Observation of Surface Displacement Associated with Rapid Urbanization and Land Creation in Lanzhou, Loess Plateau of China with Sentinel-1 SAR Imagery
Abstract
:1. Introduction
2. Study Area and Datasets
2.1. Study Area
2.2. Datasets
2.2.1. SAR Datasets
2.2.2. Optical Images and DEM
3. Methodology
3.1. Dynamic Estimation of DEM Errors
3.2. One-Dimensional LOS Displacement Estimation
3.3. Two-Dimensional Displacement Estimation
4. Results and Analyses
4.1. Assessment of DEM Error Correction
4.2. Detection and Mapping of Historical MECC Areas Using the Estimated DEM Errors
4.3. Spatial Distribution of the Surface Displacement in Lanzhou
4.4. Two-Dimensional Patterns of Surface Displacement Associated with the MECC Projects
4.5. Surface Displacement along the Lanzhou Belt Highway
5. Discussion
5.1. The Impacts of Large-Scale Mountain Excavation and City Construction Projects on Surface Displacement
5.2. Extraction of Excavation and Filling Areas and Its Volume Estimation
5.3. Surface Displacement Response to the Thickness of the Filling Loess
5.4. Temporal Evolution of the Surface Displacement Associated with the MECC Projects
6. Conclusions
- (1)
- DEM error is the main error source in the mapping of surface displacement associated large-scale MECC projects. This error can increase the difficulty of phase unwrapping and generate pseudo displacement signals. It should be carefully estimated and corrected in the SAR processing to avoid misinterpretations of the surface displacement signal.
- (2)
- A total of 115 historical MECC areas were detected and mapped in the study area between 1997 and 2020, and 163 active displacement areas were identified with diverse dimensions. Of the detected active displacement areas, 67% were distributed in the MECC areas, what confirms that surface displacements in Lanzhou were mainly caused by large-scale MECC projects. Settlements were detected in the filling regions of the MECC projects following non-uniform spatial displacement patterns. By correlating displacement and filling thickness, we found that the magnitude of the cumulative displacement was positively correlated with the thickness of the filling loess. These findings demonstrate that large-scale MECC projects control the spatial distributions and patterns of surface displacement, and the filling thickness determines the final displacement magnitude.
- (3)
- Results from estimated DEM errors showed that the area and volume of the excavated regions were basically consistent with that of the filling regions. We concluded that the amount of excavation and the amount of filling were in a balanced state. The displacement time series results revealed that ground surface in the study area deformed following a non-linear trend, and the velocity was distinct at different regions. Ground surface was in a stable state before land creations, followed by the sharply accelerated displacement with the beginning of the MECC project, and then the displacement was slowed down with the increasing time. This temporal evolution behavior of the surface displacement is in agreement with the displacement pattern predicted by the consolidation theory of unsaturated soil [46].
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, F.; Lin, H.; Zhang, Y.; Lu, Z. Ground subsidence geo-hazards induced by rapid urbanization: Implications from InSAR observation and geological analysis. Nat. Hazards Earth Syst. Sci. 2012, 12, 935–942. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Zhang, Y.; Zeng, R.Q.; Yang, Z.K.; Chen, X.; Zhao, F.M.; Meng, X.M. Detection of Land subsidence associated with land creation and rapid urbanization in the Chinese loess plateau using time series InSAR: A case study of Lanzhou new district. Remote Sens. 2018, 10, 270. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Qian, H.; Wu, J. Environment: Accelerate research on land creation. Nature 2014, 510, 29–31. [Google Scholar] [CrossRef] [PubMed]
- Pu, C.H.; Xu, Q.; Zhao, K.Y.; Jiang, Y.N.; Hao, L.N.; Liu, J.L.; Chen, W.L.; Kou, P.L. Characterizing the topographic changes and land subsidence associated with the mountain excavation and city construction on the Chinese Loess plateau. Remote Sens. 2021, 13, 1556. [Google Scholar] [CrossRef]
- He, Y.; Wang, W.H.; Yan, H.W.; Zhang, L.F.; Chen, Y.D.; Yang, S.W. Characteristics of surface displacement in Lanzhou with sentinel-1A TOPS. Geoscience 2020, 10, 99. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.J.; Zhao, C.Y.; Zhang, Q.; Yang, C.S.; Zhang, J. Characterizing and monitoring ground settlement of Marine reclamation land of Xiamen new airport, China with sentinel-1 SAR datasets. Remote Sens. 2019, 11, 585. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Huang, H.J. Characterization and mechanism of regional land subsidence in the Yellow River Delta, China. Nat. Hazards 2013, 68, 687–709. [Google Scholar] [CrossRef]
- Du, Z.Y.; Ge, L.L.; Hay-Man Ng, A.; Zhu, Q.G.; Yang, X.H.; Li, L.Y. Correlating the subsidence pattern and land use in Bandung, Indonesia with both Sentinel-1/2 and ALOS-2 satellite images. Int. J. Appl. Earth Obs. Geoinf. 2018, 67, 54–68. [Google Scholar] [CrossRef]
- Tomás, R.; Romero, R.; Mulas, J.; Marturià, J.J.; Mallorquí, J.J.; Lopez-Sanchez, J.M.; Herrera, G.; Gutiérrez, F.; Gonzalez, P.J.; Fernández, J.; et al. Radar interferometry techniques for the study of ground subsidence phenomena: A review of practical issues through cases in Spain. Environ. Earth Sci. 2014, 71, 163–181. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Oommen, T.; Lu, Z.; Wang, T.; Kim, J.W. Consolidation settlement of Salt Lake County tailings impoundment revealed by time-series InSAR observations from multiple radar satellites. Remote Sens. 2017, 202, 199–209. [Google Scholar] [CrossRef]
- Shi, G.; Lin, H.; Bürgmann, R.; Ma, P.; Wang, J.; Liu, Y. Early soil consolidation from magnetic extensometers and full resolution SAR interferometry over highly decorrelated reclaimed lands. Remote Sens. Environ. 2019, 231, 111231. [Google Scholar] [CrossRef]
- Xu, B.; Feng, G.; Li, Z.; Wang, Q.; Wang, C.; Xie, R. Coastal subsidence monitoring associated with land reclamation using the point target based SBAS-InSAR method: A case study of Shenzhen, China. Remote Sens. 2016, 8, 652. [Google Scholar] [CrossRef] [Green Version]
- Ma, P.; Lin, H.; Lan, H.; Chen, F. Multi-dimensional SAR tomography for monitoring the displacement of newly built concrete buildings. ISPRS J. Photogramm. Remote Sens. 2015, 106, 118–128. [Google Scholar] [CrossRef]
- Qin, X.; Zhang, L.; Yang, M.; Luo, H.; Liao, M.; Ding, X. Mapping surface displacement and thermal dilation of arch bridges by structure-driven multi-temporal DInSAR analysis. Remote Sens. Environ. 2018, 216, 71–90. [Google Scholar] [CrossRef]
- Sánchez-Gámez, P.; Navarro, F.J. Glacier surface velocity retrieval using D-InSAR and offset tracking techniques applied to ascending and descending passes of sentinel-1 data for southern Ellesmere ice caps, Canadian Arctic. Remote Sens. 2017, 9, 442. [Google Scholar] [CrossRef] [Green Version]
- Atzori, S.; Antonioli, A.; Tolomei, C.; De Novellis, V.; De Luca, C.; Monterroso, F. InSAR full-resolution analysis of the 2017–2018 M>6 earthquakes in Mexico. Remote Sens. Environ. 2019, 234, 111461. [Google Scholar] [CrossRef]
- Abir, I.; Khan, S.; Ghulam, A.; Tariq, S.; Shah, M. Active tectonics of western Potwar Plateau–Salt Range, northern Pakistan from InSAR observations and seismic imaging. Remote Sens. Environ. 2015, 168, 265–275. [Google Scholar] [CrossRef] [Green Version]
- Pritchard, M.E.; Biggs, J.; Wauthier, C.; Sansosti, E.; Arnold, D.W.; Delgado, F.; Ebmeier, S.K.; Henderson, S.T.; Stephens, K.; Cooper, C.; et al. Towards coordinated regional multi-satellite InSAR volcano observations: Results from the Latin America pilot project. J. Appl. Volcanol. 2018, 7, 1–28. [Google Scholar] [CrossRef]
- Hooper, A.; Zebker, H.; Segall, P.; Kampes, B. A new method for measuring displacement on volcanoes and other natural terrains using InSAR persistent scatterers. Geophys. Res. Lett. 2004, 31, L23611. [Google Scholar] [CrossRef]
- Liu, X.J.; Zhao, C.Y.; Zhang, Q.; Lu, Z.; Li, Z.H.; Yang, C.S.; Zhu, W.; Liu-Zeng, J.; Chen, L.Q.; Liu, C.J. Integration of sentinel-1 and ALOS/PALSAR-2 SAR datasets for mapping active landslides along the Jinsha river corridor, China. Eng. Geol. 2021, 284, 106033. [Google Scholar] [CrossRef]
- Frattini, P.; Crosta, G.B.; Rossini, M.; Allievi, J. Activity and kinematic behaviour of deep-seated landslides from PS-InSAR displacement rate measurements. Landslides 2017, 15, 1053–1070. [Google Scholar] [CrossRef]
- Wang, T.; Shi, Q.; Nikkhoo, M.; Wei, S.; Barbot, S.; Dreger, D.; Burgmann, R.; Motagh, M.; Chen, Q. The rise, collapse, and compaction of Mt. Mantap from the 3 September 2017 North Korean nuclear test. Science 2018, 361, 166–170. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Jia, C.T.; Chen, S.B.; Li, H.Q. SBAS-InSAR based displacement detection of urban land, created from Mega-scale mountain excavating and valley filling in the Loess plateau: The case study of Yan’an city. Remote Sens. 2019, 11, 1673. [Google Scholar] [CrossRef] [Green Version]
- Bürgi, P.M.; Lohman, R.B. Impact of forest disturbance on InSAR surface displacement time series. IEEE Trans. Geosci. Remote Sens. 2021, 59, 128–138. [Google Scholar] [CrossRef]
- Yan, B.B. Potential Hazard Assessment of Dam Failure Mudflow in Land Creation Projects in Lanzhou. Master’s Thesis, Lanzhou University, Lanzhou, China, 2018. [Google Scholar]
- Li, R.R.; Yang, W.F.; Li, D.Y. Land displacement monitoring in Lanzhou city based on SBAS-InSAR technique. Earth Environ. Sci. 2020, 68, 012013. [Google Scholar]
- Wang, W.H.; He, Y.; Zhang, L.F.; Chen, Y.D.; Qiu, L.S.; Pu, H.Y. Analysis of surface displacement and driving forces in Lanzhou. Open Geosci. 2020, 12, 1127–1145. [Google Scholar] [CrossRef]
- Xue, Y.T.; Meng, X.M.; Wasowsk, J.; Chen, G.; Li, K.; Guo, P.; Bovenga, F.; Zeng, R.Q. Spatial analysis of surface displacement distribution detected by persistent scatterer interferometry in Lanzhou Region, China. Environ. Earth Sci. 2016, 75, 80. [Google Scholar] [CrossRef]
- Peng, J.B.; Wang, S.K.; Wang, Q.Y.; Zhuang, J.Q.; Huang, W.L.; Zhu, X.H.; Leng, Y.Q.; Ma, P.H. Distribution and genetic types of loess landslides in China. J. Asian Earth Sci. 2019, 170, 329–350. [Google Scholar] [CrossRef]
- Hou, Y.J.; Zhou, X.L.; Shi, P.Q.; Guo, F.Y. Application of “Air-Space-Ground” integrated technology in early identification of landslide hidden danger: Taking Lanzhou Pulantai Company Landslide as an example. Chin. J. Geol. Hazard. Control. 2020, 6, 12–20. (In Chinese) [Google Scholar]
- Zeng, R.Q.; Meng, X.M.; Wasowski, J.; Dijkstra, T.; Bovenga, F.; Xue, Y.T.; Wang, S.Y. Ground instability detection using PS-InSAR in Lanzhou, China. Q. J. Eng. Geol. Hydrogeol. 2014, 47, 307–321. [Google Scholar] [CrossRef]
- Ducret, G.; Doin, M.-P.; Grandin, R.; Lasserre, C.; Guillaso, S. DEM corrections before unwrapping in a small baseline strategy for InSAR time series analysis. IEEE Geosci. Remote Sens. Lett. 2014, 11, 696–700. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface displacement monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.T.; Zhu, W.; Tian, X.D.; Zhang, Q.; Zhao, C.Y.; Niu, Y.F.; Wang, C.S. Improved DEM reconstruction method based on multibaseline InSAR. IEEE Geosci. Remote Sens. Lett. 2021, 99, 1–5. [Google Scholar] [CrossRef]
- D’Errico, J. Inpaint_nans, MATLAB Central File Exchange. Available online: https://www.mathworks./matlabcentral/fileexchange/4551-inpaint_nans (accessed on 13 June 2021).
- Werner, C.; Wegmüller, U.; Strozzi, T.; Wiesmann, A. GAMMA SAR and interferometric processing software. In Proceedings of the ERS-Envisat Symposium, Gothenburg, Sweden, 16–20 October 2000. [Google Scholar]
- Goldstein, R.M.; Werner, C.L. Radar interferogram filtering for geophysical applications. Geophys. Res. Lett. 1998, 25, 4035–4038. [Google Scholar] [CrossRef] [Green Version]
- Costantini, M. A novel phase unwrapping method based on network programming. IEEE Trans. Geosci. Remote Sens. 1998, 36, 813–821. [Google Scholar] [CrossRef]
- Doin, M.P.; Lasserre, C.; Peltzer, G.; Cavalié, O.; Doubre, C. Corrections of stratifed tropospheric delays in SAR interferometry: Validation with global atmospheric models. J. Appl. Geophys. 2009, 69, 35–50. [Google Scholar] [CrossRef]
- Lyons, S.; Sandwell, D. Fault creep along the southern San Andreas from interferometric synthetic aperture radar, permanent scatterers, and stacking. J. Geophys. Res. Solid Earth 2003, 108, 1–11. [Google Scholar] [CrossRef]
- Liu, X.J.; Zhao, C.Y.; Zhang, Q.; Yang, C.S.; Zhu, W. Heifangtai loess landslide type and failure mode analysis with ascending and descending spot-mode TerraSAR-X datasets. Landslides 2020, 17, 205–215. [Google Scholar] [CrossRef] [Green Version]
- Samsonov, S.V.; d’Oreye, N. Multidimensional small baseline subset (MSBAS) for two-dimensional displacement analysis: Case study Mexico City. Can. J. Remote Sens. 2017, 43, 1–12. [Google Scholar] [CrossRef]
- Tikhonov, A. Solution of incorrectly formulated problems and the regularization method. Sov. Math. Dokl. 1963, 4, 1035–1038. [Google Scholar]
- Wu, K.; Shao, Z.S.; Qin, S.; Li, B.X. Determination of displacement mechanism and countermeasures in silty clay Tunnel. J. Perform. Constr. Facil. 2020, 34, 04019095. [Google Scholar] [CrossRef]
- Guorui, G. Formation and development of the structure of collapsing loess in China. Eng. Geol. 1988, 25, 235–245. [Google Scholar] [CrossRef]
- Fredlund, D.; Hasan, J. One-dimensional consolidation theory: Unsaturated soils. Can. Geotech. J. 1979, 16, 521–531. [Google Scholar] [CrossRef] [Green Version]
Dataset | Optical Images | SRTM DEM | Sentinel-1 | Sentinel-1 |
---|---|---|---|---|
Orbit direction | - | - | ascending | descending |
Heading (°) | - | - | −10.404 | −169.310 |
Incidence angle (°) | - | - | 33.727 | 33.751 |
Ground resolution | 1.2 m~19 m | 30 m | 4.20 (Rg) × 13.97 (Az) | 4.20 (Rg) × 13.97 (AZ) |
Temporal coverage | 1997–2020 | 2000 | 12/2015–04/2021 | 12/2015–04/2021 |
Number of images | 6 | 1 | 124 | 122 |
Region | A | B | C | D | E | F | ||
---|---|---|---|---|---|---|---|---|
Displacement rate (mm/year) | 2015.12–2017.12 | Min. | −5 | −5 | −5 | −5 | −10 | −8 |
Max. | −70 | −55 | −70 | −80 | −90 | −86 | ||
Ave. | −13 | −12 | −23 | −14 | −32 | −31 | ||
2017.12–2019.12 | Min. | −5 | −5 | −5 | −5 | −10 | −8 | |
Max. | −56 | −46 | −36 | −94 | −90 | −88 | ||
Ave. | −12 | −11 | −14 | −17 | −24 | −24 | ||
2019.12–2021.03 | Min. | −5 | −5 | −5 | −15 | −10 | −8 | |
Max. | −38 | −55 | −32 | −123 | −101 | −46 | ||
Ave. | −11 | −9 | −11 | −27 | −20 | −16 | ||
Cumulative displacement (mm) | 2015.12–2021.03 | Min. | −20 | −20 | −20 | −27 | −30 | −30 |
Max. | −233 | −200 | −223 | −409 | −372 | −338 | ||
Ave. | −52 | −48 | −80 | −79 | −98 | −106 |
Region | A | B | C | D | E | F | ||
---|---|---|---|---|---|---|---|---|
Displacement rate (mm/year) | 2015.12–2017.12 | Min. | −5 | −5 | −5 | −5 | −10 | −8 |
Max. | −76 | −49 | −72 | −72 | −94 | −86 | ||
Ave. | −13 | −10 | −25 | −14 | −33 | −30 | ||
2017.12–2019.12 | Min. | −5 | −5 | −5 | −5 | −10 | −8 | |
Max. | −66 | −45 | −40 | −96 | −96 | −85 | ||
Ave. | −12 | −10 | −13 | −18 | −25 | −24 | ||
2019.12–2021.03 | Min. | −5 | −5 | −5 | −12 | −10 | −8 | |
Max. | −38 | −53 | −27 | −118 | −88 | −40 | ||
Ave. | −11 | −9 | −10 | −22 | −22 | −16 | ||
Cumulative displacement (mm) | 2015.12–2021.03 | Min. | −23 | −20 | −20 | −27 | −30 | −31 |
Max. | −239 | −186 | −215 | −421 | −365 | −344 | ||
Ave. | −55 | −44 | −77 | −84 | −104 | −104 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, Y.; Liu, X.; Zhao, C.; Tomás, R.; Jiang, Z. Observation of Surface Displacement Associated with Rapid Urbanization and Land Creation in Lanzhou, Loess Plateau of China with Sentinel-1 SAR Imagery. Remote Sens. 2021, 13, 3472. https://doi.org/10.3390/rs13173472
Wei Y, Liu X, Zhao C, Tomás R, Jiang Z. Observation of Surface Displacement Associated with Rapid Urbanization and Land Creation in Lanzhou, Loess Plateau of China with Sentinel-1 SAR Imagery. Remote Sensing. 2021; 13(17):3472. https://doi.org/10.3390/rs13173472
Chicago/Turabian StyleWei, Yuming, Xiaojie Liu, Chaoying Zhao, Roberto Tomás, and Zhuo Jiang. 2021. "Observation of Surface Displacement Associated with Rapid Urbanization and Land Creation in Lanzhou, Loess Plateau of China with Sentinel-1 SAR Imagery" Remote Sensing 13, no. 17: 3472. https://doi.org/10.3390/rs13173472
APA StyleWei, Y., Liu, X., Zhao, C., Tomás, R., & Jiang, Z. (2021). Observation of Surface Displacement Associated with Rapid Urbanization and Land Creation in Lanzhou, Loess Plateau of China with Sentinel-1 SAR Imagery. Remote Sensing, 13(17), 3472. https://doi.org/10.3390/rs13173472