An Improved Eutrophication Assessment Algorithm of Estuaries and Coastal Waters in Liaodong Bay
Abstract
:1. Introduction
2. Area and Data
2.1. Study Area
2.2. In Situ Data
2.2.1. Field Data Collection
2.2.2. In Situ Reflectance Data
2.3. Satellite Data
2.3.1. Sentinel-2 Images
2.3.2. Atmospheric Correction
2.3.3. Processing Platform GEE
3. Methods
3.1. FUI Derivation from Sentinel-2
3.1.1. FUI Retrieval Method
3.1.2. FUI Correction
3.2. TLI Retrieval Method
3.3. Model Validation
4. Results and Discussion
4.1. FUI Result
4.1.1. Evaluation of Sentinel-2-Derived FUI with In Situ Data
4.1.2. Spatial Distribution of FUI
4.2. FUI-Based Trophic State Assessment Algorithm
4.2.1. Relationship between FUI and TLI
4.2.2. Sentinel-2 Band Analysis of Chl-a and TSM
4.2.3. Trophic State Assessment Based on the Sentinel-2-Derived FUI
4.3. Spatial and Temporal Statistics
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saaltink, R.; van der Velde, Y.; Dekker, S.C.; Lyon, S.W.; Dahlke, H.E. Societal, land cover and climatic controls on river nutrient flows into the Baltic Sea. J. Hydrol. Reg. Stud. 2014, 1, 44–56. [Google Scholar] [CrossRef] [Green Version]
- Tett, P.; Gilpin, L.; Svendsen, H. Eutrophication and some European waters of restricte exchange. Cont. Shelf Res. 2003, 23, 1635–1671. [Google Scholar] [CrossRef] [Green Version]
- Li, J.L.; Zheng, B.H.; Zhang, L.S. Eutrophication characteristics and variation analysis of estuaries in China. China Environ. Sci. 2016, 36, 506–516. [Google Scholar]
- Sun, T.; Yang, Z.F. Studies on the evaluating index system for estuarine ecosystem restoration and its application. China Environ. Sci. 2004, 24, 381–384. [Google Scholar]
- Capriulo, G.M.; Smith, G.; Troy, R. The planktonic food web structure of a temperate zone estuary, and its alteration due to eutrophication. Nutr. Eutrophication Estuaries Coast. Waters 2002, 475, 263–333. [Google Scholar]
- Duarte, C.M. Submerged aquatic vegetation in relation to different nutrient regimes. Ophelia 1995, 41, 87–112. [Google Scholar] [CrossRef]
- Harvey, E.T.; Walve, J.; Andersson, A.; Karlson, B.; Kratzer, S. The Effect of Optical Properties on Secchi Depth and Implications for Eutrophication Management. Front. Mar. Sci. 2019, 5, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Vahtera, E.; Conley, D.J.; Gustafsson, B.G.; Kuosa, H.; Pitkänen, H.; Savchuk, O.P.; Tamminen, T.; Viitasalo, M.; Voss, M.; Wasmund, N.; et al. Internal Ecosystem Feedbacks Enhance Nitrogen-fixing Cyanobacteria Blooms and Complicate Management in the Baltic Sea. Ambio A J. Hum. Environ. 2007, 36, 186–194. [Google Scholar] [CrossRef]
- Voss, M.; Dippner, J.W.; Humborg, C.; Hürdler, J.; Korth, F.; Neumann, T.; Schernewski, G.; Venohr, M. History and scenarios of future development of Baltic Sea eutrophication. Estuar. Coast. Shelf Sci. 2011, 92, 307–322. [Google Scholar] [CrossRef]
- Kratzer, S.; Kyryliuk, D.; Edman, M.; Philipson, P.; Lyon, S.W. Synergy of Satellite, In Situ and Modelled Data for Addressing the Scarcity of Water Quality Information for Eutrophication Assessment and Monitoring of Swedish Coastal Waters. Remote Sens. 2019, 11, 2051. [Google Scholar] [CrossRef] [Green Version]
- Carlson, R.E. A trophic state index for lakes 1. Limnol. Oceanogr. 1977, 22, 361–369. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.C.; Liu, X.Q.; Zhang, J.H. Evaluate method and classification standard on lake eutrophication. Environ. Monit. China 2002, 18, 47–49. [Google Scholar]
- Kratzer, S.; Håkansson, B.; Sahlin, C. Assessing Secchi and photic zone depth in the Baltic Sea from satellite data. Ambio 2003, 32, 577–585. [Google Scholar] [CrossRef] [PubMed]
- Kratzer, S.; Tett, P. Using bio-optics to investigate the extent of coastal waters: A Swedish case study. Hydrobiologia 2009, 629, 169–186. [Google Scholar] [CrossRef]
- O’Reilly, J.E.; Maritorena, S.; Mitchell, B.G. Ocean color chlorophyll algorithms for SeaWiFS. J. Geophys. Res. Ocean. 1998, 103, 24937–24953. [Google Scholar] [CrossRef] [Green Version]
- Kutser, T.; Pierson, D.C.; Kallio, K.Y. Mapping lake CDOM by satellite remote sensing. Remote Sens. Environ. 2005, 94, 535–540. [Google Scholar] [CrossRef]
- Xue, K.; Zhang, Y.; Duan, H. A remote sensing approach to estimate vertical profile classes of phytoplankton in a eutrophic lake. Remote Sens. 2015, 7, 14403–14427. [Google Scholar] [CrossRef] [Green Version]
- Duan, H.; Ma, R.; Hu, C. Evaluation of remote sensing algorithms for cyanobacterial pigment retrievals during spring bloom formation in several lakes of East China. Remote Sens. Environ. 2012, 126, 126–135. [Google Scholar] [CrossRef]
- Long, C.M.; Pavelsky, T.M. Remote sensing of suspended sediment concentration and hydrologic connectivity in a complex wetland environment. Remote Sens. Environ. 2013, 129, 197–209. [Google Scholar] [CrossRef] [Green Version]
- Garaba, S.P.; Badewien, T.H.; Braun, A. Using ocean colour remote sensing products to estimate turbidity at the Wadden Sea time series station Spiekeroog. J. Eur. Opt. Soc. Rapid Publ. 2014, 9. [Google Scholar] [CrossRef]
- Wernand, M.R. Poseidon’s Paintbox: Historical Archives of Ocean Colour in Global-Change Perspective. Ph.D. Thesis, Utrecht University, Utrecht, The Netherlands, 2011. [Google Scholar]
- Garaba, S.P.; Voß, D.; Zielinski, O. Physical, bio-optical state and correlations in north-western European shelf seas. Remote Sens. 2014, 6, 5042–5066. [Google Scholar] [CrossRef] [Green Version]
- Wernand, M.R.; Van der Woerd, H.J. Ocean colour changes in the North Pacific since 1930. J. Eur. Opt. Soc. Rapid Publ. 2010, 5, 10015s. [Google Scholar] [CrossRef]
- Novoa, S.; Wernand, M.R.; Van der Woerd, H.J. The Forel-Ule scale revisited spectrally: Preparation protocol, transmission measurements and chromaticity. J. Eur. Opt. Soc. Rapid Publ. 2013, 8, 13057. [Google Scholar] [CrossRef] [Green Version]
- Lehmann, M.K.; Nguyen, U.; Allan, M. Colour classification of 1486 lakes across a wide range of optical water types. Remote Sens. 2018, 10, 1273. [Google Scholar] [CrossRef] [Green Version]
- Woerd, H.J.; Wernand, M.R. True colour classification of natural waters with medium-spectral resolution satellites: SeaWiFS, MODIS, MERIS and OLCI. Sensors 2015, 15, 25663–25680. [Google Scholar] [CrossRef] [Green Version]
- Van der Woerd, H.J.; Wernand, M.R. Hue-angle product for low to medium spatial resolution optical satellite sensors. Remote Sens. 2018, 10, 180. [Google Scholar] [CrossRef] [Green Version]
- Garaba, S.P.; Friedrichs, A.; Voß, D. Classifying natural waters with the Forel-Ule Colour index system: Results, applications, correlations and crowdsourcing. Int. J. Environ. Res. Public Health 2015, 12, 16096–16109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wernand, M.R.; Hommersom, A.; van der Woerd, H.J. MERIS-based ocean colour classification with the discrete Forel-Ule scale. Ocean. Sci. 2013, 9, 477–487. [Google Scholar] [CrossRef] [Green Version]
- Jafar–Sidik, M.; Bowers, D.G.; Griffiths, J.W. Remote sensing observations of ocean colour using the traditional Forel-Ule scale. Estuar. Coast. Shelf Sci. 2018, 215, 52–58. [Google Scholar] [CrossRef]
- Graham, J.J. Secchi disc observations and extinction coefficients in the central and eastern North Pacific Ocean. Limnol. Oceanogr 1966, 11, 184–190. [Google Scholar]
- Wang, S.; Li, J.; Shen, Q. MODIS-based radiometric color extraction and classification of inland water with the Forel-Ule scale: A case study of Lake Taihu. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 8, 907–918. [Google Scholar] [CrossRef]
- Wernand, M.R.; van der Woerd, H.J.; Gieskes, W.W.C. Trends in ocean colour and chlorophyll concentration from 1889 to 2000, worldwide. PLoS ONE 2013, 8, e63766. [Google Scholar]
- Wang, S.; Li, J.; Zhang, B. Trophic state assessment of global inland waters using a MODIS-derived Forel-Ule index. Remote Sens. Environ. 2018, 217, 444–460. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Lee, Z.; Shang, S. Deriving inherent optical properties from classical water color measurements: Forel-Ule index and Secchi disk depth. Opt. Express 2019, 27, 7642–7655. [Google Scholar] [CrossRef]
- Garaba, S.P.; Zielinski, O. An assessment of water quality monitoring tools in an estuarine system. Remote Sens. Appl. Soc. Environ. 2015, 2, 1–10. [Google Scholar] [CrossRef]
- Koenings, J.P.; Edmundson, J.A. Secchi disk and photometer estimates of light regimes in Alaskan lakes: Effects of yellow color and turbidity. Limnol. Oceanogr. 1991, 36, 91–105. [Google Scholar] [CrossRef]
- Visser, M.P. Secchi disch and sea colour observations in the North Atlantic Ocean during the navado III cruise, 1964–1965, Aboard H. Neth. M.S. “Snellius” (Royal Netherlands navy). Neth. J. Sea Res. 1967, 3, 553–563. [Google Scholar] [CrossRef]
- Pitarch, J.; van der Woerd, H.J.; Brewin, R.J.W. Optical properties of Forel-Ule water types deduced from 15 years of global satellite ocean color observations. Remote Sens. Environ. 2019, 231, 111249. [Google Scholar] [CrossRef]
- Qu, L.M.; Yao, D.; Cong, P.F. Inorganic nitrogen and phosphate and potential eutrophication assessment in Liaodong Bay. Huan Jing Ke Xue 2006, 27, 263–267. [Google Scholar] [PubMed]
- Tian, J.; Song, L.; Wang, N. Nutrient status and trend assessment in the north sea area of the Liaodong Bay. Mar. Sci. Bull. 2007, 26, 113. [Google Scholar]
- Li, L.F.; Hui, S.R.; Song, H.L. Evaluation of the services provided by the Shuangtai estuary wetland in Panjin based on emergy theory. China Environ. Sci. 2013, 33, 1454–1458. [Google Scholar]
- Song, H.; Liu, X. Effect of reclamation activities on wetlands in estuarine delta in China. Wetl. Sci. 2013, 11, 297–304. [Google Scholar]
- Chen, Y.; Fang, G.; Ni, J. Research on century’s changes of coastlines of Liaohe Estuary. J. Mar. Sci. 2010, 28, 14–21. [Google Scholar]
- Chen, S.; Ma, A.-Q.; Li, Z.-Y. Landscape Pattern Changes of Wetland in Liaohe on RS and GIS. Environ. Monit. China 2011, 27, 4–8. [Google Scholar]
- Tang, J.W.; Tian, G.L.; Wang, X.Y. The methods of water spectra measurement and analysis I: Above-water method. J. Remote Sens. 2004, 8, 37–44. [Google Scholar]
- Mobley, C.D. Estimation of the remote-sensing reflectance from above-surface measurements. Appl. Opt. 1999, 38, 7442–7455. [Google Scholar] [CrossRef] [PubMed]
- Vanhellemont, Q.; Ruddick, K. Acolite for Sentinel-2: Aquatic applications of MSI imagery. In Proceedings of the 2016 ESA Living Planet Symposium, Prague, Czech Republic, 9–13 May 2016. [Google Scholar]
- Vanhellemont, Q.; Ruddick, K. Turbid wakes associated with offshore wind turbines observed with Landsat 8. Remote Sens. Environ. 2014, 145, 105–115. [Google Scholar] [CrossRef] [Green Version]
- Vanhellemont, Q.; Ruddick, K. Atmospheric correction of metre-scale optical satellite data for inland and coastal water applications. Remote Sens. Environ. 2018, 216, 586–597. [Google Scholar] [CrossRef]
- Vanhellemont, Q. Adaptation of the dark spectrum fitting atmospheric correction for aquatic applications of the Landsat and Sentinel-2 archives. Remote Sens. Environ. 2019, 225, 175–192. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M. Google Earth Engine: Planetary–scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Pekel, J.F.; Cottam, A.; Gorelick, N. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef]
- Ding, Y.; Zhao, J.; Peng, W. Stochastic trophic level index model: A new method for evaluating eutrophication state. J. Environ. Manag. 2021, 280, 111826. [Google Scholar] [CrossRef]
FUI | α | FUI | α | FUI | α |
---|---|---|---|---|---|
1 | (227.23,235) | 9 | (83.46,95.14) | 17 | (52.11,56.68) |
2 | (219.24,227.23) | 10 | (74.66,83.46) | 18 | (46.61,52.11) |
3 | (205.13,219.24) | 11 | (69.67,74.66) | 19 | (41.72,46.61) |
4 | (189.33,205.13) | 12 | (67.97,69.97) | 20 | (37.04,41.72) |
5 | (165.99,189.33) | 13 | (65.96,67.97) | 21 | (31,37.04) |
6 | (134.23,165.99) | 14 | (63.32,65.96) | ||
7 | (109.92,134.23) | 15 | (60.33,63.32) | ||
8 | (95.14,109.92) | 16 | (56.68,60.33) |
Name | Formula |
---|---|
Determination coefficient (R2) | |
Root mean square error (RMSE) | RMSE = |
Mean absolute percent error (MAPE) | MAPE = |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Sun, Y.; Li, X.; Cui, M.; Huang, C. An Improved Eutrophication Assessment Algorithm of Estuaries and Coastal Waters in Liaodong Bay. Remote Sens. 2021, 13, 3867. https://doi.org/10.3390/rs13193867
Li M, Sun Y, Li X, Cui M, Huang C. An Improved Eutrophication Assessment Algorithm of Estuaries and Coastal Waters in Liaodong Bay. Remote Sensing. 2021; 13(19):3867. https://doi.org/10.3390/rs13193867
Chicago/Turabian StyleLi, Mengjun, Yonghua Sun, Xiaojuan Li, Mengying Cui, and Chen Huang. 2021. "An Improved Eutrophication Assessment Algorithm of Estuaries and Coastal Waters in Liaodong Bay" Remote Sensing 13, no. 19: 3867. https://doi.org/10.3390/rs13193867
APA StyleLi, M., Sun, Y., Li, X., Cui, M., & Huang, C. (2021). An Improved Eutrophication Assessment Algorithm of Estuaries and Coastal Waters in Liaodong Bay. Remote Sensing, 13(19), 3867. https://doi.org/10.3390/rs13193867