Monitoring of Wheat Powdery Mildew under Different Nitrogen Input Levels Using Hyperspectral Remote Sensing
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Relationships between Powdery Mildew and Canopy Spectral Reflectance of Wheat
3.2. Relationships between Disease Index and the First Derivative Spectrum
3.3. Correlation between Disese Index and Spectral Parameters
3.4. Relationships between Disease Index and Canopy Spectral Reflectance
3.5. Correlation between Wheat Yield and Spectral Parameters
3.6. Relationships of Grain Yield with Spectral Parameter Variables
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Ausmus, B.S.; Hilty, J.W. Reflectance studies of healthy, maize dwarf mosaic virus-infected, and Helminthosporium maydis-infected corn leaves. Remote Sens. Environ. 1972, 2, 77–81. [Google Scholar] [CrossRef]
- Zhang, M.; Qin, Z. Detection of stress in tomatoes induced by late blight disease in California, USA, using hyperspectral remote sensing. Int. J. Appl. Earth OBS 2003, 4, 295–310. [Google Scholar] [CrossRef]
- Ashourloo, D.; Mobasheri, M. Developing two spectral disease indices for detection of wheat leaf rust (Puccinia triticina). Remote Sens. 2014, 6, 4723–4740. [Google Scholar] [CrossRef] [Green Version]
- Ashourloo, D.; Mobasheri, M. Evaluating the effect of different wheat rust disease symptoms on vegetation indices using hyperspectral measurements. Remote Sens. 2014, 6, 5107–5123. [Google Scholar] [CrossRef] [Green Version]
- Mahlein, A.K.; Steiner, U. Spectral signatures of sugar beet leaves for the detection and differentiation of diseases. Precis. Agric. 2010, 11, 413–431. [Google Scholar] [CrossRef]
- Muhammed, H.H.; Larsolle, A. Feature vector based analysis of hyperspectral crop reflectance data for discrimination and quantification of fungal disease severity in wheat. Biosyst. Eng. 2003, 86, 125–134. [Google Scholar] [CrossRef]
- Yang, C.M. Assessment of the severity of bacterial leaf blight in rice using canopy hyperspectral reflectance. Precis. Agric. 2010, 11, 61–81. [Google Scholar] [CrossRef]
- Bauriegel, E.; Giebel, A. Early detection of Fusarium infection in wheat using hyper-spectral imaging. Comput. Electron. Agric. 2011, 75, 304–312. [Google Scholar] [CrossRef]
- Chen, B.; Li, S.K. Evaluating the severity level of cotton verticillium using spectral signature analysis. Int. J. Remote Sens. 2012, 33, 2706–2724. [Google Scholar] [CrossRef]
- Graeff, S.; Link, J. Identification of powdery mildew (Erysiphe graminis f. sp. tritici) and take-all disease (Gaeumannomyces graminis sp. tritici) in wheat (Triticum aestivum L.) by means of leaf reflectance measurements. Cent. Eur. J. Biol. 2006, 1, 275–288. [Google Scholar]
- Bennett, F.G.A. Resistance to powdery mildew in wheat: A review of its use in agriculture and breeding programmes. Plant Pathol. 1984, 33, 279–300. [Google Scholar] [CrossRef]
- Cao, X.R.; Yao, D.M. Development of weather- and airborne inoculum-based models to describe disease severity of wheat powdery mildew. Plant Dis. 2015, 99, 395–400. [Google Scholar] [CrossRef]
- Franke, J.; Menz, G. Multi-temporal wheat disease detection by multi-spectral remote sensing. Precis. Agric. 2007, 8, 161–172. [Google Scholar] [CrossRef]
- Zhang, J.C.; Pu, R.L.; Wang, J.H.; Huang, W.J.; Yuan, L.; Luo, J.H. Detecting powdery mildew of winter wheat using leaf level hyperspectral measurements. Comput. Electron. Agric. 2012, 85, 13–23. [Google Scholar] [CrossRef]
- Zhang, D.; Lin, F. Detection of wheat powdery mildew by differentiating background factors using hyperspectral imaging. Int. J. Agric. Biol. 2016, 18, 747–756. [Google Scholar] [CrossRef]
- Feng, W.; Shen, W. Improved remote sensing detection of wheat powdery mildew using dual-green vegetation indices. Precis. Agric. 2016, 17, 608–627. [Google Scholar] [CrossRef]
- Cao, X.; Luo, Y. Detection of powdery mildew in two winter wheat cultivars using canopy hyperspectral reflectance. Crop Prot. 2013, 45, 124–131. [Google Scholar] [CrossRef]
- Cao, X.; Luo, Y. Detection of powdery mildew in two winter wheat plant densities and prediction of grain yield using canopy hyperspectral reflectance. PLoS ONE 2015, 10, e0121462. [Google Scholar]
- Martens, D.A. Nitrogen cycling under different soil management systems. Adv. Agron. 2001, 70, 143–192. [Google Scholar]
- Thomas, J.R.; Oerther, G.F. Estimating nitrogen content of sweet pepper leaves by reflectance measurements. Agron. J. 1972, 64, 11–13. [Google Scholar] [CrossRef]
- Walburg, G.; Bauer, M.E. Effects of nitrogen nutrition on the growth, yield and reflectance characteristics of corn canopies. Agron. J. 1982, 74, 677–683. [Google Scholar] [CrossRef] [Green Version]
- Yu, K.; Li, F. Remotely detecting canopy nitrogen concentration and uptake of paddy rice in the northeast China plain. Isprs J. Photogramm. 2013, 78, 102–115. [Google Scholar] [CrossRef]
- Raun, W.R.; Johnson, G.V. Improving nitrogen use efficiency for cereal production. Agron. J. 1999, 91, 357–363. [Google Scholar] [CrossRef] [Green Version]
- Hinzman, L.D.; Bauer, M.E. Effects of nitrogen fertilization on growth and reflectance characteristics of winter wheat. Remote Sens. Environ. 1986, 19, 47–61. [Google Scholar] [CrossRef]
- Roth, G.W.; Fox, R.H. Plant-tissue tests for predicting nitrogen-fertilizer requirements of winter-wheat. Agron. J. 1989, 81, 502–507. [Google Scholar] [CrossRef]
- Filella, I.; Serrano, L. Evaluating wheat nitrogen status with canopy reflectance indices and discriminant analysis. Crop Sci. 1995, 35, 1400–1405. [Google Scholar] [CrossRef]
- Zhao, C.; Huang, W. The red edge parameters of different wheat varieties under different fertilization and irrigation treatments. J. Integr. Agric. 2002, 1, 745–751. [Google Scholar]
- Hansen, P.M.; Schjoerring, J.K. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sens. Environ. 2003, 86, 542–553. [Google Scholar] [CrossRef]
- Feng, W.; Yao, X. Monitoring leaf nitrogen status with hyperspectral reflectance in wheat. Eur. J. Agron. 2008, 28, 394–404. [Google Scholar] [CrossRef]
- Yao, X.; Zhu, Y. Exploring hyperspectral bands and estimation indices for leaf nitrogen accumulation in wheat. Int. J. Appl. Earth Obs. 2010, 12, 89–100. [Google Scholar] [CrossRef]
- Cui, Z.; Chen, X. On-farm evaluation of the improved soil n–based nitrogen management for summer maize in north China plain. Agron. J. 2008, 100, 517–525. [Google Scholar] [CrossRef]
- Cao, Q.; Cui, Z. Quantifying spatial variability of indigenous nitrogen supply for precision nitrogen management in small scale farming. Precis. Agric. 2012, 13, 45–61. [Google Scholar] [CrossRef]
- Large, E.C. Growth stages in cereals illustration of the Feekes scale. Plant Pathol. 1954, 3, 128–129. [Google Scholar] [CrossRef]
- Sheng, B.; Duan, X. Improvement of scale 0–9 method for scoring adult plant resistance to powdery mildew of wheat. J. Integr. Agric. 1991, 1, 38–39. [Google Scholar]
- Saari, E.E.; Prescott, J.M. A scale for appraising the foliar intensity of wheat diseases. Plant Dis. Rep. 1975, 5, 377–380. [Google Scholar]
- Gong, P.; Pu, R. Analysis of in situ hyperspectral data for nutrient estimation of giant sequoia. Int. J. Remote Sens. 2002, 23, 1827–1850. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Rouse, J.W.; Haas, R.H. Monitoring vegetation systems in the Great Plains with ERTS. In Proceedings of the Third ERTS Symposium, Washington, DC, USA, 10–14 December 1973; Volume 1, pp. 309–317. [Google Scholar]
- Gitelson, A.A.; Kaufman, Y. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Broge, N.H.; Leblanc, E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sens. Environ. 2001, 76, 156–172. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Daughtry, C.S.; Walthall, C.L. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sens. Environ. 2000, 74, 229–239. [Google Scholar] [CrossRef]
- Demetriades, S.T.H.; Steven, M.D. High resolution derivative spectra in remote sensing. Remote Sens. Environ. 1990, 33, 55–64. [Google Scholar] [CrossRef]
- Malthus, T.J.; Maderia, A.C. High resolution spectroradiometry: Spectral reflectance of field bean leaves infected by botrytis fabae. Remote Sens. Environ. 1993, 45, 107–116. [Google Scholar] [CrossRef]
- Zhu, Y.; Yao, X. Analysis of common canopy vegetation indices for indicating leaf nitrogen accumulations in wheat and rice. Int. J. Appl. Earth Obs. 2008, 10, 1–10. [Google Scholar] [CrossRef]
- Stone, M.L.; Solie, J.B. Use of spectral radiance for correcting in-season fertilizer nitrogen deficiencies in winter wheat. Trans. ASAE 1996, 39, 1623–1631. [Google Scholar] [CrossRef]
- Liu, W.; Cao, X.R. Detecting wheat powdery mildew and predicting grain yield using unmanned aerial photography. Plant Dis. 2018, 102, 1981–1988. [Google Scholar] [CrossRef] [Green Version]
Spectral Indices | Description or Formula | Literatures |
---|---|---|
Reflectance of green band (RGeen) | Reflectance of green band within 560–600 nm | |
Reflectance of red band (RRed) | Reflectance of red band within 650–680 nm | |
Reflectance of near-infrared band (RNIR) | Reflectance of near-infrared band within 780–890 nm | |
Red edge slope (dλred) | Maximum value of 1st derivative within the red edge | [36] |
The area of the red edge peak (Σdr680–760 nm) | The area under the ist derivative curve in the red edge region | [36] |
Difference vegetation index (DVI) | RNIR − RRed | [37] |
Normalized difference vegetation index (NDVI) | (RNIR − RRed)/(RNIR + RRed) | [38] |
Green normalized difference vegetation index (GNDVI) | (RNIR − RGeen)/(RNIR + RGeen) | [39] |
Nitrogen reflectance index (NRI) | (R570 nm − R670 nm)/(R570 nm + R670 nm) | [26] |
Triangular vegetation index (TVI) | 0.5[120(R750 nm − R550 nm) − 200(R670 nm − R550 nm)] | [40] |
The transformed chlorophyll absorption and reflectance index (TCARI) | 3[(R700 nm − R670 nm) − 0.2(R700 nm − R550 nm)(R700 nm/R670 nm)] | [41] |
Modified chlorophyll absorption ratio index (MCARI) | (R701 nm − R671 nm) − 0.2(R701 nm − R549 nm)]/(R701 nm/R671 nm) | [42] |
Parameter | Df | Sum Sq | Mean Sq | F Value | Pr (>F) |
---|---|---|---|---|---|
Σdr680–760 nm | 1 | 44,753 | 44,753 | 172.47 | 2 × 10−16 *** |
Year | 3 | 18,520 | 6173 | 23.79 | 2.24 × 10−14 *** |
Nitrogen input level | 2 | 3906 | 1953 | 7.53 | 0.00061 *** |
Growth stage | 2 | 2237 | 1119 | 4.31 | 0.0139 * |
Σdr680–760 nm * nitrogen input level | 2 | 75 | 38 | 0.14 | 0.865 |
Σdr680–760 nm * growth stage | 2 | 12,941 | 6471 | 24.94 | 4.94 × 10−11 *** |
Nitrogen input level * growth stage | 4 | 6521 | 1630 | 6.28 | 6.20 × 10−5 *** |
Σdr680–760 nm * nitrogen input level * growth stage | 4 | 4713 | 1178 | 4.54 | 0.00131 ** |
Residuals | 483 | 125,332 | 259 | ||
Total | 503 | 218,998 | 435 |
Season | Growth Stage | Level 1 | Level 2 | Parallel Curve Analysis |
---|---|---|---|---|
2016–2017 | 10.5.3 | y = −376.6x + 157.5 | y = −206.4x + 95.6 | F = 0.45, p = 0.716 for slope; F = 1.14, p = 0.347 for intercept |
10.5.4 | y = −155.2x + 104.2 | y = −241.9x + 140.0 | F = 0.60, p = 0.617 for slope; F = 1.73, p = 0.179 for intercept | |
11.1 | y = −296.3x + 110.6 | y = −210.1x + 94.7 | F = 0.34, p = 0.795 for slope; F = 2.15, p = 0.113 for intercept | |
2017–2018 | 10.5.3 | y = −578.8x + 147.8 | y = −312.0x + 96.3 | F = 0.52, p = 0.673 for slope; F = 0.47, p = 0.702 for intercept |
10.5.4 | y = −249.3x + 92.4 | y = −651.6x + 153.7 | F = 0.35, p = 0.790 for slope; F = 1.22, p = 0.317 for intercept | |
11.1 | y = −374.7x + 112.1 | y = −299.2x + 101.3 | F = 0.16, p = 0.923 for slope; F = 0.88, p = 0.459 for intercept | |
2018–2019 | 10.5.3 | y = −172.7x + 92.0 | y = −198.0x + 101.6 | F = 1.20, p = 0.325 for slope; F = 1.86, p = 0.156 for intercept |
10.5.4 | y = −421.0x + 171.3 | y = −301.5x + 118.8 | F = 1.23, p = 0.315 for slope; F = 5.77, p = 0.0027 for intercept | |
11.1 | y = −1026.6x + 250.1 | y = −468.8x + 125.5 | F = 0.90, p = 0.452 for slope; F = 5.06, p = 0.0052 for intercept | |
2019–2020 | 10.5.3 | y = −134.3x + 104.8 | y = −168.9x + 110.8 | F = 1.38, p = 0.266 for slope; F = 6.06, p = 0.002 for intercept |
10.5.4 | y = −245.3x + 127.6 | y = −254.9x + 125.6 | F = 2.19, p = 0.108 for slope; F = 1.54, p = 0.223 for intercept | |
11.1 | y = −451.1x + 161.3 | y = −608.1x + 202.8 | F = 1.45, p = 0.244 for slope; F = 1.25, p = 0.307 for intercept |
Year | Parameter | Level 1 | Level 2 | ||||
---|---|---|---|---|---|---|---|
GS10.5.3 | GS10.5.4 | GS11.1 | GS10.5.3 | GS10.5.4 | GS11.1 | ||
2018 | drred | 0.71 ** | 0.68 ** | 0.63 ** | 0.54 * | 0.64 ** | 0.38 |
Σdr680–760 nm | 0.65 ** | 0.60 ** | 0.65 ** | 0.51 * | 0.63 ** | 0.46 * | |
DVI | 0.77 ** | 0.79 ** | 0.60 ** | 0.52 * | 0.58 * | 0.32 | |
NDVI | 0.73 ** | 0.75 ** | 0.58 ** | 0.54 * | 0.51 * | 0.28 | |
GNDVI | 0.71 ** | 0.73 ** | 0.47 * | 0.52 * | 0.60 ** | 0.2 | |
NRI | 0.79 ** | 0.77 ** | 0.79 ** | 0.62 ** | 0.65 ** | 0.39 | |
TVI | 0.68 ** | 0.62 ** | 0.66 ** | 0.52 * | 0.64 ** | 0.46 * | |
TCARI | 0.3 | 0.38 | 0.54 * | 0.37 | 0.56** | 0.50 * | |
MCARI | 0.31 | 0.38 | 0.54 * | 0.37 | 0.56 ** | 0.50 * | |
2019 | drred | 0.70 ** | 0.63 ** | 0.69 ** | 0.74 ** | 0.70 ** | 0.66 ** |
Σdr680–760 nm | 0.60 ** | 0.64 ** | 0.82 ** | 0.76 ** | 0.74 ** | 0.76 ** | |
DVI | 0.62 ** | 0.42 | 0.36 | 0.60 ** | 0.55 ** | 0.45 * | |
NDVI | 0.60 ** | 0.36 | 0.4 | 0.57 ** | 0.54 * | 0.51 * | |
GNDVI | 0.59 ** | 0.32 | 0.27 | 0.56 ** | 0.52 * | 0.43 | |
NRI | 0.63 ** | 0.43 | 0.61 ** | 0.61 ** | 0.59 ** | 0.66 ** | |
TVI | 0.65 ** | 0.65 ** | 0.80 ** | 0.77 ** | 0.73 ** | 0.73 ** | |
TCARI | 0.46 * | 0.31 | 0.79 ** | 0.50 * | 0.75 ** | 0.75 ** | |
MCARI | 0.45 * | 0.31 | 0.80 ** | 0.50 * | 0.75 ** | 0.75 ** | |
2020 | drred | 0.83 ** | 0.87 ** | 0.88 ** | 0.90 ** | 0.83 ** | 0.72 ** |
Σdr680–760 nm | 0.82 ** | 0.84 ** | 0.90 ** | 0.88 ** | 0.84 ** | 0.77 ** | |
DVI | 0.82 ** | 0.84 ** | 0.90 ** | 0.89 ** | 0.85 ** | 0.76 ** | |
NDVI | 0.4 | 0.26 | 0.42 | 0.59 ** | 0.60 ** | 0.37 | |
GNDVI | 0.31 | 0.15 | 0.31 | 0.56 ** | 0.52 * | 0.23 | |
NRI | 0.54 * | 0.44 * | 0.44 * | 0.55 ** | 0.72 ** | 0.62 ** | |
TVI | 0.81 ** | 0.84 ** | 0.89 ** | 0.86 ** | 0.84 ** | 0.77 ** | |
TCARI | 0.84 ** | 0.64 ** | 0.63 ** | 0.87 ** | 0.72 ** | 0.47 * | |
MCARI | 0.49 * | 0.46 * | 0.56 ** | 0.36 | 0.43 | 0.31 |
Parameter | Df | Sum Sq | Mean Sq | F Value | Pr (>F) |
---|---|---|---|---|---|
Σdr680–760 nm | 1 | 59.63 | 59.63 | 668.89 | <2.2 × 10−16 *** |
Year | 2 | 32.11 | 16.06 | 180.10 | <2.2 × 10−16 *** |
Nitrogen input level | 2 | 16.77 | 8.38 | 94.04 | <2.2 × 10−16 *** |
Growth stage | 2 | 5.37 | 2.68 | 30.10 | 8.26 × 10−13 *** |
Σdr680–760 nm * nitrogen input level | 2 | 1.36 | 0.68 | 7.62 | 0.000573 *** |
Σdr680–760 nm * growth stage | 2 | 8.61 | 4.30 | 48.28 | <2.2 × 10−16 *** |
Nitrogen input level * growth stage | 4 | 2.11 | 0.53 | 5.93 | 0.000126 *** |
Σdr680–760 nm * nitrogen input level * growth stage | 4 | 1.55 | 0.39 | 4.34 | 0.00194 ** |
Residuals | 358 | 31.91 | 0.089 | ||
Total | 377 | 159.47 | 0.42 |
Season | Growth Stage | Level 1 | Level 2 | Parallel Curve Analysis |
---|---|---|---|---|
2017–2018 | 10.5.3 | y = 13.63x + 0.54 | y = 5.36x + 1.50 | F = 0.59, p = 0.627 for slope; F = 3.74, p = 0.020 for intercept |
10.5.4 | y = 6.37x + 1.91 | y = 10.91x + 0.68 | F = 0.36, p = 0.780 for slope; F = 0.68, p = 0.569 for intercept | |
11.1 | y = 8.60x + 0.72 | y = 4.74x + 1.71 | F = 0.39, p = 0.761 for slope; F = 4.92, p = 0.0061 for intercept | |
2018–2019 | 10.5.3 | y = 3.44x + 2.57 | y = 3.31x + 2.0 | F = 1.81, p = 0.164 for slope; F = 11.56, p < 0.001 for intercept |
10.5.4 | y = 7.56x + 1.38 | y = 4.42x + 2.0 | F = 1.76, p = 0.173 for slope; F = 0.21, p = 0.888 for intercept | |
11.1 | y = 17.01x + 0.37 | y = 6.98x + 1.97 | F = 2.34, p = 0.0911 for slope; F = 0.74, p = 0.536 for intercept | |
2019–2020 | 10.5.3 | y = 2.99x + 2.49 | y = 5.06x + 1.26 | F = 1.09, p = 0.366 for slope; F = 0.45, p = 0.722 for intercept |
10.5.4 | y = 7.95x + 1.50 | y = 5.99x + 1.95 | F = 0.79, p = 0.508 for slope; F = 2.35, p = 0.0895 for intercept | |
11.1 | y = 10.50x + 1.62 | y = 10.87x + 1.14 | F = 2.5, p = 0.0764 for slope; F = 11.33, p < 0.001 for intercept |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Sun, C.; Zhao, Y.; Xu, F.; Song, Y.; Fan, J.; Zhou, Y.; Xu, X. Monitoring of Wheat Powdery Mildew under Different Nitrogen Input Levels Using Hyperspectral Remote Sensing. Remote Sens. 2021, 13, 3753. https://doi.org/10.3390/rs13183753
Liu W, Sun C, Zhao Y, Xu F, Song Y, Fan J, Zhou Y, Xu X. Monitoring of Wheat Powdery Mildew under Different Nitrogen Input Levels Using Hyperspectral Remote Sensing. Remote Sensing. 2021; 13(18):3753. https://doi.org/10.3390/rs13183753
Chicago/Turabian StyleLiu, Wei, Chaofei Sun, Yanan Zhao, Fei Xu, Yuli Song, Jieru Fan, Yilin Zhou, and Xiangming Xu. 2021. "Monitoring of Wheat Powdery Mildew under Different Nitrogen Input Levels Using Hyperspectral Remote Sensing" Remote Sensing 13, no. 18: 3753. https://doi.org/10.3390/rs13183753
APA StyleLiu, W., Sun, C., Zhao, Y., Xu, F., Song, Y., Fan, J., Zhou, Y., & Xu, X. (2021). Monitoring of Wheat Powdery Mildew under Different Nitrogen Input Levels Using Hyperspectral Remote Sensing. Remote Sensing, 13(18), 3753. https://doi.org/10.3390/rs13183753