Monitoring Meteorological Drought in Southern China Using Remote Sensing Data
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data
2.2.1. TRMM Data
2.2.2. GLDAS Data
2.2.3. MODIS Data
2.2.4. Land Cover Data
2.2.5. Other Data
3. Methodology
3.1. Calculation of the Condition Indices and Anomalies Percentage
3.2. Principle and Construction of the Normalized Indices
3.3. Differences in Monitoring Effects of Different Indices
3.4. Validation of Study Results
4. Results
4.1. Application and Results Validation of Different Indices
4.1.1. Temporal Differences in PCI, PAP, EPAP, and NPI
4.1.2. Spatial Differences in Normalized Indices and Condition Indices
4.2. Multiyear Drought Monitoring Based on Normalized Indices
4.2.1. Temporal Evolution of NPI, NSMI, and NVI
4.2.2. Spatial Evolution of Drought in 2019
5. Discussion
6. Conclusions
- NI can monitor well the relative changes in real precipitation/soil moisture/vegetation conditions, in both arid and humid regions, while meteorological drought is easily overestimated with CI in areas with abundant precipitation;
- The error of precipitation (PCI) is greater than that of soil moisture and vegetation (SMCI and VCI), the same as AP;
- The well-known drought event that occurred in the MLRYR from August to October 2019 had a much less severe impact on vegetation than expected. In contrast, the precipitation deficiency induced an increase in sunshine and adequate heat resources, which improved crop growth in most areas.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AMSR-E | Advanced Microwave Scanning Radiometer for Earth Observing System |
AP | Anomalies Percentage |
AVHRR | Advanced Very High Resolution Radiometer |
CI | Condition Indices |
CMDSC | China Meteorological Data Service Centre |
EAP | Enhanced Anomalies Percentage |
EPAP | Enhanced Precipitation Anomalies Percentage |
ESMAP | Enhanced Soil Moisture Anomalies Percentage |
EVAP | Enhanced Vegetation Anomalies Percentage |
EVI2 | 2-band Enhanced Vegetation Index |
GEE | Google Earth Engine |
GLDAS | Global Land Data Assimilation System |
JAXA | Japan Aerospace Exploration Agency |
JMIC | Jiangsu Meteorological Information Centre |
KECA | Kernel Entropy Component Analysis |
LAADS | NASA’s Level 1 and Atmosphere Archive and Distribution System |
MCDIs | Composite Drought Indices based on multivariable linear regression |
MI | Moisture Index |
MIDI | Microwave Integrated Drought Index |
MLRYR | Mid-to-Lower Reaches of the Yangtze River |
MODIS | Moderate-resolution Imaging Spectroradiometer |
NASA | National Aeronautics and Space Administration |
NDDI | Normalized Difference Drought Index |
NDVI | Normalized Difference Vegetation Index |
NDWI | Normalized Difference Water Index |
NI | Normalized Indices |
NMDI | Normalized Multiband Drought Index |
NPI | Normalized Precipitation Index |
NPP | Net Primary Productivity |
NSMI | Normalized Soil Moisture Index |
NVI | Normalized Vegetation Index |
NYI | Normalized Yield Index |
OMDI | Optimized Meteorological Drought Index |
PADI | Process-based Accumulated Drought Index |
PAP | Precipitation Anomalies Percentage |
PCA | Principal Component Analysis |
PCI | Precipitation Condition Index |
PDSI | Palmer Drought Severity Index |
PR | Precipitation Radar |
PSMCI | TRMM Precipitation and Soil Moisture Condition Index |
PTCI | TRMM Precipitation and Temperature Condition Index |
RS | Remote Sensing |
RSDEI | Remote Sensing Drought Evaluation Index |
SDCI | Scaled Drought Condition Index |
SDI | Synthesized Drought Index |
SMAP | Soil Moisture Anomalies Percentage |
SMCI | Soil Moisture Condition Index |
SMTCI | Soil Moisture and Temperature Condition Index |
SPCA | Spatial Principal Component Analysis |
SPEI | Standardized Precipitation Evapotranspiration Index |
SPI | standardized precipitation index |
SVY | Standardized Variable of crop Yield |
TCI | Temperature Condition Index |
TMI | TRMM Microwave Imager |
TRMM | Tropical Rainfall Measuring Mission |
VAP | Vegetation Anomalies Percentage |
VCI | Vegetation Condition Index |
VIRS | Visible and Infrared Scanner |
YAP | Yield Anomalies Percentage |
References
- Halwatura, D.; McIntyre, N.; Lechner, A.; Arnold, S. Capability of meteorological drought indices for detecting soil moisture droughts. J. Hydrol. Reg. Stud. 2017, 12, 396–412. [Google Scholar] [CrossRef]
- Lai, C.; Zhong, R.; Wang, Z.; Wu, X.; Chen, X.; Wang, P.; Lian, Y. Monitoring hydrological drought using long-term satellite-based precipitation data. Sci. Total. Environ. 2019, 649, 1198–1208. [Google Scholar] [CrossRef]
- Dou, Y.; Huang, R.; Mansaray, L.R.; Huang, J. Mapping high temperature damaged area of paddy rice along the Yangtze River using Moderate Resolution Imaging Spectroradiometer data. Int. J. Remote Sens. 2019, 41, 471–486. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.; Li, Q.; Li, J.; Wang, G.; Zhou, S.; Chai, R.; Hua, W.; Deng, P.; Wang, J.; Lou, W. Revisiting the evolution of the 2009–2011 meteorological drought over Southwest China. J. Hydrol. 2019, 568, 385–402. [Google Scholar] [CrossRef]
- Javed, T.; Li, Y.; Rashid, S.; Li, F.; Hu, Q.; Feng, H.; Chen, X.; Ahmad, S.; Liu, F.; Pulatov, B. Performance and relationship of four different agricultural drought indices for drought monitoring in China’s mainland using remote sensing data. Sci. Total. Environ. 2021, 759, 143530. [Google Scholar] [CrossRef]
- Agutu, N.; Awange, J.; Zerihun, A.; Ndehedehe, C.E.; Kuhn, M.; Fukuda, Y. Assessing multi-satellite remote sensing, reanalysis, and land surface models’ products in characterizing agricultural drought in East Africa. Remote Sens. Environ. 2017, 194, 287–302. [Google Scholar] [CrossRef] [Green Version]
- Yao, N.; Li, Y.; Sun, C. Effects of changing climate on reference crop evapotranspiration over 1961–2013 in Xinjiang, China. Theor. Appl. Clim. 2018, 131, 349–362. [Google Scholar] [CrossRef]
- Zhao, M.; Huang, S.; Huang, Q.; Wang, H.; Leng, G.; Xie, Y. Assessing socio-economic drought evolution characteristics and their possible meteorological driving force. Geomat. Nat. Hazards Risk 2019, 10, 1084–1101. [Google Scholar] [CrossRef] [Green Version]
- Tucker, C.J.; Townshend, J.R.; Goff, T.E. African Land-Cover Classification Using Satellite Data. Science 1985, 227, 369–375. [Google Scholar] [CrossRef]
- Hielkema, J.U.; Prince, S.D.; Astle, W.L. Rainfall and vegetation monitoring in the Savanna Zone of the Democratic Republic of Sudan using the NOAA Advanced Very High Resolution Radiometer. Int. J. Remote Sens. 1986, 7, 1499–1513. [Google Scholar] [CrossRef]
- Malingreau, J.-P. Global vegetation dynamics: satellite observations over Asia. Int. J. Remote Sens. 1986, 7, 1121–1146. [Google Scholar] [CrossRef]
- Justice, C.O.; Townshend, J.R.G.; Holben, B.N.; Tucker, C.J. Analysis of the phenology of global vegetation using meteorological satellite data. Int. J. Remote Sens. 1985, 6, 1271–1318. [Google Scholar] [CrossRef]
- Kogan, F.N. Remote sensing of weather impacts on vegetation in non-homogeneous areas. Int. J. Remote Sens. 1990, 11, 1405–1419. [Google Scholar] [CrossRef]
- Liu, W.T.; Kogan, F.N. Monitoring regional drought using the Vegetation Condition Index. Int. J. Remote Sens. 1996, 17, 2761–2782. [Google Scholar] [CrossRef]
- Kogan, F.N. Global Drought Watch from Space. Bull. Am. Meteorol. Soc. 1997, 78, 621–636. [Google Scholar] [CrossRef]
- Kogan, F.N. Droughts of the Late 1980s in the United States as Derived from NOAA Polar-Orbiting Satellite Data. Bull. Am. Meteorol. Soc. 1995, 76, 655–668. [Google Scholar] [CrossRef] [Green Version]
- Kogan, F. Application of vegetation index and brightness temperature for drought detection. Adv. Space Res. 1995, 15, 91–100. [Google Scholar] [CrossRef]
- Rhee, J.; Im, J.; Carbone, G. Monitoring agricultural drought for arid and humid regions using multi-sensor remote sensing data. Remote Sens. Environ. 2010, 114, 2875–2887. [Google Scholar] [CrossRef]
- Zhang, A.; Jia, G. Monitoring meteorological drought in semiarid regions using multi-sensor microwave remote sensing data. Remote Sens. Environ. 2013, 134, 12–23. [Google Scholar] [CrossRef]
- Ghaleb, F.; Mario, M.; Sandra, A.N. Regional Landsat-Based Drought Monitoring from 1982 to 2014. Climate 2015, 3, 563–577. [Google Scholar] [CrossRef] [Green Version]
- Jiao, W.; Wang, L.; Novick, K.A.; Chang, Q. A new station-enabled multi-sensor integrated index for drought monitoring. J. Hydrol. 2019, 574, 169–180. [Google Scholar] [CrossRef]
- Jiao, W.; Tian, C.; Chang, Q.; Novick, K.A.; Wang, L. A new multi-sensor integrated index for drought monitoring. Agric. For. Meteorol. 2019, 268, 74–85. [Google Scholar] [CrossRef] [Green Version]
- Hao, Z.; Singh, V.P. Drought characterization from a multivariate perspective: A review. J. Hydrol. 2015, 527, 668–678. [Google Scholar] [CrossRef]
- Najem, S.; Al Bitar, A.; Faour, G.; Jarlan, L.; Mhawej, M.; Fadel, A.; Zribi, M. Drought Assessment using Micro-Wave Timeseries of Precipitation and Soil Moisture Over the Mena Region. In Proceedings of the 2020 Mediterranean and Middle-East Geoscience and Remote Sensing Symposium (M2GARSS), Tunis, Tunisia, 9–11 March 2020; pp. 289–292. [Google Scholar] [CrossRef]
- Wei, W.; Pang, S.; Wang, X.; Zhou, L.; Xie, B.; Zhou, J.; Li, C. Temperature Vegetation Precipitation Dryness Index (TVPDI)-based dryness-wetness monitoring in China. Remote Sens. Environ. 2020, 248, 111957. [Google Scholar] [CrossRef]
- Zhang, Q.; Yu, H.; Sun, P.; Singh, V.P.; Shi, P. Multisource data based agricultural drought monitoring and agricultural loss in China. Glob. Planet. Chang. 2019, 172, 298–306. [Google Scholar] [CrossRef]
- Qian, W.; Ai, Y.; Leung, J.C.-H.; Zhang, B. Anomaly-based synoptic analysis and model product application for 2020 summer southern China rainfall events. Atmos. Res. 2021, 258, 105631. [Google Scholar] [CrossRef]
- Li, X.; Huang, W.-R. How long should the pre-existing climatic water balance be considered when capturing short-term wetness and dryness over China by using SPEI? Sci. Total. Environ. 2021, 786, 147575. [Google Scholar] [CrossRef]
- Sgroi, L.C.; Lovino, M.A.; Berbery, E.H.; Müller, G.V. Characteristics of droughts in Argentina’s core crop region. Hydrol. Earth Syst. Sci. 2021, 25, 2475–2490. [Google Scholar] [CrossRef]
- Wu, M.; Vico, G.; Manzoni, S.; Cai, Z.; Bassiouni, M.; Tian, F.; Zhang, J.; Ye, K.; Messori, G. Early Growing Season Anomalies in Vegetation Activity Determine the Large-Scale Climate-Vegetation Coupling in Europe. J. Geophys. Res. Biogeosciences 2021, 126. [Google Scholar] [CrossRef]
- Parinussa, R.M.; Wang, G.; Liu, Y.; Lou, D.; Hagan, D.F.T.; Zhan, M.; Su, B.; Jiang, T. Improved surface soil moisture anomalies from Fengyun-3B over the Jiangxi province of the People’s Republic of China. Int. J. Remote Sens. 2018, 39, 8950–8962. [Google Scholar] [CrossRef]
- Otkin, J.A.; Zhong, Y.; Lorenz, D.; Anderson, M.C.; Hain, C. Exploring seasonal and regional relationships between the Evaporative Stress Index and surface weather and soil moisture anomalies across the United States. Hydrol. Earth Syst. Sci. 2018, 22, 5373–5386. [Google Scholar] [CrossRef] [Green Version]
- Lorenz, D.J.; Otkin, J.A.; Svoboda, M.; Hain, C.R.; Anderson, M.C.; Zhong, Y. Predicting U.S. Drought Monitor States Using Precipitation, Soil Moisture, and Evapotranspiration Anomalies. Part I: Development of a Nondiscrete USDM Index. J. Hydrometeorol. 2017, 18, 1943–1962. [Google Scholar] [CrossRef]
- Lorenz, D.J.; Otkin, J.A.; Svoboda, M.; Hain, C.R.; Anderson, M.C.; Zhong, Y. Predicting the U.S. Drought Monitor Using Precipitation, Soil Moisture, and Evapotranspiration Anomalies. Part II: Intraseasonal Drought Intensification Forecasts. J. Hydrometeorol. 2017, 18, 1963–1982. [Google Scholar] [CrossRef]
- DU, L.; Tian, Q.; Yu, T.; Meng, Q.; Jancsó, T.; Udvardy, P.; Huang, Y. A comprehensive drought monitoring method integrating MODIS and TRMM data. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 245–253. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, N.; Li, J.; Chen, Z.; Niyogi, D. Multi-sensor integrated framework and index for agricultural drought monitoring. Remote Sens. Environ. 2017, 188, 141–163. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Zhang, S.; Zhang, H.; Bai, Y.; Zhang, J. Monitoring drought using composite drought indices based on remote sensing. Sci. Total. Environ. 2020, 711, 134585. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Zhang, J.; Zhou, J.; Zhou, L.; Xie, B.; Li, C. Monitoring drought dynamics in China using Optimized Meteorological Drought Index (OMDI) based on remote sensing data sets. J. Environ. Manag. 2021, 292, 112733. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Zhang, H.Y.; Zhou, J.J.; Zhou, L.; Xie, B.B.; Li, C.H. Drought monitoring in arid and semi-arid region based on mul-ti-satellite datasets in northwest, China. Environ. Sci. Pollut. 2021, 28, 51556–51574. [Google Scholar] [CrossRef] [PubMed]
- Niu, N.; Li, J. Interannual variability of autumn precipitation over South China and its relation to atmospheric circulation and SST anomalies. Adv. Atmos. Sci. 2008, 25, 117–125. [Google Scholar] [CrossRef]
- Zhang, W.; Jin, F.-F.; Turner, A. Increasing autumn drought over southern China associated with ENSO regime shift. Geophys. Res. Lett. 2014, 41, 4020–4026. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Jin, F.-F.; Zhao, J.-X.; Qi, L.; Ren, H.-L. The Possible Influence of a Nonconventional El Niño on the Severe Autumn Drought of 2009 in Southwest China. J. Clim. 2013, 26, 8392–8405. [Google Scholar] [CrossRef]
- Wang, P.; Tam, C.-Y.; Xu, K. El Niño–East Asian monsoon teleconnection and its diversity in CMIP5 models. Clim. Dyn. 2019, 53, 6417–6435. [Google Scholar] [CrossRef]
- Pei, F.; Zhou, Y.; Xia, Y. Application of Normalized Difference Vegetation Index (NDVI) for the Detection of Extreme Precipitation Change. Forests 2021, 12, 594. [Google Scholar] [CrossRef]
- Zhang, D.Q.; Chen, L.J. Possible mechanisms for persistent anomalous rainfall over the middle and lower reaches of Yangtze River in winter 2018/2019. Int. J. Climatol. 2021. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, J.; Sheng, S.; Mansaray, L.R.; Liu, Z.; Wu, H.; Wang, X. A new downscaling-integration framework for high-resolution monthly precipitation estimates: Combining rain gauge observations, satellite-derived precipitation data and geographical ancillary data. Remote Sens. Environ. 2018, 214, 154–172. [Google Scholar] [CrossRef]
- Rodell, M.; Houser, P.R.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C.-J.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M.; et al. The Global Land Data Assimilation System. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Yang, K.; Qin, J.; Zhao, L.; Tang, W.; Han, M. Evaluation of AMSR-E retrievals and GLDAS simulations against observations of a soil moisture network on the central Tibetan Plateau. J. Geophys. Res. Atmos. 2013, 118, 4466–4475. [Google Scholar] [CrossRef]
- Liu, L.; Huang, J.; Xiong, Q.; Zhang, H.; Song, P.; Huang, Y.; Dou, Y.; Wang, X. Optimal MODIS data processing for accurate multi-year paddy rice area mapping in China. GIScience Remote Sens. 2020, 57, 687–703. [Google Scholar] [CrossRef]
- Chen, Y.; Lu, D.; Moran, E.; Batistella, M.; Dutra, L.V.; Sanches, I.D.; da Silva, R.F.B.; Huang, J.; Luiz, A.J.B.; de Oliveira, M.A.F. Mapping croplands, cropping patterns, and crop types using MODIS time-series data. Int. J. Appl. Earth Obs. Geoinf. 2018, 69, 133–147. [Google Scholar] [CrossRef]
- Chen, Y.Y. Risk Assessment and Monitoring of Winter Wheat Waterlogging Combining Ground-Based Observations and Satel-lite-Derived Data. Ph.D. Thesis, Zhejiang University, Hangzhou, China, 2018. (In Chinese). [Google Scholar]
- Boschetti, M.; Busetto, L.; Manfron, G.; Laborte, A.; Asilo, S.; Pazhanivelan, S.; Nelson, A. PhenoRice: A method for automatic extraction of spatio-temporal information on rice crops using satellite data time series. Remote Sens. Environ. 2017, 194, 347–365. [Google Scholar] [CrossRef] [Green Version]
- Xu, K.; Miao, H.; Liu, B.; Tam, C.; Wang, W. Aggravation of Record-Breaking Drought over the Mid-to-Lower Reaches of the Yangtze River in the Post-monsoon Season of 2019 by Anomalous Indo-Pacific Oceanic Conditions. Geophys. Res. Lett. 2020, 47. [Google Scholar] [CrossRef]
- Rajsekhar, D.; Singh, V.P.; Mishra, A.K. Multivariate drought index: An information theory based approach for integrated drought assessment. J. Hydrol. 2015, 526, 164–182. [Google Scholar] [CrossRef]
- Cardil, A.; Vega-Garcia, C.; Ascoli, D.; Molina-Terren, D.; Silva, C.; Rodrigues, M. How does drought impact burned area in Mediterranean vegetation communities? Sci. Total. Environ. 2019, 693, 133603. [Google Scholar] [CrossRef] [PubMed]
- Anderson, M.; Zolin, C.A.; Sentelhas, P.C.; Hain, C.R.; Semmens, K.; Yilmaz, M.T.; Gao, F.; Otkin, J.; Tetrault, R. The Evaporative Stress Index as an indicator of agricultural drought in Brazil: An assessment based on crop yield impacts. Remote Sens. Environ. 2016, 174, 82–99. [Google Scholar] [CrossRef]
- Niyogi, D.; Liu, X.; Andresen, J.; Song, Y.; Jain, A.K.; Kellner, O.; Takle, E.S.; Doering, O.C. Crop models capture the impacts of climate variability on corn yield. Geophys. Res. Lett. 2015, 42, 3356–3363. [Google Scholar] [CrossRef] [Green Version]
Reference | Region and Year | Indices (Optimal Index Displayed in Bold) | Main Conclusion and Correlation between Index and Precipitation/Crop Yield |
---|---|---|---|
Kogan [13] | Sudan, Africa (1984–1987) | NDVI/VCI | VCI was first proposed and was positively correlated with precipitation. |
Kogan [17] | the United States (1985–1993) | VCI/TCI | TCI was first proposed; the combination of VCI and TCI was the basis for VHI. |
Rhee, Im, and Carbone [18] |
North Carolina/South Carolina/Arizona/New Mexico (2000–2009) | scaled LST/scaled TRMM/scaled NDVI/scaled NMDI/scaled NDWI/scaled NDDI/VHI/SDCI/Z-Index | PCI was first proposed; SDCI performed better than existing indices such as NDVI and VHI and was positively correlated with crop yield. |
Zhang and Jia [19] | Northern China (2003–2010) | PCI/SMCI/TCI/VCI/PSMCI/PTCI/SMTCI/ MIDI | SMCI was first proposed; MIDI was the optimum in monitoring short-term drought, especially for meteorological drought across northern China. |
Du, et al. [35] | Shandong, China (2013–2017) | PCI/TCI/VCI/SDI/SPI | SDI was positively correlated with precipitation and crop yield. VCI/SDI/TCI were all negatively correlated with drought affected crop area. |
Zhang, et al. [36] | Hubei, Yunnan, Hebei Provinces, China (1981–2011) | PCI/SMCI/VCI/PADI/ PDSI/SPI | Compared with the correlation with precipitation, soil moisture and vegetation data alone, PADI correlated well with wheat yield loss. |
Liu, et al. [37] | Shandong, China (2013–2017) | PCI/SMCI/TCI/VCI/MCDIs/SPI/SPEI/MI | MCDIs is positively correlated with SPI-1 and MI. MCDI-1 was suitable to monitor meteorological drought and MCDI-9 was a good indicator for agricultural drought. |
Wei, et al. [38] | Southwestern China (2001–2019) | PCI/SMCI/TCI/OMDI/ SPI/SPEI | There is a significant positive correlation between OMDI and grain yield as well as between OMDI and NPP in most areas of China. |
Wei, et al. [39] | Northwest China (2001–2019) | PCI/SMCI/TCI/VCI/RSDEI/SPEI | RSDEI had a strong correlation with NPP and crop yield except in some western parts of the study area. |
Data | Source | Study Year | Temporal Resolution | Spatial Resolution |
---|---|---|---|---|
Precipitation | TRMM3B42/ TRMM3B43 | 2003–2019 | 8 days/month | 0.25° |
Soil Moisture | GLDAS-2.1 | 2003–2019 | 8 days/month | 0.25° |
Vegetation |
MOD09A1/ MYD09A1 | 2003–2019 | 8 days/month | 500 m |
Cropland | MCD12Q1 | 2013 | year | 500 m |
Wheat map | Decision Tree Classification | 2011–2015 | year | 500 m |
Rice map | PhenoRice | 2011–2015 | year | 500 m |
Growth stage | CMDSC | 2011–2015 | - | - |
Yield | JMIC | 2003–2019 | year | County level |
n (Standard) | Label | n (Standard) | Label | n (Standard) | Label |
---|---|---|---|---|---|
0 | −1 | 1 | 0 | 2 | 0.333 |
0.1 | −0.818 | 1.1 | 0.048 | ||
0.2 | −0.667 | 1.2 | 0.091 | 3 | 0.5 |
0.3 | −0.538 | 1.3 | 0.130 | ||
0.4 | −0.429 | 1.4 | 0.167 | 4 | 0.6 |
0.5 | −0.333 | 1.5 | 0.20 | ||
0.6 | −0.250 | 1.6 | 0.231 | 10 | 0.818 |
0.7 | −0.176 | 1.7 | 0.259 | ||
0.8 | −0.111 | 1.8 | 0.286 | 100 | 0.980 |
0.9 | −0.053 | 1.9 | 0.310 | ||
1 | 0 | 2 | 0.333 | MAX | ≈1 |
Index | Advantages | Disadvantages |
---|---|---|
CI | (1) CI is accurate in places where both drought and flood have occurred with similar severity. (2) The legend display is symmetrical. | (1) Once extreme precipitation event occurs in one year, drought overestimation is likely to occur in other years and vice versa. (2) There are always the values of 0 (drought) and 1 (precipitation) for each pixel, regardless of whether the real extreme events occur. |
AP | (1) AP can well present the distance between the current value and the average value. | (1) The same as point (1) of CI to a lesser degree. (2) There is no upper limit under ideal conditions. |
EAP | (1) EAP can monitor the relative changes of real situation of pixels in both arid and humid regions. | (1) There is no upper limit under ideal conditions. |
NI | (1) NI does not have the limitations of above indices, and can monitor the relative changes of real precipitation (or soil moisture or vegetation conditions) of pixels in both arid and humid regions. | (1) The legend display is not symmetrical. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Huang, R.; Cheng, J.; Liu, W.; Chen, Y.; Shao, Q.; Duan, D.; Wei, P.; Chen, Y.; Huang, J. Monitoring Meteorological Drought in Southern China Using Remote Sensing Data. Remote Sens. 2021, 13, 3858. https://doi.org/10.3390/rs13193858
Liu L, Huang R, Cheng J, Liu W, Chen Y, Shao Q, Duan D, Wei P, Chen Y, Huang J. Monitoring Meteorological Drought in Southern China Using Remote Sensing Data. Remote Sensing. 2021; 13(19):3858. https://doi.org/10.3390/rs13193858
Chicago/Turabian StyleLiu, Li, Ran Huang, Jiefeng Cheng, Weiwei Liu, Yan Chen, Qi Shao, Dingding Duan, Pengliang Wei, Yuanyuan Chen, and Jingfeng Huang. 2021. "Monitoring Meteorological Drought in Southern China Using Remote Sensing Data" Remote Sensing 13, no. 19: 3858. https://doi.org/10.3390/rs13193858
APA StyleLiu, L., Huang, R., Cheng, J., Liu, W., Chen, Y., Shao, Q., Duan, D., Wei, P., Chen, Y., & Huang, J. (2021). Monitoring Meteorological Drought in Southern China Using Remote Sensing Data. Remote Sensing, 13(19), 3858. https://doi.org/10.3390/rs13193858