Quantitative Contributions of Climate Change and Human Activities to Vegetation Changes in the Upper White Nile River
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Data Sources and Processing
3.2. Methods
3.2.1. Coefficient of Variation
3.2.2. Mann-Kendall Mutation Test
3.2.3. Theil-Sen Median Trend Analysis and Mann-Kendall Nonparametric Significance Test
3.2.4. Hurst Exponent
3.2.5. Partial Correlation Analysis
3.2.6. Attributing Vegetation Change
4. Results
4.1. Variation in the NDVI
4.2. The Volatility of the Vegetation
4.3. Spatial Trend Characteristics
4.4. Prediction of the Future Trend of Vegetation
4.5. Correlation between Climate Factors and Vegetation
4.6. Synthetic Analysis of the Main Drivers of Vegetation Changes
5. Discussion
5.1. Vegetation Trends and Spatial Heterogeneity
5.2. Vegetation Changes and Climate Factors
5.3. Vegetation Changes and Human Activities
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sun, W.Y.; Song, X.Y.; Mu, X.M.; Gao, P.; Wang, F.; Zhao, G.J. Spatio-temporal vegetation cover variations associated with climate change and ecological restoration in the Loess Plateau. Agric. For. Meteorol. 2015, 209–210, 87–99. [Google Scholar] [CrossRef]
- Shi, S.Y.; Yu, J.J.; Wang, F.; Wang, P.; Zhang, Y.C.; Jin, K. Quantitative contributions of climate change and human activities to vegetation changes over multiple time scales on the Loess Plateau. Sci. Total Environ. 2021, 755, 142419. [Google Scholar] [CrossRef]
- Law, B.E.; Falge, E.; Gu, L.; Baldocchi, D.D.; Bakwin, P.; Berbigier, P.; Davis, K.; Dolman, H.; Falk, M.; Fuentes, J.D.; et al. Envi-ronmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation. Trans. Inst. Br. Geogr. 2002, 16, 507. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Zhao, W.; Martinez-Murillo, J.F.; Pereira, P. Loess Plateau: From degradation to restoration. Sci. Total Environ. 2020, 738, 140206. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.L.; Shan, M.; Pei, X.R.; Zhang, X.K.; Yang, Y.L. Assessment of the impacts of climate change and human activities on vegetation cover change in the Haihe River basin, China. Phys. Chem. Earth Parts A/B/C 2020, 115, 102834. [Google Scholar] [CrossRef]
- Mao, J.F.; Shi, X.Y.; Thornton, P.; Hoffman, F.; Zhu, Z.C.; Myneni, R. Global Latitudinal-Asymmetric Vegetation Growth Trends and Their Driving Mechanisms: 1982–2009. Remote Sens. 2013, 5, 1484–1497. [Google Scholar] [CrossRef] [Green Version]
- Piao, S.L.; Wang, X.H.; Park, T.; Chen, C.; Lian, X.; He, Y.; Bjerke, J.W.; Chen, A.; Ciais, P.; Tømmervik, H.; et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 2020, 1, 14–27. [Google Scholar] [CrossRef]
- Zhu, Z.; Piao, S.; Myneni, R.B.; Huang, M.; Zeng, Z.; Canadell, J.G.; Ciais, P.; Sitch, S.; Friedlingstein, P.; Arneth, A.; et al. Greening of the Earth and its drivers. Nat. Clim. Chang. 2016, 6, 791–795. [Google Scholar] [CrossRef]
- He, Z.H.; Zhang, Y.H.; He, Y.; Zhang, X.W.; Cai, J.Z.; Lei, L.P. Trends of vegetation change and driving factor analysis in recent 20 years over Zhejiang province. Ecol. Environ. Sci. 2020, 29, 1530–1539. [Google Scholar] [CrossRef]
- Krishnaswamy, J.; John, R.; Joseph, S. Consistent response of vegetation dynamics to recent climate change in tropical mountain regions. Glob. Chang. Biol. 2014, 20, 203–215. [Google Scholar] [CrossRef]
- Wang, H.; Zhou, S.L.; Li, X.B.; Liu, H.H.; Chi, D.K.; Xu, K.K. The influence of climate change and human activities on ecosystem service value. J. Ecol. Eng. 2016, 87, 224–239. [Google Scholar] [CrossRef]
- Gao, J.B.; Jiao, K.W.; Wu, S.H.; Ma, D.Y.; Zhao, D.S.; Yin, Y.H.; Dai, E.F. Past and future effects of climate change on spatially het-erogeneous vegetation activity in China. Earth’s Future 2017, 5, 679–692. [Google Scholar] [CrossRef] [Green Version]
- Lutgens, F.K.; Tarbuck, E.J.; Tasa, D. The Atmosphere: An Introduction to Meteorology, 12th ed.; Pearson Education, Inc.: Cranbury, NJ, USA, 2013. [Google Scholar]
- Zheng, K.; Wei, J.Z.; Pei, J.Y.; Cheng, H.; Zhang, X.L.; Huang, F.Q.; Li, F.M.; Ye, J.S. Impacts of climate change and human activities on grassland vegetation variation in the Chinese Loess Plateau. Sci. Total Environ. 2019, 660, 236–244. [Google Scholar] [CrossRef]
- Li, J.J.; Peng, S.Z.; Li, Z. Detecting and attributing vegetation changes on China’s Loess Plateau. Agric. For. Meteorol. 2017, 247, 260–270. [Google Scholar] [CrossRef]
- Baumbach, L.; Siegmund, J.F.; Mittermeier, M.; Donner, R.V. Impacts of temperature extremes on European vegetation during the growing season. Biogeosciences 2017, 14, 4891–4903. [Google Scholar] [CrossRef] [Green Version]
- Deng, C.L.; Zhang, B.Q.; Cheng, L.Y.; Hu, L.Q.; Chen, F.H. Vegetation dynamics and their effects on surface water-energy balance over the Three-North Region of China. Agric. For. Meteorol. 2019, 275, 79–90. [Google Scholar] [CrossRef]
- Jiang, L.L.; Guli, J.; Bao, A.M.; Guo, H.; Ndayisaba, F. Vegetation dynamics and responses to climate change and human activities in Central Asia. Sci. Total Environ. 2017, 599–600, 967–980. [Google Scholar] [CrossRef] [PubMed]
- Tong, X.Y.; Brandt, M.; Hiernaux, P.; Herrmann, S.; Tian, F.; Prishchepov, A.; Fensholt, R. Revisiting the coupling between NDVI trends and cropland changes in the Sahel drylands: A case study in western Niger. Remote Sens. Environ. 2017, 191, 286–296. [Google Scholar] [CrossRef] [Green Version]
- Fung, T.; Siu, W. Environmental quality and its changes, an analysis using NDVI. Int. J. Remote Sens. 2000, 21, 1011–1024. [Google Scholar] [CrossRef]
- Pettorelli, N.; Vik, J.O.; Mysterud, A.; Gaillard, J.-M.; Tucker, C.J.; Stenseth, N.C. Using the satellite-derived NDVI to assess eco-logical responses to environmental change. Trends Ecol. Evol. 2005, 20, 503–510. [Google Scholar] [CrossRef]
- Clerici, N.; Weissteiner, C.; Gerard, F. Exploring the Use of MODIS NDVI-Based Phenology Indicators for Classifying Forest General Habitat Categories. Remote Sens. 2012, 4, 1781–1803. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Guo, S.; Zhu, L.J.; Zhou, Y.N.; Di, L. Urban vegetation phenology analysis using high spatio-temporal NDVI time series. Urban For. Urban Green. 2017, 25, 43–57. [Google Scholar] [CrossRef]
- Lamchin, M.; Wang, S.W.; Lim, C.-H.; Ochir, A.; Pavel, U.; Gebru, B.M.; Choi, Y.; Jeon, S.W.; Lee, W.-K. Understanding global spa-tio-temporal trends and the relationship between vegetation greenness and climate factors by land cover during 1982–2014. Glob. Ecol. Conserv. 2020, 24, e01299. [Google Scholar] [CrossRef]
- Zhao, L.; Dai, A.; Dong, B. Changes in global vegetation activity and its driving factors during 1982–2013. Agric. For. Meteorol. 2018, 249, 198–209. [Google Scholar] [CrossRef]
- Davis-Reddy, C. Assessing Vegetation Dynamics in Response to Climate Variability and Change across Sub-Saharan Africa; StelLenbosch University: Stellenbosch, South Africa, 2018. [Google Scholar]
- Nicholson, S.E. An analysis of recent rainfall conditions in eastern Africa. Int. J. Climatol. 2016, 36, 526–532. [Google Scholar] [CrossRef]
- Kalisa, W.; Igbawua, T.; Henchiri, M.; Ali, S.; Zhang, S.; Bai, Y.; Zhang, J. Assessment of climate impact on vegetation dynamics over East Africa from 1982 to 2015. Sci. Rep. 2019, 9, 16865. [Google Scholar] [CrossRef] [Green Version]
- Abera, T.A. Climatic Impacts of Vegetation Dynamics in Eastern Africa; University of Helsinki: Helsinki, Finland, 2020. [Google Scholar]
- Pricope, N.G.; Husak, G.; Lopez-Carr, D.; Funk, C.; Michaelsen, J. The Climate-Population Nexus in the East African Horn: Emerging Degradation Trends in Rangeland and Pastoral Livelihood Zones. Glob. Environ. Chang. 2013, 23, 1525–1541. [Google Scholar] [CrossRef]
- Morgan, B.; Awange, J.L.; Saleem, A.; Kexiang, H. Understanding vegetation variability and their ‘‘hotspots’’ within Lake Victoria Basin (LVB: 2003–2018). Appl. Geogr. 2020, 122, 102238. [Google Scholar] [CrossRef]
- Fensholt, R.; Proud, S.R. Evaluation of Earth Observation based global long term vegetation trends—Comparing GIMMS and MODIS global NDVI time series. Remote Sens. Environ. 2012, 119, 131–147. [Google Scholar] [CrossRef]
- Herrmann, S.M.; Anyamba, A.; Tucker, C.J. Recent trends in vegetation dynamics in the African Sahel and their relationship to climate. Glob. Environ. Chang. 2005, 15, 394–404. [Google Scholar] [CrossRef]
- Fensholt, R.; Rasmussen, K.; TheisNielsen, T.; Mbow, C. Evaluation of earth observation based long term vegetation trends—Intercomparing NDVI time series trend analysis consistency of Sahel from AVHRR GIMMS, Terra MODIS and SPOT VGT data. Remote Sens. Environ. 2009, 113, 1886–1898. [Google Scholar] [CrossRef]
- Holben, B.N. Characteristics of maximum-value composite images from temporal AVHRR data. Int. J. Remote Sens. 1986, 7, 1417–1434. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Harris, I.; Jones, P.D.; Osborn, T.J.; Lister, D.H. Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 Dataset. Int. J. Climatol. 2014, 34, 623–642. [Google Scholar] [CrossRef] [Green Version]
- Jarvis, A.; Reuter, H.I.; Nelson, A.; Guevara, E. Hole-Filled SRTM for the Globe Version 4, Available from the CGIAR-CSI SRTM 90 m Database. 2008. Available online: https://data.tpdc.ac.cn/en/data/literature/c5e73417-5451-47ac-b3c1-c49d2162a700/ (accessed on 3 September 2021).
- Tucker, C.J.; Newcomb, W.W.; Los, S.O.; Prince, S.D. Mean and inter-year variation of growing-season normalized difference vegetation index for the Sahel 1981–1989. Int. J. Remote Sens. 1991, 12, 1133–1135. [Google Scholar] [CrossRef]
- Milich, L.; Weiss, E. GAC NDVI interannual coefficient of variation (CoV) images: Ground truth sampling of the Sahel along north-south transects. Int. J. Remote Sens. 2000, 21, 235–260. [Google Scholar] [CrossRef]
- Jiang, W.G.; Yuan, L.H.; Wang, W.J.; Cao, R.; Zhang, Y.F.; Shen, W.M. Spatio-temporal analysis of vegetation variation in the Yellow River Basin. Ecol. Indic. 2015, 51, 117–126. [Google Scholar] [CrossRef]
- Lei, Y.B.; Zhu, Y.L.; Wang, B.; Yao, T.D.; Yang, K.; Zhang, X.W.; Zhai, J.Q.; Ma, N. Extreme Lake Level Changes on the Tibetan Plateau Associated With the 2015/2016 El Niño. Geophys. Res. Lett. 2019, 46, 5889–5898. [Google Scholar] [CrossRef]
- Yue, S.; Pilon, P.; Cavadias, G. Power of the Mann-Kendall and Spearman’s Rho Tests For Detecting Monotonic Trends in Hydro-logical Series. J. Hydrol. 2002, 259, 254–271. [Google Scholar] [CrossRef]
- Zhang, R.P.; Liang, T.G.; Guo, J.; Xie, H.J.; Feng, Q.S.; Aimaiti, Y. Grassland dynamics in response to climate change and human activities in Xinjiang from 2000 to 2014. Sci. Rep. 2018, 8, 2888. [Google Scholar] [CrossRef]
- Liu, Z.Z.; Wang, H.; Li, N.; Zhu, J.; Pan, Z.W.; Qin, F. Spatial and Temporal Characteristics and Driving Forces of Vegetation Changes in the Huaihe River Basin from 2003 to 2018. Sustainability 2020, 12, 2198. [Google Scholar] [CrossRef] [Green Version]
- Wei, O.Y.; Wan, X.Y.; Xu, Y.; Wang, X.L.; Lin, C.Y. Vertical difference of climate change impacts on vegetation at temporal-spatial scales in the upper stream of the Mekong River Basin. Sci. Total Environ. 2020, 701, 134782. [Google Scholar] [CrossRef]
- Bai, Y.; Guo, C.; Degen, A.A.; Ahmad, A.A.; Wang, W.; Zhang, T.; Li, W.; Ma, L.; Huang, M.; Zeng, H.; et al. Climate warming benefits alpine vegetation growth in Three-River Headwater Region, China. Sci. Total Environ. 2020, 742, 140574. [Google Scholar] [CrossRef]
- Gocic, M.; Trajkovic, S. Analysis of changes in meteorological variables using Mann-Kendall and Sen’s slope estimator statistical tests in Serbia. Glob. Planet. Chang. 2013, 100, 172–182. [Google Scholar] [CrossRef]
- Cai, B.F.; Yu, R. Advance and evaluation in the long time series vegetation trends research based on remote sensing. J. Remote Sens. 2009, 13, 1170–1186. [Google Scholar] [CrossRef]
- Li, Y.; Xie, Z.; Qin, Y.; Xia, H.; Zheng, Z.; Zhang, L.; Pan, Z.; Liu, Z. Drought Under Global Warming and Climate Change: An Empirical Study of the Loess Plateau. Sustainability 2019, 11, 1281. [Google Scholar] [CrossRef] [Green Version]
- Kendall, M.G. Rank Correlation Methods; Charles Griffin: London, UK, 1975. [Google Scholar]
- Tošić, I. Spatial and temporal variability of winter and summer precipitation over Serbia and Montenegro. Theor. Appl. Climatol. 2004, 77, 47–56. [Google Scholar] [CrossRef]
- Hou, X.Y.; Wu, T.; Yu, L.J.; Qian, S. Characteristics of multi-temporal scale variation of vegetation coverage in the Circum Bohai Bay Region, 1999–2009. Acta Ecol. Sin. 2012, 32, 297–304. [Google Scholar] [CrossRef]
- Huang, F.R.; Mo, X.G.; Lin, Z.H.; Hu, S. Dynamics and responses of vegetation to climatic variations in Ziya-Daqing basins, China. Chin. Geogr. Sci. 2016, 26, 478–494. [Google Scholar] [CrossRef] [Green Version]
- Stow, D.; Daeschner, S.; Hope, A.; Douglas, D.; Petersen, A.; Myneni, R.; Zhou, L.; Oechel, W. Variability of the Seasonally Integrated Normalized Difference Vegetation Index Across the North Slope of Alaska in the 1990s. Int. J. Remote Sens. 2003, 24, 1111–1117. [Google Scholar] [CrossRef]
- Lipsitz, S.R.; Leong, T.; Ibrahim, J.; Lipshultz, S. A Partial Correlation Coefficient and Coefficient of Determination for Multivariate Normal Repeated Measures Data. J. R. Stat. Soc. 2001, 50, 87–95. [Google Scholar] [CrossRef]
- Hu, S.; Wang, F.Y.; Zhan, C.S.; Zhao, R.X.; Mo, X.G.; Liu, L.M.Z. Detecting and attributing vegetation changes in Taihang Mountain, China. J. Mt. Sci. 2019, 16, 337–350. [Google Scholar] [CrossRef]
- Ghebrezgabher, M.G.; Yang, T.B.; Yang, X.M.; Eyassu Sereke, T. Assessment of NDVI variations in responses to climate change in the Horn of Africa. Egypt. J. Remote Sens. Space Sci. 2020, 23, 249–261. [Google Scholar] [CrossRef]
- Gu, Z.J.; Duan, X.W.; Shi, Y.D.; Li, Y.; Pan, X. Spatiotemporal variation in vegetation coverage and its response to climatic factors in the Red River Basin, China. Ecol. Indic. 2018, 93, 54–64. [Google Scholar] [CrossRef]
- Shi, Y.; Jin, N.; Ma, X.L.; Wu, B.Y.; He, Q.S.; Yue, C.; Yu, Q. Attribution of climate and human activities to vegetation change in China using machine learning techniques. Agric. For. Meteorol. 2020, 294, 108146. [Google Scholar] [CrossRef]
- Lunyolo, L.D.; Khalifa, M.; Ribbe, L. Assessing the interaction of land cover/land use dynamics, climate extremes and food systems in Uganda. Sci. Total Environ. 2021, 753, 142549. [Google Scholar] [CrossRef]
- Calow, R.C.; Macdonald, A.M.; Nicol, A.L.; Robins, N.S. Ground water security and drought in Africa: Linking availability, access, and demand. Ground Water 2010, 48, 246–256. [Google Scholar] [CrossRef]
- Nzabarinda, V.; Bao, A.; Xu, W.; Uwamahoro, S.; Madeleine, U.; Dufatanye Umwali, E.; Nyirarwasa, A.; Umuhoza, J. A Spatial and Temporal Assessment of Vegetation Greening and Precipitation Changes for Monitoring Vegetation Dynamics in Climate Zones over Africa. Int. J. Geo-Inf. 2021, 10, 129. [Google Scholar] [CrossRef]
- Knapp, A.K. Variation among Biomes in Temporal Dynamics of Aboveground Primary Production. Science 2001, 291, 481–484. [Google Scholar] [CrossRef] [Green Version]
- Fenta, A.A.; Tsunekawa, A.; Haregeweyn, N.; Tsubo, M.; Yasuda, H.; Shimizu, K.; Kawai, T.; Ebabu, K.; Berihun, M.L.; Sultan, D.; et al. Cropland expansion outweighs the monetary effect of declining natural vegetation on ecosystem services in sub-Saharan Africa. Ecosyst. Serv. 2020, 45, 101154. [Google Scholar] [CrossRef]
- Pfeifer, M.; Platts, P.J.; Burgess, N.D.; Swetnam, R.D.; Willcock, S.; Lewis, S.L.; Marchant, R. Land use change and carbon fluxes in East Africa quantified using earth observation data and field measurements. Environ. Conserv. 2013, 40, 241–252. [Google Scholar] [CrossRef] [Green Version]
Land Cover Type | Abbreviation | Proportion of Total UWNR Area (%) | |
---|---|---|---|
Agricultural land | Rainfed cropland and irrigated cropland | CL | 41.16 |
Mosaic cropland mixed with natural vegetation | MCL | 8.4 | |
Forest | FL | 16.9 | |
Grassland | GL | 2.88 | |
Shrubland | SL | 11.6 |
CV | Volatility Degree | Area Percentage (%) | ||
---|---|---|---|---|
1982–2020 | 1982–1999 | 2000–2020 | ||
<0.05 | Low volatility | 43.56 | 82.84 | 57.53 |
0.05–0.10 | Relatively low volatility | 49.45 | 16.45 | 37.73 |
0.10–0.15 | Medium volatility | 5.43 | 0.71 | 3.80 |
0.15–0.20 | Relatively high volatility | 1.14 | 0.002 | 0.74 |
≥0.20 | High volatility | 0.41 | -- | 0.20 |
Trend Slope | Z | NDVI Trend | Area Percentage (%) | ||
---|---|---|---|---|---|
1982–2020 | 1982–1999 | 2000–2020 | |||
β < −0.0005 | |Z| > 1.96 | Significantly degraded | 9.93 | 1.75 | 6.05 |
β < −0.0005 | |Z| ≤ 1.96 | Slightly degraded | 3.58 | 16.56 | 19.37 |
0.0005 ≥ β > −0.0005 | |Z| > 1.96 or |Z| ≤ 1.96 | Stable | 14.59 | 26.20 | 18.07 |
β ≥ 0.0005 | |Z| ≤ 1.96 | Slightly improved | 9.06 | 44.13 | 33.94 |
β ≥ 0.0005 | |Z| > 1.96 | Significantly improved | 62.85 | 11.36 | 22.57 |
Trend Slope | Z | H | Variation Type | Future Trends | Area Precentage (%) |
---|---|---|---|---|---|
β < −0.0005 | |Z| > 1.96 | 0 ≤ H < 0.5 | Unsustainbility and significantly degraded | Improve in the future | 8.29 |
β < −0.0005 | |Z| ≤ 1.96 | 0 ≤ H < 0.5 | Unsustainbility and slightly degraded | Improve in the future | 3.19 |
β ≥ 0.0005 | |Z| > 1.96 | 0 ≤ H < 0.5 | Unsustainbility and significantly improved | Degrade in the future | 52.25 |
β ≥ 0.0005 | |Z| ≤ 1.96 | 0 ≤ H < 0.5 | Unsustainbility and slightly improved | Degrade in the future | 8.26 |
β ≥ 0.0005 | |Z| > 1.96 | 0.5 < H ≤ 1 | Sustainability and significantly improved | Continuous improvement | 10.59 |
β ≥ 0.0005 | |Z| ≤ 1.96 | 0.5 < H ≤ 1 | Sustainability and slightly improved | Continuous improvement | 0.81 |
β < −0.0005 | |Z| > 1.96 | 0.5 < H ≤ 1 | Sustainability and significantly degraded | Persistent degradation | 1.64 |
β < −0.0005 | |Z| ≤ 1.96 | 0.5 < H ≤ 1 | Sustainability and slightly degraded | Persistent degradation | 0.39 |
0.0005 ≥ β > −0.0005 | |Z| > 1.96 or |Z| ≤ 1.96 | 0 ≤ H < 0.5 | Unsustainbility and stable | Unstable in the future | 13.26 |
0.0005 ≥ β > −0.0005 | |Z| > 1.96 or |Z| ≤ 1.96 | 0.5 < H ≤ 1 | Sustainability and stable | Continuously stable | 1.32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, B.; Wang, S.; Mupenzi, C.; Li, H.; Ma, J.; Li, Z. Quantitative Contributions of Climate Change and Human Activities to Vegetation Changes in the Upper White Nile River. Remote Sens. 2021, 13, 3648. https://doi.org/10.3390/rs13183648
Ma B, Wang S, Mupenzi C, Li H, Ma J, Li Z. Quantitative Contributions of Climate Change and Human Activities to Vegetation Changes in the Upper White Nile River. Remote Sensing. 2021; 13(18):3648. https://doi.org/10.3390/rs13183648
Chicago/Turabian StyleMa, Bo, Shanshan Wang, Christophe Mupenzi, Haoran Li, Jianye Ma, and Zhanbin Li. 2021. "Quantitative Contributions of Climate Change and Human Activities to Vegetation Changes in the Upper White Nile River" Remote Sensing 13, no. 18: 3648. https://doi.org/10.3390/rs13183648
APA StyleMa, B., Wang, S., Mupenzi, C., Li, H., Ma, J., & Li, Z. (2021). Quantitative Contributions of Climate Change and Human Activities to Vegetation Changes in the Upper White Nile River. Remote Sensing, 13(18), 3648. https://doi.org/10.3390/rs13183648