Cloud Seeding Evidenced by Coherent Doppler Wind Lidar
Abstract
:1. Introduction
2. Instruments
3. Verification Experiment
4. Application in an Artificial Precipitation Operation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dessens, J. A Physical Evaluation of a Hail Suppression Project with Silver Iodide Ground Burners in Southwestern France. J. Appl. Meteorol. Clim. 1998, 37, 1588–1599. [Google Scholar] [CrossRef]
- Abshaev, M.T.; Abshaev, A.M.; Zakinyan, R.G.; Zakinyan, A.R.; Wehbe, Y.; Yousef, L.; Farrah, S.; Mandous, A.A. Investigating the feasibility of artificial convective cloud creation. Atmos. Res. 2020, 243, 104998. [Google Scholar] [CrossRef]
- Gilbert, D.B.; Boe, B.A.; Krauss, T.W. Twenty seasons of airborne hail suppression in Alberta, Canada. J. Wea. Modif. 2016, 48, 68–92. [Google Scholar]
- Flossmann, A.I.; Manton, M.; Abshaev, A.; Bruintjes, R.; Murakami, M.; Prabhakaran, T.; Yao, Z. Review of Advances in Precipitation Enhancement Research. Bull. Am. Meteorol. Soc. 2019, 100, 1465–1480. [Google Scholar] [CrossRef]
- Dessens, J.; Saìnchez, J.L.; Berthet, C.; Hermida, L.; Merino, A. Hail prevention by ground-based silver iodide generators: Results of historical and modern field projects. Atmos. Res. 2016, 170, 98–111. [Google Scholar] [CrossRef]
- Seto, J.; Tomine, K.; Wakimizu, K.; Nishiyama, K. Artificial cloud seeding using liquid carbon dioxide: Comparison of experimental data and numerical analyses. J. Appl. Meteorol. Clim. 2011, 50, 1417–1431. [Google Scholar] [CrossRef]
- Leisner, T.; Denis, D.; Möhler, O.; Saathoff, H.; Schnaiter, M.; Henin, S.; Stelmaszczyk, K.; Petrarca, M.; Delagrange, R.; Hao, Z.; et al. Laser-induced plasma cloud interaction and ice multiplication under cirrus cloud conditions. Proc. Natl. Acad. Sci. USA 2013, 110, 10106–10110. [Google Scholar] [CrossRef] [Green Version]
- Tan, X.; Qiu, Y.; Yang, Y.; Liu, D.; Lu, X.; Pan, Y. Enhanced growth of single droplet by control of equivalent charge on droplet. IEEE Trans. Plasma Sci. 2016, 44, 2724–2728. [Google Scholar] [CrossRef]
- Tai, Y.; Haoran, L.; Zaki, A.; el Hadri, N. Core/shell microstructure induced synergistic effect for efficient water-droplet formation and cloud-seeding application. Acs Nano 2017, 11, 12318–12325. [Google Scholar] [CrossRef]
- Geerts, B. The AgI Seeding Cloud Impact Investigation (ASCII) campaign 2012: Overview and preliminary results. J. Wea. Modif. 2013, 45, 24–43. [Google Scholar]
- Abshaev, M.T.; Abshaev, A.M.; Sulakvelidze, G.K.; Burtsev, I.I.; Malkarova, A.M. Development of Rocket and Artillery Technology for Hail Suppression. In Achievements in Weather Modification; United Arab Emirates Department of Atmospheric Studies: Abu Dhabi, UAE, 2006; pp. 109–127. [Google Scholar]
- Mather, G.K.; Terblanche, D.E.; Steffens, F.E.; Fletcher, L. Results of the South African Cloud-Seeding Experiments Using Hygroscopic Flares. J. Appl. Meteorol. Clim. 1997, 36, 1433–1447. [Google Scholar] [CrossRef]
- Bruintjes, R.T. A Review of Cloud Seeding Experiments to Enhance Precipitation and Some New Prospects. Bull. Am. Meteorol. Soc. 1999, 80, 805–820. [Google Scholar] [CrossRef] [Green Version]
- DeFelice, T.P.; Axisa, D. Modern and prospective technologies for weather modification activities: Developing a framework for integrating autonomous unmanned aircraft systems. Atmos. Res. 2017, 193, 173–183. [Google Scholar] [CrossRef]
- Wu, X.; Niu, S.; Jin, D.; Sun, H. Influence of natural rainfall variability on the evaluation of artificial precipitation enhancement. Sci. China Earth Sci. 2015, 58, 906–914. [Google Scholar] [CrossRef]
- Parkinson, S.; Kunkel, M.L.; Blestrud, D.R.; Tessendorf, S.A.; Rasmussen, R.M.; Friedrich, K.; French, J.; Xue, L.; Geerts, B.; Rauber, R.M. Wintertime Orographic Cloud Seeding—A Review. J. Appl. Meteorol. Clim. 2019, 58, 2117–2140. [Google Scholar] [CrossRef]
- Deshler, T.; Reynolds, D.; Huggins, A. Physical Response of Winter Orographic Clouds over the Sierra Nevada to Airborne Seeding Using Dry Ice or Silver Iodide. J. Appl. Meteorol. Clim. 1990, 29, 288–330. [Google Scholar] [CrossRef] [Green Version]
- Hobbs, P.V.; Lyons, J.H.; Locatelli, J.D.; Biswas, K.R.; Radke, L.F.; Weiss, R.R.; Rangno, A.L. Radar Detection of Cloud-Seeding Effects. Science 1981, 213, 1250. [Google Scholar] [CrossRef] [PubMed]
- Chu, X.; Geerts, B.; Xue, L.; Pokharel, B. A Case Study of Cloud Radar Observations and Large-Eddy Simulations of a Shallow Stratiform Orographic Cloud, and the Impact of Glaciogenic Seeding. J. Appl. Meteorol. Clim. 2017, 56, 1285–1304. [Google Scholar] [CrossRef]
- French, J.R.; Friedrich, K.; Tessendorf, S.A.; Rauber, R.M.; Geerts, B.; Rasmussen, R.M.; Xue, L.; Kunkel, M.L.; Blestrud, D.R. Precipitation formation from orographic cloud seeding. Proc. Natl. Acad. Sci. USA 2018, 115, 1168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sassen, K.; Wang, Z.; Liu, D. Cirrus clouds and deep convection in the tropics: Insights from CALIPSO and CloudSat. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef] [Green Version]
- Sassen, K.; Matrosov, S.; Campbell, J. CloudSat spaceborne 94 GHz radar bright bands in the melting layer: An attenuation-driven upside-down lidar analog. Geophys. Res. Lett. 2007, 34, L16818. [Google Scholar] [CrossRef]
- Wang, Z.; Menenti, M. Challenges and Opportunities in Lidar Remote Sensing. Front. Remote Sens. 2021, 2, 3. [Google Scholar] [CrossRef]
- Rosenfeld, D.; Zheng, Y.; Hashimshoni, E.; Pohlker, M.L.; Jefferson, A.; Pohlker, C.; Yu, X.; Zhu, Y.; Liu, G.; Yue, Z.; et al. Satellite retrieval of cloud condensation nuclei concentrations by using clouds as CCN chambers. Proc. Natl. Acad. Sci. USA 2016, 113, 5828–5834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Yue, Z.; Rosenfeld, D.; Zhang, L.; Zhu, Y.; Dai, J.; Yu, X.; Li, J. The Evolution of an AgI Cloud-Seeding Track in Central China as Seen by a Combination of Radar, Satellite, and Disdrometer Observations. J. Geophys. Res. Atmos. 2021, 126, e2020JD033914. [Google Scholar] [CrossRef]
- Sassen, K. An Initial Application of Polarization Lidar for Orographic Cloud Seeding Operations. J. Appl. Meteorol. 1980, 19, 298–304. [Google Scholar] [CrossRef] [Green Version]
- Sassen, K. Depolarization of laser light backscattered by artificial clouds. J. Appl. Meteorol. 1974, 13, 923–933. [Google Scholar] [CrossRef] [Green Version]
- Cheng, C.; Yi, F. Falling Mixed-Phase Ice Virga and their Liquid Parent Cloud Layers as Observed by Ground-Based Lidars. Remote Sens. 2020, 12, 2094. [Google Scholar] [CrossRef]
- Bernard, É.; Friedt, J.-M.; Griselin, M. Snowcover Survey over an Arctic Glacier Forefield: Contribution of Photogrammetry to Identify “Icing” Variability and Processes. Remote Sens. 2021, 13, 1978. [Google Scholar] [CrossRef]
- Li, H.; Moisseev, D. Two Layers of Melting Ice Particles Within a Single Radar Bright Band: Interpretation and Implications. Geophys. Res. Lett. 2020, 47, e2020GL087499. [Google Scholar] [CrossRef]
- Li, H.; Moisseev, D. Melting Layer Attenuation at Ka- and W-Bands as Derived From Multifrequency Radar Doppler Spectra Observations. J. Geophys. Res. Atmos. 2019, 124, 9520–9533. [Google Scholar] [CrossRef] [Green Version]
- Hon, K.-K. Predicting Low-Level Wind Shear Using 200-m-Resolution NWP at the Hong Kong International Airport. J. Appl. Meteorol. Clim. 2020, 59, 193–206. [Google Scholar] [CrossRef]
- Brooks, B.J.; Davies, F.; Hogan, R.J.; Westbrook, C.D.; Brooks, I.M.; Illingworth, A.J.; O’Connor, E.J. A Method for Estimating the Turbulent Kinetic Energy Dissipation Rate from a Vertically Pointing Doppler Lidar, and Independent Evaluation from Balloon-Borne In Situ Measurements. J. Atmos. Ocean. Tech. 2010, 27, 1652–1664. [Google Scholar] [CrossRef] [Green Version]
- Banakh, V.A.; Smalikho, I.N.; Falits, A.V.; Sherstobitov, A.M. Estimating the Parameters of Wind Turbulence from Spectra of Radial Velocity Measured by a Pulsed Doppler Lidar. Remote Sens. 2021, 13, 2071. [Google Scholar] [CrossRef]
- Banakh, V.; Smalikho, I. Lidar Studies of Wind Turbulence in the Stable Atmospheric Boundary Layer. Remote Sens. 2018, 10, 1219. [Google Scholar] [CrossRef] [Green Version]
- Banakh, V.A.; Smalikho, I.N.; Falits, A.V. Wind–Temperature Regime and Wind Turbulence in a Stable Boundary Layer of the Atmosphere: Case Study. Remote Sens. 2020, 12, 955. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Shen, C.; Gao, H.; Chan, P.W.; Hon, K.K.; Wang, X. Path integration (PI) method for the parameter-retrieval of aircraft wake vortex by Lidar. Opt. Express 2020, 28, 4286–4306. [Google Scholar] [CrossRef] [PubMed]
- Gultepe, I.; Heymsfield, A.J. Introduction Ice Fog, Ice Clouds, and Remote Sensing. Pure Appl. Geophys. 2016, 173, 2977–2982. [Google Scholar] [CrossRef] [Green Version]
- Gultepe, I.; Fernando, H.J.S.; Pardyjak, E.R.; Hoch, S.W.; Silver, Z.; Creegan, E.; Leo, L.S.; Pu, Z.; De Wekker, S.F.J.; Hang, C. An Overview of the MATERHORN Fog Project: Observations and Predictability. Pure Appl. Geophys. 2016, 173, 2983–3010. [Google Scholar] [CrossRef]
- Weickmann, A.M.; Senff, C.J.; Tucker, S.C.; Brewer, W.A.; Banta, R.M.; Sandberg, S.P.; Law, D.C.; Hardesty, R.M. Doppler Lidar Estimation of Mixing Height Using Turbulence, Shear, and Aerosol Profiles. J. Atmos. Ocean. Tech. 2009, 26, 673–688. [Google Scholar] [CrossRef]
- Jia, M.; Yuan, J.; Wang, C.; Xia, H.; Wu, Y.; Zhao, L.; Wei, T.; Wu, J.; Wang, L.; Gu, S.Y.; et al. Long-lived high-frequency gravity waves in the atmospheric boundary layer: Observations and simulations. Atmos. Chem. Phys. 2019, 19, 15431–15446. [Google Scholar] [CrossRef] [Green Version]
- Thobois, L.; Cariou, J.P.; Gultepe, I. Review of Lidar-Based Applications for Aviation Weather. Pure Appl. Geophys. 2018, 176, 1959–1976. [Google Scholar] [CrossRef]
- Wang, C.; Xia, H.; Shangguan, M.; Wu, Y.; Wang, L.; Zhao, L.; Qiu, J.; Zhang, R. 1.5 μm polarization coherent lidar incorporating time-division multiplexing. Opt. Express 2017, 25, 20663–20674. [Google Scholar] [CrossRef] [Green Version]
- Wei, T.; Xia, H.; Wu, Y.; Yuan, J.; Wang, C.; Dou, X. Inversion probability enhancement of all-fiber CDWL by noise modeling and robust fitting. Opt. Express 2020, 28, 29662–29675. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Jia, M.; Xia, H.; Wu, Y.; Wei, T.; Shang, X.; Yang, C.; Xue, X.; Dou, X. Relationship analysis of PM2.5 and boundary layer height using an aerosol and turbulence detection lidar. Atmos. Meas. Tech. 2019, 12, 3303–3315. [Google Scholar] [CrossRef] [Green Version]
- Aoki, M.; Iwai, H.; Nakagawa, K.; Ishii, S.; Mizutani, K. Measurements of Rainfall Velocity and Raindrop Size Distribution Using Coherent Doppler Lidar. J. Atmos. Ocean. Tech. 2016, 33, 1949–1966. [Google Scholar] [CrossRef]
- Wei, T.; Xia, H.; Hu, J.; Wang, C.; Shangguan, M.; Wang, L.; Jia, M.; Dou, X. Simultaneous wind and rainfall detection by power spectrum analysis using a VAD scanning coherent Doppler lidar. Opt. Express 2019, 27, 31235–31245. [Google Scholar] [CrossRef] [PubMed]
- Kalthoff, N.; Adler, B.; Wieser, A.; Kohler, M.; Träumner, K.; Handwerker, J.; Corsmeier, U.; Khodayar, S.; Lambert, D.; Kopmann, A.; et al. KITcube – a mobile observation platform for convection studies deployed during HyMeX. Meteorol. Z. 2013, 22, 633–647. [Google Scholar] [CrossRef] [Green Version]
- Träumner, K.; Handwerker, J.; Wieser, A.; Grenzhäuser, J. A Synergy Approach to Estimate Properties of Raindrop Size Distributions Using a Doppler Lidar and Cloud Radar. J. Atmos. Ocean. Tech. 2010, 27, 1095–1100. [Google Scholar] [CrossRef]
- Wei, T.; Xia, H.; Yue, B.; Wu, Y.; Liu, Q. Remote sensing of raindrop size distribution using the coherent Doppler lidar. Opt. Express 2021, 29, 17246–17257. [Google Scholar] [CrossRef]
- Yuan, J.; Xia, H.; Wei, T.; Wang, L.; Yue, B.; Wu, Y. Identifying cloud, precipitation, windshear, and turbulence by deep analysis of the power spectrum of coherent Doppler wind lidar. Opt. Express 2020, 28, 37406–37418. [Google Scholar] [CrossRef]
- Harikumar, R.; Sampath, S.; Sasi Kumar, V. Altitudinal and temporal evolution of raindrop size distribution observed over a tropical station using a K-band radar. Int. J. Remote Sens. 2011, 33, 3286–3300. [Google Scholar] [CrossRef]
- Wang, L.; Qiang, W.; Xia, H.; Wei, T.; Yuan, J.; Jiang, P. Robust Solution for Boundary Layer Height Detections with Coherent Doppler Wind Lidar. Adv. Atmos. Sci. 2021, 38, 1920–1928. [Google Scholar] [CrossRef]
- Guo, Q.; Lu, F.; Wei, C.; Zhang, Z.; Yang, J. Introducing the New Generation of Chinese Geostationary Weather Satellites, Fengyun-4. Bull. Am. Meteorol. Soc. 2017, 98, 1637–1658. [Google Scholar] [CrossRef]
- Heymsfield, A.J.; Kennedy, P.C.; Massie, S.; Schmitt, C.; Wang, Z.; Haimov, S.; Rangno, A. Aircraft-Induced Hole Punch and Canal Clouds: Inadvertent Cloud Seeding. Bull. Am. Meteorol. Soc. 2010, 91, 753–766. [Google Scholar] [CrossRef] [Green Version]
- Heymsfield, A.J.; Thompson, G.; Morrison, H.; Bansemer, A.; Rasmussen, R.M.; Minnis, P.; Wang, Z.; Zhang, D. Formation and Spread of Aircraft-Induced Holes in Clouds. Science 2011, 333, 77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ćurić, M.; Janc, D. Wet deposition of the seeding agent after weather modification activities. Environ. Sci. Pollut. Res. 2013, 20, 6344–6350. [Google Scholar] [CrossRef] [PubMed]
- Ćurić, M.; Janc, D.; Vučković, V.; Kovačević, N. An inadvertent transport of the seeding material as a result of cloud modification. Adv. Atmos. Sci. 2009, 105, 157–165. [Google Scholar] [CrossRef]
- Rosenfeld, D.; Lohmann, U.; Raga, G.B.; O’Dowd, C.D.; Kulmala, M.; Fuzzi, S.; Reissell, A.; Andreae, M.O. Flood or drought: How do aerosols affect precipitation? Science 2008, 321, 1309–1313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tao, W.-K.; Chen, J.-P.; Li, Z.; Wang, C.; Zhang, C. Impact of aerosols on convective clouds and precipitation. Rev. Geophys. 2012, 50, RG2001. [Google Scholar] [CrossRef] [Green Version]
- Lohmann, U. Anthropogenic Aerosol Influences on Mixed-Phase Clouds. Curr. Clim. Chang. Rep. 2017, 3, 32–44. [Google Scholar] [CrossRef] [Green Version]
- DeMott, P.J. Quantitative descriptions of ice formation mechanisms of silver iodide-type aerosols. Atmos. Res. 1995, 38, 63–99. [Google Scholar] [CrossRef]
- Farmer, D.K.; Cappa, C.D.; Kreidenweis, S.M. Atmospheric Processes and Their Controlling Influence on Cloud Condensation Nuclei Activity. Chem. Rev. 2015, 115, 4199–4217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banakh, V.A.; Brewer, A.; Pichugina, E.L.; Smalikho, I.N. Measurements of wind velocity and direction with coherent Doppler lidar in conditions of a weak echo signal. Atmos. Ocean. Opt. 2010, 23, 381–388. [Google Scholar] [CrossRef]
- Shupe, M.D.; Kollias, P.; Matrosov, S.Y.; Schneider, T.L. Deriving mixed-phase cloud properties from Doppler radar spectra. J. Atmos. Ocean. Tech. 2004, 21, 660–670. [Google Scholar] [CrossRef] [Green Version]
- Pinto, J.O. Autumnal Mixed-Phase Cloudy Boundary Layers in the Arctic. J. Atmos. Sci. 1998, 55, 2016–2038. [Google Scholar] [CrossRef]
- Ramelli, F.; Henneberger, J.; David, R.O.; Lauber, A.; Pasquier, J.T.; Wieder, J.; Bühl, J.; Seifert, P.; Engelmann, R.; Hervo, M.; et al. Influence of low-level blocking and turbulence on the microphysics of a mixed-phase cloud in an inner-Alpine valley. Atmos. Chem. Phys. 2021, 21, 5151–5172. [Google Scholar] [CrossRef]
- Iguchi, T.; Matsui, T.; Tao, W.-K.; Khain, A.P.; Phillips, V.T.J.; Kidd, C.; L’Ecuyer, T.; Braun, S.A.; Hou, A. WRF–SBM Simulations of Melting-Layer Structure in Mixed-Phase Precipitation Events Observed during LPVEx. J. Appl. Meteorol. Clim. 2014, 53, 2710–2731. [Google Scholar] [CrossRef]
- Yu, G.; Verlinde, J.; Clothiaux, E.E.; Chen, Y.S. Mixed-phase cloud phase partitioning using millimeter wavelength cloud radar Doppler velocity spectra. J. Geophys. Res. Atmos. 2014, 119, 7556–7576. [Google Scholar] [CrossRef]
- Ćurić, M.; Janc, D.; Vučković, V. Precipitation change from a cumulonimbus cloud downwind of a seeded target area. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Tian, J.; Dong, X.; Xi, B.; Williams, C.R.; Wu, P. Estimation of liquid water path below the melting layer in stratiform precipitation systems using radar measurements during MC3E. Atmos. Meas. Tech. 2019, 12, 3743–3759. [Google Scholar] [CrossRef] [Green Version]
- Qiu, J.; Xia, H.; Shangguan, M.; Dou, X.; Li, M.; Wang, C.; Shang, X.; Lin, S.; Liu, J. Micro-pulse polarization lidar at 1.5 mum using a single superconducting nanowire single-photon detector. Opt. Lett. 2017, 42, 4454–4457. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, J.; Wu, K.; Wei, T.; Wang, L.; Shu, Z.; Yang, Y.; Xia, H. Cloud Seeding Evidenced by Coherent Doppler Wind Lidar. Remote Sens. 2021, 13, 3815. https://doi.org/10.3390/rs13193815
Yuan J, Wu K, Wei T, Wang L, Shu Z, Yang Y, Xia H. Cloud Seeding Evidenced by Coherent Doppler Wind Lidar. Remote Sensing. 2021; 13(19):3815. https://doi.org/10.3390/rs13193815
Chicago/Turabian StyleYuan, Jinlong, Kenan Wu, Tianwen Wei, Lu Wang, Zhifeng Shu, Yuanjian Yang, and Haiyun Xia. 2021. "Cloud Seeding Evidenced by Coherent Doppler Wind Lidar" Remote Sensing 13, no. 19: 3815. https://doi.org/10.3390/rs13193815
APA StyleYuan, J., Wu, K., Wei, T., Wang, L., Shu, Z., Yang, Y., & Xia, H. (2021). Cloud Seeding Evidenced by Coherent Doppler Wind Lidar. Remote Sensing, 13(19), 3815. https://doi.org/10.3390/rs13193815