Evaluating the Spectral Response and Yield of Soybean Following Exposure to Sublethal Rates of 2,4-D and Dicamba at Vegetative and Reproductive Growth Stages
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plot Layout and Experimental Design
2.2. Drone Image Acquisition
2.3. Drone Image Processing and Data Extraction
2.4. Statistical Analysis
3. Results
3.1. Soybean Yield Response following Sublethal 2,4-D and Dicamba Exposure
3.2. VI Value Based on Herbicide, Herbicide Rate, and Growth Stage
3.3. Efficacy of VIs on the Prediction of Yield Loss
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Heap, I. The International Survey of Herbicide Resistant Weeds. Available online: Weedscience.org (accessed on 15 April 2021).
- Heap, I.; Duke, S.O. Overview of glyphosate-resistant weeds worldwide. Pest Manag. Sci. 2018, 74, 1040–1049. [Google Scholar] [CrossRef] [PubMed]
- Duke, S.O. Why have no new herbicide modes of action appeared in recent years? Pest Manag. Sci. 2012, 68, 505–512. [Google Scholar] [CrossRef] [Green Version]
- Green, J.M. The benefits of herbicide-resistant crops. Pest Manag. Sci. 2012, 68, 1323–1331. [Google Scholar] [CrossRef] [PubMed]
- Behrens, M.R.; Mutlu, N.; Chakraborty, S.; Dumitru, R.; Jiang, W.Z.; LaVallee, B.J.; Herman, P.L.; Clemente, T.E.; Weeks, D.P. Dicamba resistance: Enlarging and preserving biotechnology-based weed management strategies. Science 2007, 316, 1185–1188. [Google Scholar] [CrossRef] [Green Version]
- Wright, T.R.; Shan, G.; Walsh, T.A.; Lira, J.M.; Cui, C.; Song, P.; Zhuang, M.; Arnold, N.L.; Lin, G.; Yau, K. Robust crop resistance to broadleaf and grass herbicides provided by aryloxyalkanoate dioxygenase transgenes. Proc. Natl. Acad. Sci. USA 2010, 107, 20240–20245. [Google Scholar] [CrossRef] [Green Version]
- Bradley, K. A Final Report on Dicamba-Injured Soybean Acres. Available online: https://ipm.missouri.edu/IPCM/2017/10/final_report_dicamba_injured_soybean/ (accessed on 12 January 2021).
- Bish, M.; Oseland, E.; Bradley, K. Off-target pesticide movement: A review of our current understanding of drift due to inversions and secondary movement. Weed Technol. 2020, 1–43. [Google Scholar] [CrossRef]
- Kniss, A.R. Soybean response to dicamba: A meta-analysis. Weed Technol. 2018, 32, 507–512. [Google Scholar] [CrossRef]
- Solomon, C.B.; Bradley, K.W. Influence of application timings and sublethal rates of synthetic auxin herbicides on soybean. Weed Technol. 2014, 28, 454–464. [Google Scholar] [CrossRef]
- Dintelmann, B.R.; Warmund, M.R.; Bish, M.D.; Bradley, K.W. Investigations of the sensitivity of ornamental, fruit, and nut plant species to driftable rates of 2, 4-D and dicamba. Weed Technol. 2020, 34, 331–341. [Google Scholar] [CrossRef]
- Everitt, J.D.; Keeling, J.W. Cotton growth and yield response to simulated 2, 4-D and dicamba drift. Weed Technol. 2009, 23, 503–506. [Google Scholar] [CrossRef]
- Bradley, K.; Bish, M. Weed Identification and Herbicide Injury Guide For Corn and Soybean; Knapp, V., Ed.; MU Extension Columbia: Columbia, MO, USA, 2016. [Google Scholar]
- Soltani, N.; Nurse, R.E.; Sikkema, P.H. Response of glyphosate-resistant soybean to dicamba spray tank contamination during vegetative and reproductive growth stages. Can. J. Plant Sci. 2016, 96, 160–164. [Google Scholar] [CrossRef]
- Sweet, R. Comments on rating systems in weed science. Proc. Northeast. Weed Control. Control. Conf. 1975, 29, 264–268. [Google Scholar]
- Shanmugapriya, P.; Rathika, S.; Ramesh, T.; Janaki, P. Applications of remote sensing in agriculture-A Review. Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 2270–2283. [Google Scholar] [CrossRef]
- Jin, X.; Liu, S.; Baret, F.; Hemerlé, M.; Comar, A. Estimates of plant density of wheat crops at emergence from very low altitude UAV imagery. Remote Sens. Environ. 2017, 198, 105–114. [Google Scholar] [CrossRef] [Green Version]
- Kitano, B.T.; Mendes, C.C.; Geus, A.R.; Oliveira, H.C.; Souza, J.R. Corn Plant Counting Using Deep Learning and UAV Images. IEEE Geosci. Remote Sens. Lett. 2019, 1–5. [Google Scholar] [CrossRef]
- Scharf, P.C.; Lory, J.A. Calibrating corn color from aerial photographs to predict sidedress nitrogen need. Agron. J. 2002, 94, 397–404. [Google Scholar] [CrossRef]
- Tetila, E.C.; Machado, B.B.; de Souza Belete, N.A.; Guimarães, D.A.; Pistori, H. Identification of soybean foliar diseases using unmanned aerial vehicle images. IEEE Geosci. Remote Sens. Lett. 2017, 14, 2190–2194. [Google Scholar] [CrossRef]
- Huang, Y.; Reddy, K.N.; Thomson, S.J.; Yao, H. Assessment of soybean injury from glyphosate using airborne multispectral remote sensing. Pest Manag. Sci. 2015, 71, 545–552. [Google Scholar] [CrossRef] [PubMed]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Prueger, J.H. Value of using different vegetative indices to quantify agricultural crop characteristics at different growth stages under varying management practices. Remote Sens. 2010, 2, 562–578. [Google Scholar] [CrossRef] [Green Version]
- Jordan, C.F. Derivation of leaf-area index from quality of light on the forest floor. Ecology 1969, 50, 663–666. [Google Scholar] [CrossRef]
- Mkhabela, M.S.; Bullock, P.; Raj, S.; Wang, S.; Yang, Y. Crop yield forecasting on the Canadian Prairies using MODIS NDVI data. Agric. For. Meteorol. 2011, 151, 385–393. [Google Scholar] [CrossRef]
- Price, J.C.; Bausch, W.C. Leaf area index estimation from visible and near-infrared reflectance data. Remote Sens. Environ. 1995, 52, 55–65. [Google Scholar] [CrossRef]
- Turner, D.P.; Cohen, W.B.; Kennedy, R.E.; Fassnacht, K.S.; Briggs, J.M. Relationships between leaf area index and Landsat TM spectral vegetation indices across three temperate zone sites. Remote Sens. Environ. 1999, 70, 52–68. [Google Scholar] [CrossRef]
- Wang, F.-M.; Huang, J.-F.; Tang, Y.-L.; Wang, X.-Z. New vegetation index and its application in estimating leaf area index of rice. Rice Sci. 2007, 14, 195–203. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Chang, J.; Shoshany, M. Red-edge ratio normalized vegetation index for remote estimation of green biomass. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 10–15 July 2016; pp. 1337–1339. [Google Scholar]
- Xie, Q.-Y.; Dash, J.; Huang, W.; Peng, D.; Qin, Q.; Mortimer, H.; Casa, R.; Pignatti, S.; Laneve, G.; Pascucci, S.; et al. Vegetation indices combining the red and red-edge spectral information for leaf area index retrieval. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2018, 11, 1482–1493. [Google Scholar] [CrossRef] [Green Version]
- Jay, S.; Baret, F.; Dutartre, D.; Malatesta, G.; Héno, S.; Comar, A.; Weiss, M.; Maupas, F. Exploiting the centimeter resolution of UAV multispectral imagery to improve remote-sensing estimates of canopy structure and biochemistry in sugar beet crops. Remote Sens. Environ. 2019, 231, 110898. [Google Scholar] [CrossRef]
- Duddu, H.S.; Johnson, E.N.; Willenborg, C.J.; Shirtliffe, S.J. High-Throughput UAV Image-Based Method Is More Precise Than Manual Rating of Herbicide Tolerance. Plant Phenomics 2019, 2019. [Google Scholar] [CrossRef] [Green Version]
- da Silva, A.R.; de Freitas, M.A.; de Souza Costa, D.; da Silva Araújo, L.; de Almeida Rocha, R.; dos Santos, P.V.; Galvani Filho, M.E. Proximal sensing estimation of glyphosate injury on weeds in central Brazil. J. Appl. Remote Sens. 2019, 13, 044524. [Google Scholar] [CrossRef]
- Barnhart, I.; Chaudhari, S.; Pandian, B.A.; Prasad, P.V.; Ciampitti, I.A.; Jugulam, M. Use of high-resolution unmanned aerial systems imagery and machine learning to evaluate grain sorghum tolerance to mesotrione. J. Appl. Remote Sens. 2021, 15, 014516. [Google Scholar] [CrossRef]
- Henry, W.B.; Shaw, D.R.; Reddy, K.R.; Bruce, L.M.; Tamhankar, H.D.J.W.T. Remote sensing to detect herbicide drift on crops. Weed Technol. 2004, 18, 358–368. [Google Scholar] [CrossRef]
- Thelen, K.D.; Kravchenko, A.; Lee, C.D. Use of optical remote sensing for detecting herbicide injury in soybean. Weed Technol. 2004, 18, 292–297. [Google Scholar] [CrossRef]
- Huang, Y.; Thomson, S.; Ortiz, B.; Reddy, K.; Ding, W.; Zablotowicz, R.; Bright, J. Airborne remote sensing assessment of the damage to cotton caused by spray drift from aerially applied glyphosate through spray deposition measurements. Biosyst. Eng. 2010, 107, 212–220. [Google Scholar] [CrossRef]
- Auch, D.; Arnold, W. Dicamba use and injury on soybeans (Glycine max) in South Dakota. Weed Sci. 1978, 26, 471–475. [Google Scholar] [CrossRef]
- Wax, L.; Knuth, L.; Slife, F. Response of soybeans to 2, 4-D, dicamba, and picloram. Weed Sci. 1969, 17, 388–393. [Google Scholar] [CrossRef]
- Purcell, L.C. Soybean canopy coverage and light interception measurements using digital imagery. Crop. Sci. 2000, 40, 834–837. [Google Scholar] [CrossRef]
- Di Gennaro, S.F.; Battiston, E.; Di Marco, S.; Facini, O.; Matese, A.; Nocentini, M.; Palliotti, A.; Mugnai, L. Unmanned Aerial Vehicle (UAV)-based remote sensing to monitor grapevine leaf stripe disease within a vineyard affected by esca complex. Phytopathol. Mediterr. 2016, 55, 262–275. [Google Scholar]
- Abrantes, T.C.; Queiroz, A.R.S.; Lucio, F.R.; Mendes Júnior, C.W.; Kuplich, T.M.; Bredemeier, C.; Merotto Júnior, A. Assessing the effects of dicamba and 2, 4 Dichlorophenoxyacetic acid (2, 4D) on soybean through vegetation indices derived from Unmanned Aerial Vehicle (UAV) based RGB imagery. Int. J. Remote Sens. 2021, 42, 2740–2758. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, Y.; Reddy, K.N.; Wang, B. Assessing crop damage from dicamba on non-dicamba-tolerant soybean by hyperspectral imaging through machine learning. Pest Manag. Sci. 2019, 75, 3260–3272. [Google Scholar] [CrossRef]
- Andersen, S.M.; Clay, S.; Wrage, L.; Matthees, D. Soybean foliage residues of dicamba and 2, 4-D and correlation to application rates and yield. Agron. J. 2004, 96, 750–760. [Google Scholar] [CrossRef]
- Vina, A.; Gitelson, A.A.; Rundquist, D.C.; Keydan, G.; Leavitt, B.; Schepers, J. Monitoring maize (Zea mays L.) phenology with remote sensing. Agron. J. 2004, 96, 1139–1147. [Google Scholar] [CrossRef]
- Li, B.; Xu, X.; Zhang, L.; Han, J.; Bian, C.; Li, G.; Liu, J.; Jin, L. Above-ground biomass estimation and yield prediction in potato by using UAV-based RGB and hyperspectral imaging. ISPRS J. Photogramm. Remote Sens. 2020, 162, 161–172. [Google Scholar] [CrossRef]
- Poley, L.; McDermid, G. A Systematic Review of the Factors Influencing the Estimation of Vegetation Aboveground Biomass Using Unmanned Aerial Systems. Remote Sens. 2020, 12, 1052. [Google Scholar] [CrossRef] [Green Version]
- Niu, Y.; Zhang, L.; Zhang, H.; Han, W.; Peng, X. Estimating above-ground biomass of maize using features derived from UAV-based RGB imagery. Remote Sens. 2019, 11, 1261. [Google Scholar] [CrossRef] [Green Version]
- Egli, D.; Cornelius, P. A regional analysis of the response of soybean yield to planting date. Agron. J. 2009, 101, 330–335. [Google Scholar] [CrossRef]
- Breunig, F.M.; Galvão, L.S.; Formaggio, A.R.; Epiphanio, J.C.N. Directional effects on NDVI and LAI retrievals from MODIS: A case study in Brazil with soybean. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 34–42. [Google Scholar] [CrossRef]
- Egan, J.F.; Barlow, K.M.; Mortensen, D.A. A meta-analysis on the effects of 2, 4-D and dicamba drift on soybean and cotton. Weed Sci. 2014, 62, 193–206. [Google Scholar] [CrossRef]
- Nguy-Robertson, A.; Gitelson, A.; Peng, Y.; Viña, A.; Arkebauer, T.; Rundquist, D. Green leaf area index estimation in maize and soybean: Combining vegetation indices to achieve maximal sensitivity. Agron. J. 2012, 104, 1336–1347. [Google Scholar] [CrossRef] [Green Version]
- Hickman, M.V.; Everitt, J.H.; Escobar, D.E.; Richardson, A.J. Aerial photography and videography for detecting and mapping dicamba injury patterns. Weed Technol. 1991, 5, 700–706. [Google Scholar] [CrossRef]
- Osipitan, O.A.; Scott, J.E.; Knezevic, S.Z. Glyphosate-resistant soybean response to micro-rates of three dicamba-based herbicides. Agrosyst. Geosci. Environ. 2019, 2, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Foster, M.; Griffen, J.; Copes, J.; Blouin, D. Development of a model to predict soybean yield loss from dicamba exposure. Weed Technol. 2019, 33, 287–295. [Google Scholar] [CrossRef]
Vegetative Index | Dicamba | 2,4-D | |||||
---|---|---|---|---|---|---|---|
Injured @ V3 | Non-Treated 3 | 1/1000× 4 | 1/100× | 1/10× | 1/100× | 1/10× | 1/2× |
NDVI | 0.78 A | 0.71 B | 0.66 C | 0.52 D | 0.73 A | 0.66 B | 0.44 C |
GNDVI | 0.68 a | 0.64 a | 0.57 b | 0.46 c | 0.62 b | 0.58 b | 0.42 c |
NDRE | 0.32 A | 0.30 AB | 0.25 B | 0.16 C | 0.27 B | 0.24 B | 0.17 C |
VARI | 0.39 a | 0.31 b | 0.25 bc | 0.21 c | 0.29 b | 0.27 bc | 0.20 c |
Injured @ R1 | |||||||
NDVI | 0.89 A | 0.88 A | 0.84 B | 0.73 C | 0.86 AB | 0.83 B | 0.73 C |
GNDVI | 0.79 a | 0.78 ab | 0.75 b | 0.62 c | 0.75 b | 0.71 b | 0.62 c |
NDRE | 0.44 A | 0.42 AB | 0.39 B | 0.28 C | 0.40 B | 0.37 B | 0.28 C |
VARI | 0.46 a | 0.42 a | 0.41 a | 0.28 b | 0.37 b | 0.33 b | 0.23 c |
Injured @ R2 | |||||||
NDVI | 0.90 A | 0.89 AB | 0.85 BC | 0.82 C | 0.88 A | 0.82 B | 0.80 B |
GNDVI | 0.79 a | 0.76 ab | 0.73 bc | 0.69 c | 0.77 a | 0.73 b | 0.70 b |
NDRE | 0.45 A | 0.42 AB | 0.40 B | 0.34 C | 0.44 AB | 0.40 BC | 0.39 C |
VARI | 0.48 a | 0.43 b | 0.40 b | 0.34 c | 0.44 ab | 0.37 bc | 0.35 c |
Growth Stage 2 | Vegetative Index | Dicamba | 2,4-D | ||
---|---|---|---|---|---|
Yield Reduction Model 3 | R-Squared | Yield Reduction Model | R-Squared | ||
V3 | NDVI | y = 1.6x + 7.6 | 0.67 | y = 1.5x + 3.2 | 0.84 |
GNDVI | y = 1.7x + 12 | 0.67 | y = 1.7x + 3.8 | 0.80 | |
NDRE | y = 1.5x + 8.3 | 0.72 | y = 1.2x + 4.5 | 0.79 | |
VARI | y = 0.7x + 18 | 0.33 | y = 0.6x + 14 | 0.31 | |
R1 | NDVI | y = 3.4x + 8.9 | 0.63 | y = 2.3x + 4.6 | 0.69 |
GNDVI | y = 2.5x + 9.8 | 0.61 | y = 1.8x + 4.0 | 0.64 | |
NDRE | y = 1.8x + 0.8 | 0.75 | y = 1.2x + 1.8 | 0.70 | |
VARI | y = 0.8x + 12 | 0.38 | y = 0.4x + 9.7 | 0.24 | |
R2 | NDVI | NS 4 | NS | y = 1.5x +8.7 | 0.48 |
GNDVI | NS | NS | y = 1.4x + 7.8 | 0.55 | |
NDRE | y = 1.3x + 11 | 0.28 | y = 1.2x + 6.6 | 0.49 | |
VARI | y = 0.5x + 13 | 0.14 | y = 0.8x + 6.3 | 0.36 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oseland, E.; Shannon, K.; Zhou, J.; Fritschi, F.; Bish, M.D.; Bradley, K.W. Evaluating the Spectral Response and Yield of Soybean Following Exposure to Sublethal Rates of 2,4-D and Dicamba at Vegetative and Reproductive Growth Stages. Remote Sens. 2021, 13, 3682. https://doi.org/10.3390/rs13183682
Oseland E, Shannon K, Zhou J, Fritschi F, Bish MD, Bradley KW. Evaluating the Spectral Response and Yield of Soybean Following Exposure to Sublethal Rates of 2,4-D and Dicamba at Vegetative and Reproductive Growth Stages. Remote Sensing. 2021; 13(18):3682. https://doi.org/10.3390/rs13183682
Chicago/Turabian StyleOseland, Eric, Kent Shannon, Jianfeng Zhou, Felix Fritschi, Mandy D. Bish, and Kevin W. Bradley. 2021. "Evaluating the Spectral Response and Yield of Soybean Following Exposure to Sublethal Rates of 2,4-D and Dicamba at Vegetative and Reproductive Growth Stages" Remote Sensing 13, no. 18: 3682. https://doi.org/10.3390/rs13183682