Application of Copernicus Data for Climate-Relevant Urban Planning Using the Example of Water, Heat, and Vegetation
Abstract
:1. Introduction
2. Resilient and Climate-Relevant Urban Planning
3. Relevant Data and State-of-the-Art Technology
3.1. CODE-DE Platform
- Category 1: German federal authorities and their contractors
- Category 2: German state authorities, municipalities, and their contractors
- Category 3: German research institutions and other non-commercial organizations
- Category 4: Anyone who does not fall into one of the other categories. Examples include non-German users, students, and private sector users.
3.2. Climate Data Store (CDS)
3.3. Commercial Software Products
3.4. Copernicus Climate Change Service (C3S)
3.5. International CORDEX Initiative
3.6. Critical Discussion of Addressing Current Challenges of Using Climate and Environmental Data
4. Proposed Approach and Methods
- It is difficult to identify the relevant datasets in each case.
- Benefits and added value for municipal applications are not directly recognizable.
- So far, there are no easy-to-use tools for identifying and merging different Copernicus data and processing and evaluating them (together with local data) for use in municipal planning activities. Notably, this challenge concerns linking different spatial scales (macro-, meso-, micro-scale) and integrating data on differently resolved past or forecast periods [57,58].
- Practice-oriented technical tools for the determination and use of Copernicus data and services, merging with heterogeneous, locally available data sets and appropriate evaluation and preparation/presentation/visualization of output.
- Associated technical and urban planning utilization methods, exemplified here to be implemented to increase urban climate resilience. The focus areas include water (sealing and desiccation of the soil, urban stormwater drainage design, flood control), heat (development planning, air flows, etc.), and vegetation (greening strategy and its spatial differentiation, vegetation monitoring/vitality).
- Establish best-practice local government process structures for efficiently integrating climate and environmental data. Use technical tools and urban planning methods to carry out concrete climate resilience work of the municipality (spatial planning, environmental planning, risk management, etc.). More incentives to work collaboratively and mainstream adaptation processes are generated as the additional data and information increase efficiency for some municipal tasks.
5. Advanced Municipal Climate Data Store (AMCDS Toolbox)
- (1)
- Practical, ease-of-use, and value-adding application of Copernicus data by local communities without the need for specific professional qualifications, e.g., data scientist’s expertise;
- (2)
- Informed, evidence-based and real-time decision making for climate change risk and crisis management as well as data-driven improvement of the viability, sustainability, and cost-effectiveness of medium- and long-term urban infrastructure planning;
- (3)
- Independence of cities from external expertise procured on a case-by-case basis (i.e., autonomy of action, cost-effectiveness, and flexibility); and
- (4)
- Improved and expanded opportunities for citizen participation and justification/communication of planning measures and urban regulations to citizens.
6. Discussion
7. Limitations, Project Risks, Schedule, and Project Funding
8. Conclusions and Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ritchie, H.; Roser, M. Urbanization. Published online at OurWorldInData.org. 2018. Available online: https://ourworldindata.org/urbanization (accessed on 9 July 2021).
- Di Napoli, C.; Pappenberger, F.; Cloke, H.L. Assessing heat-related health risk in Europe via the Universal Thermal Climate Index (UTCI). Int. J. Biometeorol. 2018, 62, 1155–1165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pyrgou, A.; Santamouris, M. Increasing probability of heat-related mortality in a Mediterranean city due to urban warming. Int. J. Environ. Res. Public Health 2018, 15, 1571. [Google Scholar] [CrossRef] [Green Version]
- Jandaghian, Z.; Akbari, H. The effects of increasing surface reflectivity on heat-related mortality in Greater Montreal Area, Canada. Urban Clim. 2018, 25, 135–151. [Google Scholar] [CrossRef]
- Hatvani-Kovacs, G.; Bush, J.; Sharifi, E.; Boland, J. Policy recommendations to increase urban heat stress resilience. Urban Clim. 2018, 25, 51–63. [Google Scholar] [CrossRef]
- Coumou, D.; Rahmstorf, S. A decade of weather extremes. Nat. Clim. Chang. 2012, 2, 491–496. [Google Scholar] [CrossRef]
- Baker, J.L. Climate Change, Disaster Risk, and the Urban Poor: Cities Building Resilience for a Changing World; World Bank Publications: Washington, DC, USA, 2012. [Google Scholar]
- Shakou, L.M.; Wybo, J.L.; Reniers, G.; Boustras, G. Developing an innovative framework for enhancing the resilience of critical infrastructure to climate change. Saf. Sci. 2019, 118, 364–378. [Google Scholar] [CrossRef]
- Frame, D.J.; Rosier, S.M.; Noy, I.; Harrington, L.J.; Carey-Smith, T.; Sparrow, S.N.; Stone, D.A.; Dean, S.M. Climate change attribution and the economic costs of extreme weather events: A study on damages from extreme rainfall and drought. Clim. Chang. 2020, 162, 781–797. [Google Scholar] [CrossRef]
- Eyink, H.; Heck, B.; Dosch, F.; Haury, S.; Skowski, J.; Wahler, B. Grün in der Stadt−Für Eine Lebenswerte Zukunft. Grünbuch Stadtgrün, in Grün in der Stadt-Für Eine Lebenswerte Zukunft; N. Bundesministerium für Umwelt, Bau und Reaktorsicherheit (BMUB); Referat Öffentlichkeitsarbeit: Berlin, Germany, 2015; Available online: https://www.bbsr.bund.de/BBSR/DE/veroeffentlichungen/ministerien/bmub/verschiedene-themen/2015/gruenbuch-2015-dl.pdf (accessed on 9 July 2021).
- Krüger, J. Entwicklung von Anwendungsfällen aus dem Bereich Bauwirtschaft für offene, föderierte digitale Plattformen (Development of use cases from the construction industry for open, federated digital platforms). In Department of Civil Engineering; University of Applied Sciences Konstanz (HTWG): Konstanz, Germany, 2021; p. 152. [Google Scholar]
- Ferguson, C.; Andandarajah, G.; Butnar, I.; Calzadilla, A.; Dessens, O. Costing the Earth-Climate Damage Cost and GDP: A Summary of the Report Produced by UCL Energy Institute for CDP. 2020. Available online: https://www.cdp.net/en/research/global-reports/costing-the-earth (accessed on 9 July 2021).
- Nitsch, J.; Pregger, T.; Naegler, T.; Heide, D.; Luca de Tena, D.; Trieb, F.; Scholz, Y.; Nienhaus, K.; Gerhardt, N.; Sterner, M.; et al. Langfristszenarien und Strategien Für den Ausbau der Erneuerbaren Energien in Deutschland bei Berücksichtigung der Entwicklung in Europa und Global (Long-Term Scenarios and Strategies for the Expansion of Renewable Energies in Germany, Taking into Account Developments in Europe and Globally); DLR Berichtsreihe: Stuttgart, Germany, 2012. [Google Scholar]
- Hirschfeld, J.; Pissarskoi, E.; Schulze, S.; Stöver, J. Kosten des Klimawandels und der Anpassung an den Klimawandel aus vier Perspektiven (Costs of climate change and adaptation from four perspectives). In Background Paper on the 1st Climate Economics Forum; Hamburgisches Weltwirtschaftsinstitut: Hamburg, Germany, 2015. [Google Scholar]
- Chu, E.; Anguelovski, I.; Carmin, J. Inclusive approaches to urban climate adaptation planning and implementation in the Global South. Clim. Policy 2016, 16, 372–392. [Google Scholar] [CrossRef] [Green Version]
- Basel Committee on Banking Supervision (BCBS). Climate-Related Risk Drivers and their Transmission Channels; Report; Bank for International Settlements (BIS): Basel, Switzerland, 2021; Available online: https://www.bis.org/bcbs/publ/d517.pdf (accessed on 9 July 2021).
- Basel Committee on Banking Supervision (BCBS). Climate-Related Financial Risks–Measurement Methodologies; Report; Bank for International Settlements (BIS): Basel, Switzerland, 2021; Available online: https://www.bis.org/bcbs/publ/d518.pdf (accessed on 9 July 2021).
- The Ever Growing Use of Copernicus Across Europe’s Regions-A Selection of 99 User Stories by Local and Regional Authorities. 2018. Available online: https://esamultimedia.esa.int/docs/EarthObservation/copernicus4regions_2018.pdf (accessed on 30 August 2021).
- Cogato, A.; Meggio, F.; De Antoni Migliorati, M.; Marinello, F. Extreme Weather Events in Agriculture: A Systematic Review. Sustainability 2019, 11, 2547. [Google Scholar] [CrossRef] [Green Version]
- Swiss Academy of Sciences (SCNAT). «Digitale Zwillinge» Unterstützen die Planung. In Scnat Network; The Swiss Academy of Sciences (SCNAT), Ed.; 2021; Available online: https://scnat.ch/en/uuid/i/a78523ec-7b42-51c0-b5e8-09081bad0e65-%C2%ABDigitale_Zwillinge%C2%BB_unterst%C3%BCtzen_die_Planung (accessed on 9 July 2021).
- Schrotter, G.; Hürzeler, C. The digital twin of the city of Zurich for urban planning. PFG J. Photogramm. Remote Sens. Geoinf. Sci. 2020, 88, 99–112. [Google Scholar] [CrossRef] [Green Version]
- StBE. Überflungsgefahrenkarten Köln (Flood Hazard Maps Cologne). 2021. Available online: https://www.steb-koeln.de/hochwasser-und-ueberflutungsschutz/akutes-hochwasser/ueberflutungsgefahrenkarten/ueberflutungsgefahrenkarten.jsp (accessed on 1 September 2021).
- Kreienkamp, F. Rapid Attribution of Heavy Rainfall Events Leading to the Severe Flooding in Western Europe during July 2021; Environmental Change Institute, University of Oxford: Oxford, UK, 2021. [Google Scholar]
- Jüpner, R.; Kathmann, M.; Müller, U.; Patt, H. Hochwasser-Handbuch: Auswirkungen und Schutz; Springer: Berlin, Germany, 2020; p. 341. [Google Scholar]
- Ziehm, H. Hochwasser-Management: Was ist zu tun, wenn der Pegel Steigt? (Flood Management: What to do When the Water Level Rises?). In Where Next; Esri Deutschland GmbH: Kranzberg, Germany, 2021; Available online: https://wherenext.esri.de/hochwasser-management/ (accessed on 9 July 2021).
- Mankowski, R. Digitale Zwillinge auf Städteebene für Hochwasserbeständigkeit. In GEObranchen Geobusiness & Geowissenschaft; 2021; Available online: https://www.geobranchen.de/mediathek/geonews/item/digitale-zwillinge-auf-st%C3%A4dteebene-f%C3%BCr-hochwasserbest%C3%A4ndigkeit (accessed on 9 July 2021).
- Mak, H.W.L.; Lam, Y.F. Comparative assessments and insights of data openness of 50 smart cities in air quality aspects. Sustain. Cities Soc. 2021, 69, 102868. [Google Scholar] [CrossRef]
- Raoult, B.; Bergeron, C.; Alós, A.L.; Thépaut, J.N.; Dee, D. Climate service develops user-friendly data store. ECMWF Newsl. 2017, 151, 22–27. [Google Scholar]
- Buontempo, C.; Hutjes, R.; Beavis, P.; Berckmans, J.; Cagnazzo, C.; Vamborg, F.; Thépaut, J.N.; Bergeron, C.; Almond, S.; Amici, A.; et al. Fostering the development of climate services through Copernicus Climate Change Service (C3S) for agriculture applications. Weather. Clim. Extrem. 2020, 27, 100226. [Google Scholar] [CrossRef]
- ESRI. Esri Products. 2021. Available online: https://www.esri.com/en-us/arcgis/products/ (accessed on 1 September 2021).
- Fotheringham, A.S.; Brunsdon, C.; Charlton, M. Quantitative Geography: Perspectives on Spatial Data Analysis; Sage: London, UK, 2000. [Google Scholar]
- ESRI. Spatial Analysis and Data Science: Analysis with The Science of Where. 2021. Available online: https://www.esri.com/en-us/arcgis/products/spatial-analytics-data-science/overview (accessed on 1 September 2021).
- Nübel, K.; Bühler, M.M.; Jelinek, T. Federated Digital Platforms: Value Chain Integration for Sustainable Infrastructure Planning and Delivery. Sustainability 2021, 13, 8996. [Google Scholar] [CrossRef]
- Jacob, D.; Teichmann, C.; Sobolowski, S.; Katragkou, E.; Anders, I.; Belda, M.; Benestad, R.; Boberg, F.; Buonomo, E.; Cardoso, R.M.; et al. Regional climate downscaling over Europe: Perspectives from the EURO-CORDEX community. Reg. Environ. Chang. 2020, 20, 1–20. [Google Scholar] [CrossRef]
- Jacob, D.; Petersen, J.; Eggert, B.; Alias, A.; Christensen, O.B.; Bouwer, L.M.; Braun, A.; Colette, A.; Déqué, M.; Georgievski, G.; et al. EURO-CORDEX: New high-resolution climate change projections for European impact research. Reg. Environ. Chang. 2014, 14, 563–578. [Google Scholar] [CrossRef]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef] [Green Version]
- Hemri, S.; Bhend, J.; Manzanas, R.; Gutiérrez, J.M.; Manubens, N.; Hunter, A.; Soares, M.B.; Bedia, J.; Martín, D.S.; Siegert, S.; et al. Evaluation and quality control for seasonal forecasts of the Copernicus Climate Change Service. In Geophysical Research Abstracts; European Geosciences Union (EGU): Vienna, Austria, 2019; Volume 21. [Google Scholar]
- Hewitt, C.D.; Lowe, J.A. Toward a European Climate Prediction System. Bull. Am. Meteorol. Soc. 2018, 99, 1997–2001. [Google Scholar] [CrossRef]
- Oses, N.; Azpiroz, I.; Marchi, S.; Guidotti, D.; Quartulli, M.; GOlaizola, I. Analysis of Copernicus’ ERA5 Climate Reanalysis Data as a Replacement for Weather Station Temperature Measurements in Machine Learning Models for Olive Phenology Phase Prediction. Sensors 2020, 20, 6381. [Google Scholar] [CrossRef]
- Benveniste, J.; Mandea, M.; Melet, A.; Ferrier, P. Earth Observations for Coastal Hazards Monitoring and International Services: A European Perspective. Surv. Geophys. 2020, 41, 1185–1208. [Google Scholar] [CrossRef]
- Kettle, N.P.; Walsh, J.E.; Heaney, L.; Thoman, R.L.; Redilla, K.; Carroll, L. Integrating archival analysis, observational data, and climate projections to assess extreme event impacts in Alaska. Clim. Chang. 2020, 163, 669–687. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Su, B.; Wang, Y.; Wang, G.; Wang, G.; Huang, J.; Jiang, T. Flood risk in a range of spatial perspectives–from global to local scales. Nat. Hazards Earth Syst. Sci. 2019, 19, 1319–1328. [Google Scholar] [CrossRef] [Green Version]
- Vitolo, C.; Di Giuseppe, F.; Barnard, C.; Coughlan, R.; San-Miguel-Ayanz, J.; Libertá, G.; Krzeminski, B. ERA5-based global meteorological wildfire danger maps. Sci. Data 2020, 7, 1–11. [Google Scholar] [CrossRef]
- Hoffmann, E.; Rupp, J.; Sander, K. What do users expect from climate adaptation services? Developing an information platform based on user surveys. In Handbook of Climate Services; Springer: Berlin, Germany, 2020; pp. 105–134. [Google Scholar]
- Leal Filho, W.; Jacob, D. Handbook of Climate Services; Springer: Berlin, Germany, 2020. [Google Scholar]
- Lemos, M.C.; Kirchhoff, C.J.; Ramprasad, V. Narrowing the climate information usability gap. Nat. Clim. Chang. 2012, 2, 789–794. [Google Scholar] [CrossRef]
- Daniels, E.; Bharwani, S.; Butterfield, R. The Tandem Framework: A Holistic Approach to Co-Designing Climate Services; Stockholm Environment Institute: Stockholm, Sweden, 2019. [Google Scholar]
- Jones, L.; Champalle, C.; Chesterman, S.; Cramer, L.; Crane, T.A. Constraining and enabling factors to using long-term climate information in decision-making. Clim. Policy 2017, 17, 551–572. [Google Scholar] [CrossRef]
- Flagg, J.A.; Kirchhoff, C.J. Context matters: Context-related drivers of and barriers to climate information use. Clim. Risk Manag. 2018, 20, 1–10. [Google Scholar] [CrossRef]
- Valeriano, O.C.S.; Koike, T.; Yang, D.; Nyunt, C.T.; Van Khanh, D.; Chau, N.L. Flood simulation using different sources of rainfall in the Huong River, Vietnam/Simulation d’inondation à l’aide de différentes sources d’information pluviométrique dans le bassin de la Rivière Huong, Vietnam. Hydrol. Sci. J. 2009, 54, 909–917. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Li, B.; Chen, Y.; Guo, H.; Wang, Y.; Lian, L. Applicability Evaluation of Multisource Satellite Precipitation Data for Hydrological Research in Arid Mountainous Areas. Remote Sens. 2020, 12, 2886. [Google Scholar] [CrossRef]
- Hackenbruch, J.; Kunz-Plapp, T.; Müller, S.; Schipper, J.W. Tailoring Climate Parameters to Information Needs for Local Adaptation to Climate Change. Climate 2017, 5, 25. [Google Scholar] [CrossRef] [Green Version]
- Webb, R.; Rissik, D.; Petheram, L.; Beh, J.L.; Smith, M.S. Co-designing adaptation decision support: Meeting common and differentiated needs. Clim. Chang. 2019, 153, 569–585. [Google Scholar] [CrossRef] [Green Version]
- Giordano, R.; Pilli-Sihvola, K.; Pluchinotta, I.; Matarrese, R.; Perrels, A. Urban adaptation to climate change: Climate services for supporting collaborative planning. Clim. Serv. 2020, 17, 100100. [Google Scholar] [CrossRef]
- Groth, M.; Nuzum, A.-K. Informations- und Unterstützungsbedarf von Kommunen zur Anpassung an die Folgen des Klimawandels; GERICS: Hamburg, Germany, 2016. [Google Scholar]
- Street, R.B.; Pringle, P.; Lourenço, T.C.; Nicolletti, M. Transferability of decision-support tools. Clim. Chang. 2019, 153, 523–538. [Google Scholar] [CrossRef] [Green Version]
- Gidhagen, L.; Olsson, J.; Amorim, J.H.; Asker, C.; Belusic, D.; Carvalho, A.C.; Engardt, M.; Hundecha, Y.; Körnich, H.; Lind, P.; et al. Towards climate services for European cities: Lessons learnt from the Copernicus project Urban SIS. Urban Clim. 2020, 31, 100549. [Google Scholar] [CrossRef]
- Jagaille, M.; Bellec, N.; Garello, R. Regional Copernicus: Foster End Users Uptake By Co-Designing Regional EO-Based Products and Services. An Example with Local and Regional Authorities (LRAs) in Brittany; IEEE: Piscataway, NJ, USA, 2019. [Google Scholar]
- Kwak, E. Automatic 3D Building Model Generation by Integrating LiDAR and Aerial Images Using a Hybrid Approach. Ph.D. Thesis, University of Calgary, Calgary, AB, Canada, 2013. [Google Scholar]
- Girindran, R.; Boyd, D.S.; Rosser, J.; Vijayan, D.; Long, G.; Robinson, D. On the reliable generation of 3D city models from open data. Urban Sci. 2020, 4, 47. [Google Scholar] [CrossRef]
- Toschi, I.; Ramos, M.M.; Nocerino, E.; Menna, F.; Remondino, F.; Moe, K.; Poli, D.; Legat, K.; Fassi, F. Oblique photogrammetry supporting 3D urban reconstruction of complex scenarios. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2017, 42, 519–526. [Google Scholar] [CrossRef] [Green Version]
- Landesanstalt für Umwelt Baden-Württemberg (LUBW). Klimawandel Betrifft Alle. Klimawandel und Anpassung (Climate Change Affects All. Climate Change and Adaptation). 2021. Available online: https://www.lubw.baden-wuerttemberg.de/klimawandel-und-anpassung (accessed on 17 July 2021).
- The European Space Agency (ESA). Das Erdbeobactungsprogramm der ESA (The ESA Earth Observation Programme). Available online: https://www.esa.int/ (accessed on 9 July 2021).
- City of Konstanz Website. “Der Weg zur Smart Green City” (The path to the Smart Green City). 2021. Available online: https://www.konstanz.de/digital/digitales+konstanz/digitalstrategie/der+weg+zur+smart+green+city (accessed on 7 August 2021).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bühler, M.M.; Sebald, C.; Rechid, D.; Baier, E.; Michalski, A.; Rothstein, B.; Nübel, K.; Metzner, M.; Schwieger, V.; Harrs, J.-A.; et al. Application of Copernicus Data for Climate-Relevant Urban Planning Using the Example of Water, Heat, and Vegetation. Remote Sens. 2021, 13, 3634. https://doi.org/10.3390/rs13183634
Bühler MM, Sebald C, Rechid D, Baier E, Michalski A, Rothstein B, Nübel K, Metzner M, Schwieger V, Harrs J-A, et al. Application of Copernicus Data for Climate-Relevant Urban Planning Using the Example of Water, Heat, and Vegetation. Remote Sensing. 2021; 13(18):3634. https://doi.org/10.3390/rs13183634
Chicago/Turabian StyleBühler, Michael Max, Christoph Sebald, Diana Rechid, Eberhard Baier, Alexander Michalski, Benno Rothstein, Konrad Nübel, Martin Metzner, Volker Schwieger, Jan-Albrecht Harrs, and et al. 2021. "Application of Copernicus Data for Climate-Relevant Urban Planning Using the Example of Water, Heat, and Vegetation" Remote Sensing 13, no. 18: 3634. https://doi.org/10.3390/rs13183634
APA StyleBühler, M. M., Sebald, C., Rechid, D., Baier, E., Michalski, A., Rothstein, B., Nübel, K., Metzner, M., Schwieger, V., Harrs, J. -A., Jacob, D., Köhler, L., in het Panhuis, G., Tejeda, R. C. R., Herrmann, M., & Buziek, G. (2021). Application of Copernicus Data for Climate-Relevant Urban Planning Using the Example of Water, Heat, and Vegetation. Remote Sensing, 13(18), 3634. https://doi.org/10.3390/rs13183634