doi.org/10.3390/rs13193893