Reconstructing Ocean Heat Content for Revisiting Global Ocean Warming from Remote Sensing Perspectives
Abstract
:1. Introduction
2. Study Area and Data
- (1)
- sea surface temperature (SST), acquired from the Optimum Interpolation Sea Surface Temperature (OISST) product, constructed by combining data from the Advanced Very High-Resolution Radiometer satellite and other observations datasets since 1981, with a spatial resolution of 0.25° × 0.25°;
- (2)
- sea surface height (SSH), observed from the Absolute Dynamic Topography products of Archiving, Validation, and Interpretation of Satellite Oceanographic (AVISO) altimetry project since 1993, with a spatial resolution of 0.25° × 0.25°;
- (3)
- sea surface wind (SSW), provided by the Cross-Calibrated Multi-Platform (CCMP) wind velocity data from the National Center for Atmospheric Research since 1987, with a spatial resolution of 0.25° × 0.25°;
- (4)
- Argo, gridded data including 27 standard horizons in the upper 2000 m since 2005, with a spatial resolution of 1° × 1°.
- (1)
- EN4, version 4.2.1 from the Hadley Met Office of the United Kingdom, which applied objective analysis from observation datasets (e.g., WOD and Argo) since 1900, 1° × 1° [45];
- (2)
- IAP, from the Institute of Atmospheric Physics of China, which used Ensemble Optimal Interpolation (En-OI) mapping, combined with Coupled Model Intercomparison Project Phase 5 (CMIP5) multimodel datasets since 1940, 1° × 1° [16];
- (3)
- ORAS5, from the ECMWF, which assimilated various observational data in an ocean model since 1979, 1° × 1° [30];
- (4)
- OPEN, from Fuzhou University, which used remote sensing data and an ANN machine learning method to achieve temporal hindcast and provided a continuous record of the global ocean since 1993, 1° × 1° [40].
3. Methods
3.1. LSTM
3.2. LightGBM
3.3. RFs
3.4. Experimental Design
4. Results and Discussion
4.1. Monotemporal Prediction
4.2. Long-Term Reconstruction
4.3. The Relative Error in Different Basin Scales
4.4. OHC Changes in Different Periods and Depths
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hansen, J.; Nazarenko, L.; Ruedy, R.; Sato, M.; Willis, J.; Genio, A.; Koch, D.; Lacis, A.; Lo, K.; Menon, S.; et al. Earth’s energy imbalance: Confirmation and implications. Science 2005, 308, 1431–1435. [Google Scholar] [CrossRef] [Green Version]
- Trenberth, K.E.; Fasullo, J.T.; Kiehl, J. Earth’s Global Energy Budget. Bull. Am. Meteorol. Soc. 2009, 90, 311–324. [Google Scholar] [CrossRef]
- Gastineau, G.; Friedman, A.R.; Khodri, M.; Vialard, J. Global ocean heat content redistribution during the 1998-2012 Interdecadal Pacific Oscillation negative phase. Clim. Dyn. 2019, 53, 1187–1208. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, D.; McKay, N.; Routson, C.; Erb, M.; Dätwyler, C.; Sommer, P.S.; Heiri, O.; Davis, B. Holocene global mean surface temperature, a multi-method reconstruction approach. Sci. Data 2020, 7, 201. [Google Scholar] [CrossRef]
- Cheng, L.; Zhu, J. 2017 was the Warmest Year on Record for the Global Ocean. Adv. Atmos. Sci. 2018, 34, 261–263. [Google Scholar] [CrossRef] [Green Version]
- Cheng, L.; Zhu, J.; Abraham, J.; Trenberth, K.E.; Fasullo, J.T.; Zhang, B.; Yu, F.; Wan, L.; Chen, X.; Song, X. 2018 Continues Record Global Ocean Warming. Adv. Atmos. Sci. 2019, 36, 249–252. [Google Scholar] [CrossRef] [Green Version]
- Cheng, L.; Abraham, J.; Zhu, J.; Trenberth, K.E.; Fasullo, J.; Boyer, T.; Locarnini, R.; Zhang, B.; Yu, F.; Wan, L.; et al. Record-Setting Ocean Warmth Continued in 2019. Adv. Atmos. Sci. 2020, 37, 137–142. [Google Scholar] [CrossRef] [Green Version]
- Cheng, L.; Abraham, J.; Trenberth, K.E.; Fasullo, J.; Boyer, T.; Locarnini, R.; Zhang, B.; Yu, F.; Wan, L.; Chen, X.; et al. Upper Ocean Temperatures Hit Record High in 2020. Adv. Atmos. Sci. 2021, 38, 523–530. [Google Scholar] [CrossRef]
- Yan, X.-H.; Boyer, T.; Trenberth, K.; Karl, T.R.; Xie, S.-P.; Nieves, V.; Tung, K.-K.; Roemmich, D. The global warming hiatus: Slowdown or redistribution? Earth’s Future 2016, 4, 472–482. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Abraham, J.; Hausfather, Z.; Trenberth, K.E. How fast are the oceans warming? Sci. (Am. Assoc. Adv. Sci.) 2019, 363, 128–129. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Xie, S.-P.; Lu, J. Tracking ocean heat uptake during the surface warming hiatus. Nat. Commun. 2016, 7, 10926. [Google Scholar] [CrossRef] [Green Version]
- Trenberth, K.E.; Fasullo, J.T. An apparent hiatus in global warming? Earth’s Future 2013, 1, 19–32. [Google Scholar] [CrossRef]
- Su, H.; Wu, X.; Lu, W.; Zhang, W.; Yan, X.-H. Inconsistent Subsurface and Deeper Ocean Warming Signals During Recent Global Warming and Hiatus. J. Geophys. Res. Ocean. 2017, 122, 8182–8195. [Google Scholar] [CrossRef]
- Stocker, T.F.; Qin, D.; Plattner, G.-K.; Tignor, M.M.B.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. (Eds.) Climate Change 2013: The Physical Science Basis; IPCC; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Meehl, G.A.; Arblaster, J.M.; Fasullo, J.T.; Hu, A.; Trenberth, K.E. Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nat. Clim. Chang. 2011, 1, 360–364. [Google Scholar] [CrossRef]
- Cheng, L.; Trenberth, K.E.; Fasullo, J.; Boyer, T.; Abraham, J.; Zhu, J. Improved estimates of ocean heat content from 1960 to 2015. Sci. Adv. 2017, 3, e1601545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shukla, P.R.; Skea, J.; Calvo Buendia, E.; Masson-Delmotte, V.; Pörtner, H.-O.; Roberts, D.C.; Zhai, P.; Slade, R.; Connors, S.; Van Diemen, R.; et al. (Eds.) IPCC (2019): Summary for Policymakers: Special Report on the Ocean and Cryosphere in a Changing Climate; 2019; in press. [Google Scholar]
- Von Schuckmann, K.; Palmer, M.D.; Trenberth, K.E.; Cazenave, A.; Chambers, D.; Champollion, N.; Hansen, J.; Josey, S.A.; Loeb, N.; Mathieu, P.-P.; et al. An imperative to monitor Earth’s energy imbalance. Nat. Clim. Chang. 2016, 6, 138–144. [Google Scholar] [CrossRef] [Green Version]
- Meyssignac, B.; Boyer, T.; Zhao, Z.; Hakuba, M.Z.; Landerer, F.W.; Stammer, D.; Köhl, A.; Kato, S.; L’Ecuyer, T.; Ablain, M.; et al. Measuring Global Ocean Heat Content to Estimate the Earth Energy Imbalance. Front. Mar. Sci. 2019, 6, 432. [Google Scholar] [CrossRef] [Green Version]
- Rydbeck, A.V.; Jensen, T.G.; Smith, T.A.; Flatau, M.K.; Janiga, M.A.; Reynolds, C.A.; Ridout, J.A. Ocean Heat Content and the Intraseasonal Oscillation. Geophys. Res. Lett. 2019, 46, 14558–14566. [Google Scholar] [CrossRef]
- Zhang, L.; Han, W.; Li, Y.; Lovenduski, N.S. Variability of Sea Level and Upper-Ocean Heat Content in the Indian Ocean: Effects of Subtropical Indian Ocean Dipole and ENSO. J. Clim. 2019, 32, 7227–7245. [Google Scholar] [CrossRef]
- Hallam, S.; Guishard, M.; Josey, S.A.; Hyder, P.; Hirschi, J. Increasing tropical cyclone intensity and potential intensity in the subtropical Atlantic around Bermuda from an ocean heat content perspective 1955–2019. Environ. Res. Lett. 2021, 16, 034052. [Google Scholar] [CrossRef]
- Gronholz, A.; Dong, S.; Lopez, H.; Lee, S.K.; Goni, G.; Baringer, M. Interannual Variability of the South Atlantic Ocean Heat Content in a High-Resolution Versus a Low-Resolution General Circulation Model. Geophys. Res. Lett. 2020, 47, e2020GL089908. [Google Scholar] [CrossRef]
- Abraham, J.P.; Baringer, M.; Bindoff, N.L.; Boyer, T.; Cheng, L.J.; Church, J.A.; Conroy, J.L.; Domingues, C.M.; Fasullo, J.T.; Gilson, J.; et al. A review of global ocean temperature observations: Implications for ocean heat content estimates and climate change. Rev. Geophys. 2013, 51, 450–483. [Google Scholar] [CrossRef]
- Lyman, J.M.; Willis, J.K.; Johnson, G.C. Recent cooling of the upper ocean. Geophys. Res. Lett. 2006, 33, L18604. [Google Scholar] [CrossRef] [Green Version]
- Boyer, T.; Domingues, C.M.; Good, S.A.; Johnson, G.C.; Lyman, J.M.; Ishii, M.; Gouretski, V.; Willis, J.K.; Antonov, J.; Wijffels, S.; et al. Sensitivity of Global Upper-Ocean Heat Content Estimates to Mapping Methods, XBT Bias Corrections, and Baseline Climatologies. J. Clim. 2016, 29, 4817–4842. [Google Scholar] [CrossRef]
- Klemas, V.; Yan, X.-H. Subsurface and deeper ocean remote sensing from satellites: An overview and new results. Prog. Oceanogr. 2013, 11, 010. [Google Scholar] [CrossRef]
- Wang, J.; Flierl, G.R.; LaCasce, J.H.; McClean, J.L.; Mahadevan, A. Reconstructing the Ocean’s Interior from Surface Data. J. Phys. Oceanogr. 2013, 43, 1611–1626. [Google Scholar] [CrossRef]
- Meinen, C.S. Structure of the North Atlantic current in stream-coordinates and the circulation in the Newfoundland basin. Deep-Sea Res. Part I Oceanogr. Res. Pap. 2001, 48, 1553–1580. [Google Scholar] [CrossRef]
- Balmaseda, M.A.; Trenberth, K.E.; Källén, E. Distinctive climate signals in reanalysis of global ocean heat content. Geophys. Res. Lett. 2013, 40, 1754–1759. [Google Scholar] [CrossRef]
- Carton, J.A.; Giese, B.S. A Reanalysis of Ocean Climate Using Simple Ocean Data Assimilation (SODA). Mon. Weather Rev. 2008, 136, 2999–3017. [Google Scholar] [CrossRef]
- Su, H.; Wu, X.; Yan, X.-H.; Kidwell, A. Estimation of subsurface temperature anomaly in the Indian Ocean during recent global surface warming hiatus from satellite measurements: A support vector machine approach. Remote Sens. Environ. 2015, 160, 63–71. [Google Scholar] [CrossRef]
- Su, H.; Li, W.; Yan, X.-H. Retrieving Temperature Anomaly in the Global Subsurface and Deeper Ocean From Satellite Observations. J. Geophys. Res. Ocean. 2017, 123, 399–410. [Google Scholar] [CrossRef]
- Su, H.; Yang, X.; Lu, W.; Yan, X.-H. Estimating Subsurface Thermohaline Structure of the Global Ocean Using Surface Remote Sensing Observations. Remote Sens. 2019, 11, 1598. [Google Scholar] [CrossRef] [Green Version]
- Su, H.; Huang, L.; Li, W.; Yang, X.; Yan, X.-H. Retrieving Ocean Subsurface Temperature Using a Satellite-Based Geographically Weighted Regression Model. J. Geophys. Res. Ocean. 2018, 123, 5180–5193. [Google Scholar] [CrossRef]
- Lu, W.; Su, H.; Yang, X.; Yan, X.-H. Subsurface temperature estimation from remote sensing data using a clustering-neural network method. Remote Sens. Environ. 2019, 229, 213–222. [Google Scholar] [CrossRef]
- Chacko, N.; Dutta, D.; Ali, M.M.; Sharma, J.R.; Dadhwal, V.K. Near-Real-Time Availability of Ocean Heat Content Over the North Indian Ocean. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1033–1036. [Google Scholar] [CrossRef]
- Jagadeesh, P.S.V.; Suresh Kumar, M.; Ali, M.M. Estimation of Heat Content and Mean Temperature of Different Ocean Layers. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 1251–1255. [Google Scholar] [CrossRef]
- Irrgang, C.; Saynisch, J.; Thomas, M. Estimating global ocean heat content from tidal magnetic satellite observations. Sci. Rep. 2019, 9, 7893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, H.; Zhang, H.; Geng, X.; Qin, T.; Lu, W.; Yan, X. OPEN: A New Estimation of Global Ocean Heat Content for Upper 2000 Meters from Remote Sensing Data. Remote Sens. 2020, 12, 2294. [Google Scholar] [CrossRef]
- Yang, Y.; Dong, J.; Sun, X.; Lima, E.; Mu, Q.; Wang, X. A CFCC-LSTM Model for Sea Surface Temperature Prediction. IEEE Geosci. Remote Sens. Lett. 2018, 15, 207–211. [Google Scholar] [CrossRef]
- Song, T.; Jiang, J.; Li, W.; Xu, D. A Deep Learning Method With Merged LSTM Neural Networks for SSHA Prediction. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 2853–2860. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, H.; Dong, J.; Zhong, G.; Sun, X. Prediction of Sea Surface Temperature Using Long Short-Term Memory. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1745–1759. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, P.P.; Janardhan, P.; Roy, P. Prediction of sea surface temperatures using deep learning neural networks. SN Appl. Sci. 2020, 2, 1458. [Google Scholar] [CrossRef]
- Good, S.A.; Martin, M.J.; Rayner, N.A. EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J. Geophys. Res. Ocean. 2013, 118, 6704–6716. [Google Scholar] [CrossRef]
- Jeong, Y.; Hwang, J.; Park, J.; Jang, C.J.; Jo, Y. Reconstructed 3-D Ocean Temperature Derived from Remotely Sensed Sea Surface Measurements for Mixed Layer Depth Analysis. Remote Sens. 2019, 11, 3018. [Google Scholar] [CrossRef] [Green Version]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Gers, F.A.; Schmidhuber, J.; Cummins, F. Learning to forget: Continual prediction with LSTM. Neural Comput. 2000, 12, 2451–2471. [Google Scholar] [CrossRef] [PubMed]
- Huang, A.; Vega-Westhoff, B.; Sriver, R.L. Analyzing El Niño-Southern Oscillation Predictability Using Long-Short-Term-Memory Models. Earth Space Sci. 2019, 6, 212–221. [Google Scholar] [CrossRef]
- Ke, G.L.; Meng, Q.; Finley, T.; Wang, T.F.; Chen, W.; Ma, W.D.; Ye, Q.W.; Liu, T.Y. LightGBM: A Highly Efficient Gradient Boosting Decision Tree. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 3149–3157. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Cheng, L.; Abraham, J.; Li, C. Consensuses and discrepancies of basin-scale ocean heat content changes in different ocean analyses. Clim. Dyn. 2018, 50, 2471–2487. [Google Scholar] [CrossRef] [Green Version]
Data | Sources | Time | Spatial Resolution |
---|---|---|---|
SST | https://www.ncdc.noaa.gov/oisst (accessed on 3 March 2020) | 1981– | 0.25° × 0.25° |
SSH | http://www.aviso.altimetry.fr (accessed on 3 March 2020) | 1993– | 0.25° × 0.25° |
SSW | https://rda.ucar.edu/datasets/ds745.1/ (accessed on 3 March 2020) | 1987– | 0.25° × 0.25° |
Argo | http://apdrc.soest.hawaii.edu/projects/Argo/data/gridded/On_standard_levels/index-1.html (accessed on 3 March 2020) | 2005– | 1° × 1° |
EN4 | https://www.metoffifice.gov.uk/hadobs/en4/download-en4-1-1.html (accessed on 1 June 2020) | 1900– | 1° × 1° |
IAP | http://159.226.119.60/cheng/ (accessed on 1 June 2020) | 1940– | 1° × 1° |
ORAS5 | http://icdc.cen.unihamburg.de/thredds/fileServer/ftpthredds/EASYInit/oras5/ORCA025/votemper/opa0/ (accessed on 15 March 2021) | 1979– | 1° × 1° |
OPEN | https://github.com/scenty/OPEN-OHC (accessed on 3 January 2021) | 1993– | 1° × 1° |
Hyperparameters | Meaning (Default) | Optimal Values |
---|---|---|
num_layers | The layer of the LSTM model (1) | 2 |
num_units | The number of neurons in the first layer | 120 |
dropout | The probability of randomly discarding the number of neurons in the first layer (0) | 0.3 |
num_units | The number of neurons in the second layer | 120 |
dropout | The probability of randomly discarding the number of neurons in the second layer (0) | 0.3 |
time_step | The number of moments in each sample (1) | 3 |
batch_size | The number of sample input into the model each time | 6 |
LSTM | LightGBM | |||
---|---|---|---|---|
R2 | RMSE | R2 | RMSE | |
0–100 m | 0.9970 | 2.47 × 1018 | 0.9967 | 2.59 × 1018 |
0–300 m | 0.9964 | 5.88 × 1018 | 0.9955 | 6.62 × 1018 |
0–700 m | 0.9963 | 8.93 × 1018 | 0.9934 | 1.23 × 1019 |
0–1000 m | 0.9967 | 1.02 × 1019 | 0.9927 | 1.50 × 1019 |
0–1500 m | 0.9970 | 1.12 × 1019 | 0.9932 | 1.68 × 1019 |
0–2000 m | 0.9970 | 1.21 × 1019 | 0.9934 | 1.80 × 1019 |
LSTM | LightGBM | |||
---|---|---|---|---|
R2 | RMSE | R2 | RMSE | |
0–100 m | 0.9976 | 2.20 × 1018 | 0.9973 | 2.29 × 1018 |
0–300 m | 0.9969 | 5.48 × 1018 | 0.9961 | 6.09 × 1018 |
0–700 m | 0.9955 | 1.02 × 1019 | 0.9944 | 1.13 × 1019 |
0–1000 m | 0.9958 | 1.15 × 1019 | 0.9940 | 1.36 × 1019 |
0–1500 m | 0.9963 | 1.23 × 1019 | 0.9945 | 1.51 × 1019 |
0–2000 m | 0.9967 | 1.31 × 1019 | 0.9951 | 1.55 × 1019 |
LSTM | LightGBM | |||
---|---|---|---|---|
R2 | RMSE | R2 | RMSE | |
0–100 m | 0.9924 | 3.81 × 1018 | 0.9921 | 3.90 × 1018 |
0–300 m | 0.9877 | 1.08 × 1019 | 0.9870 | 1.12 × 1019 |
0–700 m | 0.9785 | 2.23 × 1019 | 0.9764 | 2.31 × 1019 |
0–1000 m | 0.9750 | 3.02 × 1019 | 0.9723 | 3.27 × 1019 |
0–1500 m | 0.9659 | 3.72 × 1019 | 0.9634 | 3.87 × 1019 |
0–2000 m | 0.9590 | 4.45 × 1019 | 0.9570 | 4.56 × 1019 |
Depths | OPEN-LSTM | OPEN-LightGBM | OPEN-RFs | IAP | EN4 | ORAS5 |
---|---|---|---|---|---|---|
1993–2004/1993–2020 | ||||||
0–100 m | 0.68/0.60 | 0.67/0.61 | 0.63/0.57 | 0.87/0.55 | 0.79/0.45 | 0.76/0.54 |
0–300 m | 1.56/1.31 | 1.64/1.43 | 1.42/1.19 | 1.82/1.70 | 2.03/1.18 | 1.96/1.34 |
0–700 m | 2.39/1.94 | 2.25/2.00 | 1.83/1.60 | 2.94/1.83 | 3.13/1.86 | 3.05/2.22 |
0–1000 m | 2.71/2.15 | 2.44/2.21 | 1.95/1.76 | 3.33/2.11 | 3.47/2.19 | 3.34/2.60 |
0–1500 m | 3.08/2.47 | 2.63/2.36 | 2.01/1.86 | 4.03/2.64 | 4.10/2.71 | 3.95/3.28 |
0–2000 m | 3.26/2.67 | 2.67/2.41 | 2.12/1.92 | 4.15/2.93 | 4.20/3.08 | 4.36/3.78 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, H.; Qin, T.; Wang, A.; Lu, W. Reconstructing Ocean Heat Content for Revisiting Global Ocean Warming from Remote Sensing Perspectives. Remote Sens. 2021, 13, 3799. https://doi.org/10.3390/rs13193799
Su H, Qin T, Wang A, Lu W. Reconstructing Ocean Heat Content for Revisiting Global Ocean Warming from Remote Sensing Perspectives. Remote Sensing. 2021; 13(19):3799. https://doi.org/10.3390/rs13193799
Chicago/Turabian StyleSu, Hua, Tian Qin, An Wang, and Wenfang Lu. 2021. "Reconstructing Ocean Heat Content for Revisiting Global Ocean Warming from Remote Sensing Perspectives" Remote Sensing 13, no. 19: 3799. https://doi.org/10.3390/rs13193799
APA StyleSu, H., Qin, T., Wang, A., & Lu, W. (2021). Reconstructing Ocean Heat Content for Revisiting Global Ocean Warming from Remote Sensing Perspectives. Remote Sensing, 13(19), 3799. https://doi.org/10.3390/rs13193799