Modeling the Near-Surface Energies and Water Vapor Fluxes Behavior in Response to Summer Canopy Density across Yanqi Endorheic Basin, Northwestern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Mining
2.2.1. Landsat-8
2.2.2. Reference ET Measurements and Meteorological Observations
2.3. SEBAL Algorithm Adjustment and Actual ET Measurements
3. Results and Discussion
3.1. Near-Surface Energies Fluxes Partition across Yanqi Canopy Density
3.2. Dynamics of Daily Mean Evapotranspiration in Response to Yanqi Canopy Density
3.3. SEBAL Model Validation
3.4. Uncertainties and Prospects
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, H.; Li, M.-S.; Peng, Y.-G. Analysis on the Minimum Water Requirment of Natural Vegetations in Arid Regions in Xinjiang. Arid Land Geogr. 2005, 6, 770–774. [Google Scholar] [CrossRef]
- Haddeland, I.; Heinke, J.; Biemans, H.; Eisner, S.; Flörke, M.; Hanasaki, N.; Konzmann, M.; Ludwig, F.; Masaki, Y.; Schewe, J.; et al. Global water resources affected by human interventions and climate change. Proc. Natl. Acad. Sci. USA 2014, 111, 3251–3256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schlesinger, W.H.; Jasechko, S. Transpiration in the global water cycle. Agric. For. Meteorol. 2014, 189–190, 115–117. [Google Scholar] [CrossRef]
- Ochege, F.U.; Luo, G.; Obeta, M.C.; Owusu, G.; Duulatov, E.; Cao, L.; Nsengiyumva, J.B. Mapping evapotranspiration variability over a complex oasis-desert ecosystem based on automated calibration of Landsat 7 ETM+ data in SEBAL. GIScience Remote Sens. 2019, 56, 1305–1332. [Google Scholar] [CrossRef]
- Song, C.; Sheng, Y.; Zhan, S.; Wang, J.; Ke, L.; Liu, K. Impact of amplified evaporation due to lake expansion on the water budget across the inner Tibetan Plateau. Int. J. Clim. 2020, 40, 2091–2105. [Google Scholar] [CrossRef]
- Zhao, L.; Xia, J.; Xu, C.-Y.; Wang, Z.; Sobkowiak, L.; Long, C. Evapotranspiration estimation methods in hydrological models. J. Geogr. Sci. 2013, 23, 359–369. [Google Scholar] [CrossRef]
- Rodell, M.; McWilliams, E.B.; Famiglietti, J.S.; Beaudoing, H.K.; Nigro, J. Estimating evapotranspiration using an observation based terrestrial water budget. Hydrol. Process. 2011, 25, 4082–4092. [Google Scholar] [CrossRef]
- Mu, Q.; Zhao, M.; Running, S.W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 2011, 115, 1781–1800. [Google Scholar] [CrossRef]
- Oki, T.; Kanae, S.; Musiake, K. Global Hydrological Cycle and World Water Resources. Science 2003, 313, 1068–1072. [Google Scholar] [CrossRef] [Green Version]
- Jung, M.; Reichstein, M.; Ciais, P.; Seneviratne, S.; Sheffield, J.; Goulden, M.; Bonan, G.; Cescatti, A.; Chen, J.; De Jeu, R.; et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 2010, 467, 951–954. [Google Scholar] [CrossRef]
- Zhang, K.; Kimball, J.S.; Nemani, R.R.; Running, S.W.; Hong, Y.; Gourley, J.J.; Yu, Z. Vegetation Greening and Climate Change Promote Multidecadal Rises of Global Land Evapotranspiration. Sci. Rep. 2015, 5, 15956. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Wu, W.; Zhou, X.; Chen, Y.; Li, J. Investigation of the dramatic changes in lake level of the Bosten Lake in northwestern China. Theor. Appl. Clim. 2015, 119, 341–351. [Google Scholar] [CrossRef]
- Chen, X.; Wu, J.; Hu, Q. Simulation of Climate Change Impacts on Streamflow in the Bosten Lake Basin Using an Artificial Neural Network Model. J. Hydrol. Eng. 2008, 13, 180–183. [Google Scholar] [CrossRef]
- Dong, Q.; Wang, W.; Shao, Q.; Xing, W.; Ding, Y.; Fu, J. The response of reference evapotranspiration to climate change in Xinjiang, China: Historical changes, driving forces, and future projections. Int. J. Clim. 2020, 40, 235–254. [Google Scholar] [CrossRef]
- Thevs, N.; Peng, H.; Rozi, A.; Zerbe, S.; Abdusalih, N. Water allocation and water consumption of irrigated agriculture and natural vegetation in the Aksu-Tarim river basin, Xinjiang, China. J. Arid. Environ. 2015, 112, 87–97. [Google Scholar] [CrossRef]
- Wang, K.; Dickinson, R.E.; Liang, S. Global Atmospheric Evaporative Demand over Land from 1973 to 2008. J. Clim. 2012, 25, 8353–8361. [Google Scholar] [CrossRef]
- Hobbins, M.T.; Wood, A.; McEvoy, D.J.; Huntington, J.L.; Morton, C.; Anderson, M.; Hain, C. The Evaporative Demand Drought Index. Part I: Linking Drought Evolution to Variations in Evaporative Demand. J. Hydrometeorol. 2016, 17, 1745–1761. [Google Scholar] [CrossRef]
- Liu, S.; Xu, Z.; Zhu, Z.; Jia, Z.; Zhu, M. Measurements of evapotranspiration from eddy-covariance systems and large aperture scintillometers in the Hai River Basin, China. J. Hydrol. 2013, 487, 24–38. [Google Scholar] [CrossRef]
- Mueller, B.; Seneviratne, S.; Jimenez, C.; Corti, T.; Hirschi, M.; Balsamo, G.; Ciais, P.; Dirmeyer, P.; Fisher, J.; Guo, Z.; et al. Evaluation of global observations-based evapotranspiration datasets and IPCC AR4 simulations. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef] [Green Version]
- Allen, R.G.; Tasumi, M.; Trezza, R. Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)—Model. J. Irrig. Drain. Eng. 2007, 133, 380–394. [Google Scholar] [CrossRef]
- Santos, C.; Lorite, I.J.; Tasumi, M.; Allen, R.G.; Fereres, E. Integrating satellite-based evapotranspiration with simulation models for irrigation management at the scheme level. Irrig. Sci. 2008, 26, 277–288. [Google Scholar] [CrossRef]
- Su, Z. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrol. Earth Syst. Sci. 2002, 6, 85–100. [Google Scholar] [CrossRef]
- Roerink, G.; Su, Z.; Menenti, M. S-SEBI: A simple remote sensing algorithm to estimate the surface energy balance. Phys. Chem. Earth Part B Hydrol. Oceans Atmos. 2000, 25, 147–157. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.; Menenti, M.; Feddes, R.A.; Holtslag, A.A.M. A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. J. Hydrol. 1998, 212, 198–212. [Google Scholar] [CrossRef]
- Mhawej, M.; Elias, G.; Nasrallah, A.; Faour, G. Dynamic calibration for better SEBALI ET estimations: Validations and recommendations. Agric. Water Manag. 2020, 230, 105955. [Google Scholar] [CrossRef]
- Paul, G.; Gowda, P.H.; Prasad, P.V.; Howell, T.A.; Staggenborg, S.A.; Neale, C.M. Lysimetric evaluation of SEBAL using high resolution airborne imagery from BEAREX08. Adv. Water Resour. 2013, 59, 157–168. [Google Scholar] [CrossRef] [Green Version]
- Bastiaanssen, W.G.M.; Noordman, E.J.M.; Pelgrum, H.; Davids, G.; Thoreson, B.P.; Allen, R.G. SEBAL Model with Remotely Sensed Data to Improve Water-Resources Management under Actual Field Conditions. J. Irrig. Drain. Eng. 2005, 131, 85–93. [Google Scholar] [CrossRef]
- Allen, R.; Irmak, A.; Trezza, R.; Hendrickx, J.M.H.; Bastiaanssen, W.; Kjaersgaard, J. Satellite-based ET estimation in agriculture using SEBAL and METRIC. Hydrol. Process. 2011, 25, 4011–4027. [Google Scholar] [CrossRef]
- Mhawej, M.; Faour, G. Open-source Google Earth Engine 30-m evapotranspiration rates retrieval: The SEBALIGEE system. Environ. Model. Softw. 2020, 133, 104845. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.; Pelgrum, H.; Wang, J.; Ma, Y.; Moreno, J.F.; Roerink, G.J.; Van der Wal, T. A remote sensing surface energy balance algorithm for land (SEBAL): Part 2: Validation. J. Hydrol. 1998, 212, 213–229. [Google Scholar] [CrossRef]
- Yao, J.; Chen, Y.; Zhao, Y.; Yu, X. Hydroclimatic changes of Lake Bosten in Northwest China during the last decades. Sci. Rep. 2018, 8, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhou, X.; Engel, B. Water environment carrying capacity in Bosten Lake basin. J. Clean. Prod. 2018, 199, 574–583. [Google Scholar] [CrossRef]
- Yang, H.; Xu, J.; Chen, Y.; Li, D.; Zuo, J.; Zhu, N.; Chen, Z. Has the Bosten Lake Basin been dry or wet during the climate transition in Northwest China in the past 30 years? Theor. Appl. Climatol. 2020, 141, 627–644. [Google Scholar] [CrossRef]
- Xu, H.; Ye, M.; Song, Y.; Chen, Y. The Natural Vegetation Responses to the Groundwater Change Resulting from Ecological Water Conveyances to the Lower Tarim River. Environ. Monit. Assess. 2007, 131, 37–48. [Google Scholar] [CrossRef]
- Wu, M.; Wu, J.; Lin, J.; Zhu, X.; Wu, J.; Hu, B.X. Evaluating the interactions between surface water and groundwater in the arid mid-eastern Yanqi Basin, northwestern China. Hydrol. Sci. J. 2018, 63, 1313–1331. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, S.; Chang, X. Evapotranspiration Estimation Based on Remote Sensing and the SEBAL Model in the Bosten Lake Basin of China. Sustainability 2020, 12, 7293. [Google Scholar] [CrossRef]
- Timmermans, W.J.; Kustas, W.P.; Anderson, M.; French, A.N. An intercomparison of the Surface Energy Balance Algorithm for Land (SEBAL) and the Two-Source Energy Balance (TSEB) modeling schemes. Remote Sens. Environ. 2007, 108, 369–384. [Google Scholar] [CrossRef]
- Bhattarai, N.; Quackenbush, L.J.; Im, J.; Shaw, S.B. A new optimized algorithm for automating endmember pixel selection in the SEBAL and METRIC models. Remote Sens. Environ. 2017, 196, 178–192. [Google Scholar] [CrossRef]
- Singh, R.K.; Irmak, A.; Irmak, S.; Martin, D.L. Application of SEBAL Model for Mapping Evapotranspiration and Estimating Surface Energy Fluxes in South-Central Nebraska. J. Irrig. Drain. Eng. 2008, 134, 273–285. [Google Scholar] [CrossRef]
- Allen, R.G.; Morse, A.; Tasumi, M.; Bastiaanssen, W.; Kramber, W.; Anderson, H. Evapotranspiration from Landsat (SEBAL) for water rights management and compliance with multi-state water compacts. In IGARSS 2001. Scanning the Present and Resolving the Future, Proceedings of the IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No. 01CH37217), Sydney, Australia, 9–13 July 2001; IEEE: New York, NY, USA, 2001; Volume 2, pp. 830–833. [Google Scholar]
- Gentilucci, M.; Bufalini, M.; Materazzi, M.; Barbieri, M.; Aringoli, D.; Farabollini, P.; Pambianchi, G. Calculation of Potential Evapotranspiration and Calibration of the Hargreaves Equation Using Geostatistical Methods over the Last 10 Years in Central Italy. Geosciences 2021, 11, 348. [Google Scholar] [CrossRef]
- Tegos, A.; Malamos, N.; Koutsoyiannis, D. A parsimonious regional parametric evapotranspiration model based on a simplification of the Penman–Monteith formula. J. Hydrol. 2015, 524, 708–717. [Google Scholar] [CrossRef]
- Kjelgaard, J.; Bellocchi, G. Evaluation of estimated weather data for calculating Penman-Monteith reference crop evapotranspiration. Irrig. Sci. 2004, 23, 39–46. [Google Scholar] [CrossRef]
- Jiménez-Bello, M.; Castel, J.R.; Testi, L.; Intrigliolo, D.S. Assessment of a Remote Sensing Energy Balance Methodology (SEBAL) Using Different Interpolation Methods to Determine Evapotranspiration in a Citrus Orchard. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 1465–1477. [Google Scholar] [CrossRef] [Green Version]
- Madugundu, R.; Al-Gaadi, K.A.; Tola, E.; Hassaballa, A.A.; Patil, V. Performance of the METRIC model in estimating evapotranspiration fluxes over an irrigated field in Saudi Arabia using Landsat-8 images. Hydrol. Earth Syst. Sci. 2017, 21, 6135–6151. [Google Scholar] [CrossRef] [Green Version]
- Jassas, H.; Kanoua, W.; Merkel, B. Actual Evapotranspiration in the Al-Khazir Gomal Basin (Northern Iraq) Using the Surface Energy Balance Algorithm for Land (SEBAL) and Water Balance. Geosciences 2015, 5, 141–159. [Google Scholar] [CrossRef] [Green Version]
- Brutsaert, W. Aspects of bulk atmospheric boundary layer similarity under free-convective conditions. Rev. Geophys. 1999, 37, 439–451. [Google Scholar] [CrossRef]
- Jia, L.; Su, Z.; Hurk, B.V.D.; Menenti, M.; Moene, A.; De Bruin, H.A.; Yrisarry, J.B.; Ibanez, M.; Cuesta, A. Estimation of sensible heat flux using the Surface Energy Balance System (SEBS) and ATSR measurements. Phys. Chem. Earth Part B 2003, 28, 75–88. [Google Scholar] [CrossRef]
- Mira, M.; Olioso, A.; Gallego-Elvira, B.; Courault, D.; Garrigues, S.; Marloie, O.; Hagolle, O.; Guillevic, P.; Boulet, G. Uncertainty assessment of surface net radiation derived from Landsat images. Remote Sens. Environ. 2016, 175, 251–270. [Google Scholar] [CrossRef] [Green Version]
- Bisht, G.; Venturini, V.; Islam, S.; Jiang, L. Estimation of the net radiation using MODIS (Moderate Resolution Imaging Spectroradiometer) data for clear sky days. Remote Sens. Environ. 2005, 97, 52–67. [Google Scholar] [CrossRef]
- Liou, Y.-A.; Le, M.S.; Chien, H. Normalized Difference Latent Heat Index for Remote Sensing of Land Surface Energy Fluxes. IEEE Trans. Geosci. Remote Sens. 2018, 57, 1423–1433. [Google Scholar] [CrossRef]
- Allen, R.G.; Burnett, B.; Kramber, W.; Huntington, J.L.; Kjaersgaard, J.; Kilic, A.; Kelly, C.; Trezza, R. Automated Calibration of the METRIC-Landsat Evapotranspiration Process. JAWRA 2013, 49, 563–576. [Google Scholar] [CrossRef]
- Cuenca, R.H.; Ciotti, S.P.; Hagimoto, Y. Application of Landsat to Evaluate Effects of Irrigation Forbearance. Remote Sens. 2013, 5, 3776–3802. [Google Scholar] [CrossRef] [Green Version]
- Tolk, J.A.; Evett, S.R.; Howell, T.A. Advection Influences on Evapotranspiration of Alfalfa in a Semiarid Climate. Agron. J. 2006, 98, 1646–1654. [Google Scholar] [CrossRef] [Green Version]
- Berengena, J.; Gavilán, P. Reference Evapotranspiration Estimation in a Highly Advective Semiarid Environment. J. Irrig. Drain. Eng. 2005, 131, 147–163. [Google Scholar] [CrossRef]
- Lang, A.; Evans, G.; Ho, P. The influence of local advection on evapotranspiration from irrigated rice in a semi-arid region. Agric. Meteorol. 1974, 13, 5–13. [Google Scholar] [CrossRef]
- Zhou, L.-T. Influence of thermal state of warm pool in western Pacific on sensible heat flux. Atmos. Sci. Lett. 2013, 14, 91–96. [Google Scholar] [CrossRef]
- Li, L.; Yu, Q. Quantifying the effects of advection on canopy energy budgets and water use efficiency in an irrigated wheat field in the North China Plain. Agric. Water Manag. 2007, 89, 116–122. [Google Scholar] [CrossRef]
- Almeida, A.C.; Soares, J.V.; Landsberg, J.J.; Rezende, G.D. Growth and water balance of Eucalyptus grandis hybrid plantations in Brazil during a rotation for pulp production. For. Ecol. Manag. 2007, 251, 10–21. [Google Scholar] [CrossRef]
- Vincke, C.; Thiry, Y. Water table is a relevant source for water uptake by a Scots pine (Pinus sylvestris L.) stand: Evidences from continuous evapotranspiration and water table monitoring. Agric. For. Meteorol. 2008, 148, 1419–1432. [Google Scholar] [CrossRef]
- Aguilos, M.; Sun, G.; Noormets, A.; Domec, J.-C.; McNulty, S.; Gavazzi, M.; Minick, K.; Mitra, B.; Prajapati, P.; Yang, Y.; et al. Effects of land-use change and drought on decadal evapotranspiration and water balance of natural and managed forested wetlands along the southeastern US lower coastal plain. Agric. For. Meteorol. 2021, 303, 108381. [Google Scholar] [CrossRef]
- Duveiller, G.; Hooker, J.; Cescatti, A. The mark of vegetation change on Earth’s surface energy balance. Nat. Commun. 2018, 9, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Zou, C.B.; Wilcox, B.; Stebler, E. Effect of Vegetation on the Energy Balance and Evapotranspiration in Tallgrass Prairie: A Paired Study Using the Eddy-Covariance Method. Bound.-Layer Meteorol. 2019, 170, 127–160. [Google Scholar] [CrossRef]
- Twine, T.; Kustas, W.; Norman, J.; Cook, D.; Houser, P.; Meyers, T.; Prueger, J.; Starks, P.; Wesely, M. Correcting eddy-covariance flux underestimates over a grassland. Agric. For. Meteorol. 2000, 103, 279–300. [Google Scholar] [CrossRef] [Green Version]
- Trepekli, A.; Loupa, G.; Rapsomanikis, S. Seasonal evapotranspiration, energy fluxes and turbulence variance characteristics of a Mediterranean coastal grassland. Agric. For. Meteorol. 2016, 226–227, 13–27. [Google Scholar] [CrossRef]
- Jian, D.; Li, X.; Sun, H.; Tao, H.; Jiang, T.; Su, B.; Hartmann, H. Estimation of Actual Evapotranspiration by the Complementary Theory-Based Advection–Aridity Model in the Tarim River Basin, China. J. Hydrometeorol. 2018, 19, 289–303. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, X.; Liu, L.; Wang, Y.; Li, Y. Influence of mulched drip irrigation on landscape scale evapotranspiration from farmland in an arid area. Agric. Water Manag. 2020, 230, 105953. [Google Scholar] [CrossRef]
- Al-Tameemi, M.A.; Chukin, V.V. Global water cycle and solar activity variations. J. Atmos. Solar-Terr. Phys. 2016, 142, 55–59. [Google Scholar] [CrossRef]
- Liu, S.; Li, S.G.; Yu, G.R.; Sun, X.M.; Zhang, L.M.; Hu, Z.M. Surface energy exchanges above two grassland ecosystems on the Qinghai-Tibetan Plateau. Biogeosci. Discuss. 2009, 6, 9161–9192. [Google Scholar]
- Pokorný, J.; Květ, J.; Rejšková, A.; Brom, J. Wetlands as energy-dissipating systems. J. Ind. Microbiol. Biotechnol. 2010, 37, 1299–1305. [Google Scholar] [CrossRef]
- Huryna, H.; Brom, J.; Pokorný, J. The importance of wetlands in the energy balance of an agricultural landscape. Wetl. Ecol. Manag. 2014, 22, 363–381. [Google Scholar] [CrossRef]
- Melesse, A.M.; Frank, A.; Nangia, V.; Hanson, J. Analysis of energy fluxes and land surface parameters in a grassland ecosystem: A remote sensing perspective. Int. J. Remote Sens. 2008, 29, 3325–3341. [Google Scholar] [CrossRef]
- Kayumba, P.M.; Chen, Y.; Mind’Je, R.; Mindje, M.; Li, X.; Maniraho, A.P.; Umugwaneza, A.; Uwamahoro, S. Geospatial land surface-based thermal scenarios for wetland ecological risk assessment and its landscape dynamics simulation in Bayanbulak Wetland, Northwestern China. Landsc. Ecol. 2021, 36, 1699–1723. [Google Scholar] [CrossRef]
- Yamazaki, T.; Yabuki, H.; Ishii, Y.; Ohta, T.; Ohata, T. Water and Energy Exchanges at Forests and a Grassland in Eastern Siberia Evaluated Using a One-Dimensional Land Surface Model. J. Hydrometeorol. 2004, 5, 504–515. [Google Scholar] [CrossRef]
- Krinner, G. Impact of lakes and wetlands on boreal climate. J. Geophys. Res. Space Phys. 2003, 108. [Google Scholar] [CrossRef]
- Mohamed, Y.; Bastiaanssen, W.; Savenije, H.; Hurk, B.V.D.; Finlayson, C. Wetland versus open water evaporation: An analysis and literature review. Phys. Chem. Earth 2012, 47–48, 114–121. [Google Scholar] [CrossRef]
- Sun, Z.; Wei, B.; Su, W.; Shen, W.; Wang, C.; You, D.; Liu, Z. Evapotranspiration estimation based on the SEBAL model in the Nansi Lake Wetland of China. Math. Comput. Model. 2011, 54, 1086–1092. [Google Scholar] [CrossRef]
- Liljedahl, A.K.; Hinzman, L.D.; Harazono, Y.; Zona, D.; Tweedie, C.E.; Hollister, R.D.; Engstrom, R.; Oechel, W.C. Nonlinear controls on evapotranspiration in arctic coastal wetlands. Biogeosciences 2011, 8, 3375–3389. [Google Scholar] [CrossRef] [Green Version]
- Li, H. Water Resources Management for Sustainable Development in the Yanqi Basin, Xinjiang, China. Ph.D. Thesis, ETH Zürich, Zürich, Switzerland, 2009. [Google Scholar]
- Wang, H.; Li, X.; Xiao, J.; Ma, M. Evapotranspiration components and water use efficiency from desert to alpine ecosystems in drylands. Agric. For. Meteorol. 2021, 298–299, 108283. [Google Scholar] [CrossRef]
- Dodgen, L.K.; Ueda, A.; Wu, X.; Parker, D.R.; Gan, J. Effect of transpiration on plant accumulation and translocation of PPCP/EDCs. Environ. Pollut. 2015, 198, 144–153. [Google Scholar] [CrossRef] [Green Version]
- Cha, M.; Li, M.; Wang, X. Estimation of Seasonal Evapotranspiration for Crops in Arid Regions Using Multisource Remote Sensing Images. Remote Sens. 2020, 12, 2398. [Google Scholar] [CrossRef]
- Burba, G.; Verma, S.; Kim, J. Surface energy fluxes of Phragmites australis in a prairie wetland. Agric. For. Meteorol. 1999, 94, 31–51. [Google Scholar] [CrossRef]
- Micklin, P.; Aladin, N.V.; Plotnikov, I. Aral Sea; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Li, L.; Luo, G.; Chen, X.; Li, Y.; Xu, G.; Xu, H.; Bai, J. Modelling evapotranspiration in a Central Asian desert ecosystem. Ecol. Model. 2011, 222, 3680–3691. [Google Scholar] [CrossRef]
- Brunner, P.; Kinzelbach, W.; Li, W.P.; Dong, X.G. Sustainable irrigation in the Yanqi basin, China. Sustain. Irrig. Manag. Technol. Policies 2006, 96, 115–125. [Google Scholar] [CrossRef] [Green Version]
- Hemakumara, H.; Chandrapala, L.; Moene, A.F. Evapotranspiration fluxes over mixed vegetation areas measured from large aperture scintillometer. Agric. Water Manag. 2003, 58, 109–122. [Google Scholar] [CrossRef]
- Li, B.F.; Chen, Y.N.; Li, W.H.; Cao, Z.C. Remote sensing and the SEBAL model for estimating evapotranspiration in the Tarim River. Acta Geogr. Sin. 2011, 66, 1230–1238. [Google Scholar]
- Li, X.; Yang, L.; Xu, X.; Tian, W.; He, C. Analysis of evapotranspiration pattern by SEBAL model during the growing season in the agro-pastoral ecotone in Northwest China. Acta Ecol. Sin. 2020, 40, 2175–2185. [Google Scholar]
Datasets | Acquisition Date | Overpass Time (GMT) | Local Time (UTM+6:00) | Footprint |
---|---|---|---|---|
Satellite - Landsat 8 imageries (16 days revisit time) | 10 June 2019 | 04:56:31.2145410Z | 10:56:31 | Path-143 Row-031 |
12 July 2019 | 04:56:39.9086680Z | 10:56:39 | ||
28 July 2019 | 04:56:45.1198030Z | 10:56:45 | ||
13 August 2019 | 04:56:51.0675480Z | 10:56:51 | ||
29 August 2019 | 04:56:55.0502779Z | 10:56:55 | ||
Meteorological (Yanqi station-YQ) - 2 m wind speed data (m s−1) - Instantaneous reference ET (EToi, mm) - Daily reference ET (ETo, mm) - Temperature | June–August 2019 | - | - | - Latitude 42.06 °N - Longitude 86.57 °E - Altitude 1059 m |
Land cover - MODIS 0.5 degrees (MCD12Q1) - ESA LCC 300m | Start date: 1 January 2019 End date: 31 December 2019 | - | Annual operation | - |
Global multi-resolution terrain elevation data 2010 (GMTED2010)(USGS) - Digital elevation model 30 arc-seconds | 2010 | - | - | - |
LCLU | Energy Fluxes | DOY 161 | DOY 193 | DOY 209 | DOY 225 | DOY 241 | Area (ha) |
---|---|---|---|---|---|---|---|
Water Bodies | Rn | 586.3 | 554.4 | 523.9 | 519.7 | 481.7 | 102,897.54 |
G | 198.1 | 196.0 | 192.1 | 198.3 | 177.8 | ||
H | 304.6 | 237.4 | 200.3 | 199.4 | 256.7 | ||
LET | 299.5 | 277.9 | 262.2 | 254.0 | 172.8 | ||
Oasis Cropland | Rn | 589.9 | 553.5 | 524.0 | 516.7 | 483.7 | 197,992.71 |
G | 194.2 | 192.6 | 175.9 | 179.1 | 93.9 | ||
H | 243.3 | 237.5 | 196.1 | 196.9 | 259.3 | ||
LET | 297.5 | 280.2 | 261.6 | 253.1 | 173.8 | ||
T. Grasslands | Rn | 590.8 | 554.5 | 524.7 | 519.8 | 484.3 | 54,305.55 |
G | 199.7 | 198.6 | 194.5 | 201.4 | 179.4 | ||
H | 245.2 | 237.9 | 199.0 | 199.8 | 257.5 | ||
LET | 298.9 | 283.2 | 261.4 | 253.4 | 172.3 | ||
Wetlands | Rn | 593.3 | 595.9 | 526.4 | 522.1 | 487.1 | 19,590.66 |
G | 209.2 | 238.9 | 214.2 | 219.5 | 196.3 | ||
H | 256.8 | 205.5 | 205.4 | 203.9 | 265.5 | ||
LET | 293.6 | 355.1 | 255.2 | 248.0 | 168.2 | ||
R. Areas | Rn | 590.2 | 553.3 | 522.5 | 515.9 | 481.9 | 46,973.07 |
G | 193.2 | 193.1 | 186.1 | 189.3 | 171.5 | ||
H | 241.1 | 236.4 | 198.4 | 196.7 | 254.8 | ||
LET | 299.2 | 277.7 | 259.4 | 254.6 | 172.8 | ||
C. Surface | Rn | 585.5 | 553.5 | 524.2 | 518.9 | 482.8 | 67,162.32 |
G | 188.1 | 193.0 | 118.6 | 180.2 | 118.6 | ||
H | 242.3 | 237.6 | 196.0 | 196.8 | 254.9 | ||
LET | 294.1 | 277.5 | 263.0 | 249.7 | 173.9 |
DOY | 161 | 193 | 209 | 225 | 241 |
LET | 405.46 | 394.91 | 356.20 | 348.74 | 301.98 |
DOY | Water Bodies | Oasis Cropland | T. Grassland | Wetlands | Residential | C. Surface |
---|---|---|---|---|---|---|
161 | 430.9 | 485.6 | 561.6 | 538.0 | 456.0 | 416.2 |
193 | 486.3 | 476.3 | 512.9 | 502.0 | 431.0 | 387.4 |
209 | 484.5 | 439.2 | 528.1 | 511.7 | 379.4 | 299.0 |
225 | 437.4 | 420.4 | 493.3 | 486.4 | 371.2 | 299.2 |
241 | 443.8 | 394.5 | 447.4 | 460.7 | 362.4 | 304.2 |
DOY | SEBAL-ETa | Observed | RMSE-Yanqi | MSA-Yanqi | |
---|---|---|---|---|---|
161 | 5.7 | 5.6 | 0.1 | 0.6 mm/d | 0.48 mm/d |
193 | 5.2 | 5.2 | 0.0 | ||
209 | 5.4 | 6.2 | −0.8 | ||
225 | 5.1 | 5.9 | −0.8 | ||
241 | 4.1 | 4.8 | −0.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kayumba, P.M.; Fang, G.; Chen, Y.; Mind’je, R.; Hu, Y.; Ali, S.; Mindje, M. Modeling the Near-Surface Energies and Water Vapor Fluxes Behavior in Response to Summer Canopy Density across Yanqi Endorheic Basin, Northwestern China. Remote Sens. 2021, 13, 3764. https://doi.org/10.3390/rs13183764
Kayumba PM, Fang G, Chen Y, Mind’je R, Hu Y, Ali S, Mindje M. Modeling the Near-Surface Energies and Water Vapor Fluxes Behavior in Response to Summer Canopy Density across Yanqi Endorheic Basin, Northwestern China. Remote Sensing. 2021; 13(18):3764. https://doi.org/10.3390/rs13183764
Chicago/Turabian StyleKayumba, Patient Mindje, Gonghuan Fang, Yaning Chen, Richard Mind’je, Yanan Hu, Sikandar Ali, and Mapendo Mindje. 2021. "Modeling the Near-Surface Energies and Water Vapor Fluxes Behavior in Response to Summer Canopy Density across Yanqi Endorheic Basin, Northwestern China" Remote Sensing 13, no. 18: 3764. https://doi.org/10.3390/rs13183764
APA StyleKayumba, P. M., Fang, G., Chen, Y., Mind’je, R., Hu, Y., Ali, S., & Mindje, M. (2021). Modeling the Near-Surface Energies and Water Vapor Fluxes Behavior in Response to Summer Canopy Density across Yanqi Endorheic Basin, Northwestern China. Remote Sensing, 13(18), 3764. https://doi.org/10.3390/rs13183764