Next Article in Journal
Using Multi-Temporal Satellite Data to Analyse Phenological Responses of Rubber (Hevea brasiliensis) to Climatic Variations in South Sumatra, Indonesia
Next Article in Special Issue
Cloud Seeding Evidenced by Coherent Doppler Wind Lidar
Previous Article in Journal
The Development of a Combined Satellite-Based Precipitation Dataset across Bolivia from 2000 to 2015
Technical Note

Aerosol Direct Radiative Effects under Cloud-Free Conditions over Highly-Polluted Areas in Europe and Mediterranean: A Ten-Years Analysis (2007–2016)

1
CNR-ISAC, Via Gobetti 101, 40129 Bologna, Italy
2
Naval Research Laboratory, Monterey, CA 93940, USA
3
Department of Atmospheric Sciences, University of North Dakota, Grand Forks, ND 58202, USA
4
Scuola di Ingegneria, Università degli Studi della Basilicata, 85100 Potenza, Italy
5
CNR-IMAA, Contrada S. Loja, s.n.c, 85050 Tito, Italy
6
Department of Physics, Florence Campus, Kent State University, Kent, OH 44240, USA
*
Author to whom correspondence should be addressed.
Academic Editor: Manuel Antón
Remote Sens. 2021, 13(15), 2933; https://doi.org/10.3390/rs13152933
Received: 26 May 2021 / Revised: 22 July 2021 / Accepted: 23 July 2021 / Published: 26 July 2021
(This article belongs to the Special Issue Lidar for Advanced Classification and Retrieval of Aerosols)
This study investigates changes in aerosol radiative effects on two highly urbanized regions across the Euro-Mediterranean basin with respect to a natural desert region as Sahara over a decade through space-based lidar observations. The research is based on the monthly-averaged vertically-resolved aerosol optical depth (AOD) atmospheric profiles along a 1×1 horizontal grid, obtained from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument measurements aboard the Cloud-Aerosol lidar and Infrared Pathfinder Satellite Observation (CALIPSO). To assess the variability of the anthropogenic aerosols on climate, we compared the aerosol vertical profile observations to a one-dimensional radiative transfer model in two metropolitan climate sensible hot-spots in Europe, namely the Po Valley and Benelux, to investigate the variability of the aerosol radiative effects over ten years. The same analysis is carried out as reference on the Sahara desert region, considered subject just to natural local emission. Our findings show the efficacy of emission reduction policies implemented at government level in strongly urbanized regions. The total atmospheric column aerosol load reduction (not observed in Sahara desert region) in Po Valley and Benelux can be associated with: (i) an increase of the energy flux at the surface via direct effects confirmed also by long term surface temperature observations, (ii) a general decrease of the atmospheric column, and likely (iii) an increase in surface temperatures during a ten-year period. Summarizing, the analysis, based on the decade 2007–2016, clearly show an increase of solar irradiation under cloud-free conditions at the surface of +3.6 % and +16.6% for the Po Valley and Benelux, respectively, and a reduction of −9.0% for the Sahara Desert. View Full-Text
Keywords: radiative effects; radiative transfer; lidar; aerosols; CALIPSO radiative effects; radiative transfer; lidar; aerosols; CALIPSO
Show Figures

Graphical abstract

MDPI and ACS Style

Landi, T.C.; Bonasoni, P.; Brunetti, M.; Campbell, J.R.; Marquis, J.W.; Di Girolamo, P.; Lolli, S. Aerosol Direct Radiative Effects under Cloud-Free Conditions over Highly-Polluted Areas in Europe and Mediterranean: A Ten-Years Analysis (2007–2016). Remote Sens. 2021, 13, 2933. https://doi.org/10.3390/rs13152933

AMA Style

Landi TC, Bonasoni P, Brunetti M, Campbell JR, Marquis JW, Di Girolamo P, Lolli S. Aerosol Direct Radiative Effects under Cloud-Free Conditions over Highly-Polluted Areas in Europe and Mediterranean: A Ten-Years Analysis (2007–2016). Remote Sensing. 2021; 13(15):2933. https://doi.org/10.3390/rs13152933

Chicago/Turabian Style

Landi, Tony C., Paolo Bonasoni, Michele Brunetti, James R. Campbell, Jared W. Marquis, Paolo Di Girolamo, and Simone Lolli. 2021. "Aerosol Direct Radiative Effects under Cloud-Free Conditions over Highly-Polluted Areas in Europe and Mediterranean: A Ten-Years Analysis (2007–2016)" Remote Sensing 13, no. 15: 2933. https://doi.org/10.3390/rs13152933

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop