Assessing the Use of Optical Satellite Images to Detect Volcanic Impacts on Glacier Surface Morphology
Abstract
:1. Introduction
2. Background
3. Materials and Methods
4. Results
4.1. Ice Cauldron Formation
4.2. Opening Formation
4.3. Glacier Crevassing
4.3.1. Concentric Crevassing Due to Ice Cauldron Formation
4.3.2. Crevassing Due to Subglacial Lava Dome Growth
4.3.3. Localized Crevassing Due to Supraglacial Lava Flows
4.3.4. Widespread Crevassing Due to Glacier Acceleration/Advance
5. Discussion
5.1. Observable Volcanic Impacts on Glaciers
5.1.1. Ice Cauldron/Opening Formation
5.1.2. Crevassing
5.2. Difficulties with Observing Volcanic Impacts on Glaciers
5.3. Guidelines for Best Practice
5.3.1. Site Overview and Image Availability
5.3.2. User Experience
5.3.3. Using Multi-Temporal Images
5.4. Mount Veniaminof: A Recent Example
6. Conclusions
- The most common volcanic impact on glacier surface morphology observable in optical satellite imagery is the formation of ice cauldrons (i.e., depressions in the glacier surface). Depending on eruption energy/type, ice thickness and image resolution, these cauldrons often appear as dark points/areas or as regions of distinct shadowing which contrast with the usually bright glacier surface.
- Other observable volcanic impacts on glacier surface morphology are widespread glacier crevassing, localized crevassing (e.g., adjacent to supraglacial lava flows or ice cauldrons) and ice bulging and fracturing due to subglacial dome growth.
- All volcanic impacts on glaciers investigated in this work are, to some degree, associated with crevassing, which is commonly visible as dark stripes on optical satellite images.
- The key challenge when using optical satellite images to study volcano-glacier interactions is the availability of cloud- and plume-free images with sufficient spatial and temporal resolution to observe (and monitor) the evolution of (sometimes) small-scale changes in glacier surface morphology. Useful imagery is increasingly available, but this does not help when observing historical eruptions, and the widespread use of commercial imagery is usually prohibitively expensive. Lower resolution imagery is often freely available, but identifying and interpreting changes in glacier morphology from these sources requires greater user experience.
- Overall, optical satellite imagery is a useful source for studying changes in glacier morphology caused by volcanic activity, particularly in remote and inaccessible parts of the world. This suggests that global-scale analysis and monitoring are possible. However, due to the costs of high-resolution (spatial and temporal) imagery, and the limited quantitative information that can be extracted, optical satellite imagery is best used in combination with DEMs, radar data, aerial images (derived from planes and/or drones) and ground-based observations.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Smithsonian Institution. Volcanoes of the World, Version 4.10.2; Venzke, E., Ed.; Smithsonian Institution: Washington, DC, USA, 2013. [Google Scholar]
- Edwards, B.; Kochtitzky, W.; Battersby, S. Global Mapping of Future Glaciovolcanism. Glob. Planet. Chang. 2020, 195, 103356. [Google Scholar] [CrossRef]
- Pierson, T.C.; Janda, R.J.; Thouret, J.-C.; Borrero, C.A. Perturbation and Melting of Snow and Ice by the 13 November 1985 Eruption of Nevado Del Ruiz, Colombia, and Consequent Mobilization, Flow and Deposition of Lahars. J. Volcanol. Geotherm. Res. 1990, 41, 17–66. [Google Scholar] [CrossRef]
- Gudmundsson, M.T.; Sigmundsson, F.; Björnsson, H. Ice–Volcano Interaction of the 1996 Gjálp Subglacial Eruption, Vatnajökull, Iceland. Nature 1997, 389, 954–957. [Google Scholar] [CrossRef]
- Magnússon, E.; Gudmundsson, M.T.; Roberts, M.J.; Sigurðsson, G.; Höskuldsson, F.; Oddsson, B. Ice-Volcano Interactions during the 2010 Eyjafjallajökull Eruption, as Revealed by Airborne Imaging Radar: Ice-Volcano Interactions. J. Geophys. Res. Solid Earth 2012, 117. [Google Scholar] [CrossRef]
- Bleick, H.A.; Coombs, M.L.; Cervelli, P.F.; Bull, K.F.; Wessels, R.L. Volcano–Ice Interactions Precursory to the 2009 Eruption of Redoubt Volcano, Alaska. J. Volcanol. Geotherm. Res. 2013, 259, 373–388. [Google Scholar] [CrossRef]
- Oddsson, B.; Gudmundsson, M.T.; Edwards, B.R.; Thordarson, T.; Magnússon, E.; Sigurðsson, G. Subglacial Lava Propagation, Ice Melting and Heat Transfer during Emplacement of an Intermediate Lava Flow in the 2010 Eyjafjallajökull Eruption. Bull. Volcanol. 2016, 78, 48. [Google Scholar] [CrossRef]
- Gudmundsson, M.T.; Thordarson, T.; Höskuldsson, Á.; Larsen, G.; Björnsson, H.; Prata, F.J.; Oddsson, B.; Magnússon, E.; Högnadóttir, T.; Petersen, G.N.; et al. Ash Generation and Distribution from the April–May 2010 Eruption of Eyjafjallajökull, Iceland. Sci. Rep. 2012, 2, 572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smellie, J.L.; Edwards, B.R. Glaciovolcanism on Earth and Mars: Products, Processes and Palaeoenvironmental Significance; Cambridge University Press: Cambridge, UK, 2016; ISBN 978-1-139-76438-4. [Google Scholar]
- Curtis, A.; Kyle, P. Methods for Mapping and Monitoring Global Glaciovolcanism. J. Volcanol. Geotherm. Res. 2017, 333, 134–144. [Google Scholar] [CrossRef]
- Van Wyk de Vries, M.; Bingham, R.G.; Hein, A.S. A New Volcanic Province: An Inventory of Subglacial Volcanoes in West Antarctica. Geol. Soc. Lond. Spec. Publ. 2018, 461, 231–248. [Google Scholar] [CrossRef]
- Major, J.J.; Newhall, C.G. Snow and Ice Perturbation during Historical Volcanic Eruptions and the Formation of Lahars and Floods: A Global Review. Bull. Volcanol. 1989, 52, 1–27. [Google Scholar] [CrossRef]
- Barr, I.D.; Lynch, C.M.; Mullan, D.; De Siena, L.; Spagnolo, M. Volcanic Impacts on Modern Glaciers: A Global Synthesis. Earth-Sci. Rev. 2018, 182, 186–203. [Google Scholar] [CrossRef] [Green Version]
- Rivera, A.; Bown, F.; Carrión, D.; Zenteno, P. Glacier Responses to Recent Volcanic Activity in Southern Chile. Environ. Res. Lett. 2012, 7, 014036. [Google Scholar] [CrossRef]
- Reynolds, H.I.; Gudmundsson, M.T.; Högnadóttir, T.; Magnússon, E.; Pálsson, F. Subglacial Volcanic Activity above a Lateral Dyke Path during the 2014–2015 Bárdarbunga-Holuhraun Rifting Episode, Iceland. Bull. Volcanol. 2017, 79, 38. [Google Scholar] [CrossRef]
- Muraviev, A.Y.; Muraviev, Y.D. Fluctuations of Glaciers of the Klyuchevskaya Group of Volcanoes in the 20th–21st Centuries. Led I Sneg-Ice Snow 2016, 56, 480–492. [Google Scholar] [CrossRef] [Green Version]
- Barr, I.; Dokukin, M.; Kougkoulos, I.; Livingstone, S.; Lovell, H.; Małecki, J.; Muraviev, A. Using ArcticDEM to Analyse the Dimensions and Dynamics of Debris-Covered Glaciers in Kamchatka, Russia. Geosciences 2018, 8, 216. [Google Scholar] [CrossRef] [Green Version]
- Reinthaler, J.; Paul, F.; Granados, H.D.; Rivera, A.; Huggel, C. Area Changes of Glaciers on Active Volcanoes in Latin America between 1986 and 2015 Observed from Multi-Temporal Satellite Imagery. J. Glaciol. 2019, 65, 542–556. [Google Scholar] [CrossRef] [Green Version]
- Pfeffer, W.T.; Arendt, A.A.; Bliss, A.; Bolch, T.; Cogley, J.G.; Gardner, A.S.; Hagen, J.-O.; Hock, R.; Kaser, G.; Kienholz, C.; et al. The Randolph Glacier Inventory: A Globally Complete Inventory of Glaciers. J. Glaciol. 2014, 60, 537–552. [Google Scholar] [CrossRef] [Green Version]
- Gudmundsson, M.T.; Sigmundsson, F.; Björnsson, H.; Högnadóttir, T. The 1996 Eruption at Gjálp, Vatnajökull Ice Cap, Iceland: Efficiency of Heat Transfer, Ice Deformation and Subglacial Water Pressure. Bull. Volcanol. 2004, 66, 46–65. [Google Scholar] [CrossRef]
- Guðmundsson, M.S.T.; Högnadóttir, Þ.; Kristinsson, A.B.; Guðbjörnsson, S. Geothermal Activity in the Subglacial Katla Caldera, Iceland, 1999–2005, Studied with Radar Altimetry. Ann. Glaciol. 2007, 45, 66–72. [Google Scholar] [CrossRef] [Green Version]
- Gudmundsson, A.; Lecoeur, N.; Mohajeri, N.; Thordarson, T. Dike Emplacement at Bardarbunga, Iceland, Induces Unusual Stress Changes, Caldera Deformation, and Earthquakes. Bull. Volcanol. 2014, 76, 869. [Google Scholar] [CrossRef]
- Riel, B.; Milillo, P.; Simons, M.; Lundgren, P.; Kanamori, H.; Samsonov, S. The Collapse of Bárðarbunga Caldera, Iceland. Geophys. J. Int. 2015, 202, 446–453. [Google Scholar] [CrossRef] [Green Version]
- Rossi, C.; Minet, C.; Fritz, T.; Eineder, M.; Bamler, R. Temporal Monitoring of Subglacial Volcanoes with TanDEM-X—Application to the 2014–2015 Eruption within the Bárðarbunga Volcanic System, Iceland. Remote Sens. Environ. 2016, 181, 186–197. [Google Scholar] [CrossRef] [Green Version]
- Farinotti, D. A Consensus Estimate for the Ice Thickness Distribution of All Glaciers on Earth. Nat. Geosci. 2019, 12, 168–173. [Google Scholar] [CrossRef] [Green Version]
- Björnsson, H.; Guðmundsson, M.T. Surface and Bedrock Topography of Mýrdalsjökull, Iceland: The Katla Caldera, Eruption Sites and Routes of Jökulhlaups. Jökull 2000, 49, 29–46. [Google Scholar]
- Strachan, S.M. A Geophysical Investigation of the Eyjafjallajökull Glaciovolcanic System, South Iceland, Using Radio Echo Sounding. Ph.D. Thesis, University of Edingburgh, Edingburgh, UK, 2001. [Google Scholar]
- Trabant, D.C.; Hawkins, D.B. Glacier Ice-Volume Modeling and Glacier Volumes on Redoubt Volcano, Alaska. Water-Resour. Investig. 1997, 97, 4187. [Google Scholar]
- Schaefer, J.R. The 2009 Eruption of Redoubt Volcano, Alaska. Rep. Investig. 2011, 5, 45. [Google Scholar]
- McGimsey, R.G.; Neal, C.A.; Girina, O.A.; Chibisova, M.V.; Rybin, A.V. 2009 Volcanic Activity in Alaska, Kamchatka, and the Kurile Islands—Summary of Events and Response of the Alaska Volcano Observatory. 2014. Available online: http://repository.geologyscience.ru/handle/123456789/1652 (accessed on 24 February 2021).
- Amigo, Á.; Silva, C.; Orozo, G.; Bertin, D.; Lara, L.E. La Crisis Eruptiva Del Volcán Hudson Durante Octubre-Noviembre 2011. XII Congr. Geol. Chil. Antofagasta 2012, 457–459. [Google Scholar]
- Welch, B.C.; Dwyer, K.; Helgen, M.; Waythomas, C.F.; Jacobel, R.W. Geophysical Survey of the Intra-Caldera Icefield of Mt Veniaminof, Alaska. Ann. Glaciol. 2007, 45, 58–65. [Google Scholar] [CrossRef] [Green Version]
- Global Volcanism Program, 2021. Report on Veniaminof (United States). In Weekly Volcanic Activity Report; 03 March-06 April 2021; Smithsonian Institution: Washington, DC, USA; US Geological Survey: Reston, VA, USA, 2021.
- Patrick, M.R.; Smellie, J.L.; Harris, A.J.L.; Wright, R.; Dean, K.; Izbekov, P.; Garbeil, H.; Pilger, E. First Recorded Eruption of Mount Belinda Volcano (Montagu Island), South Sandwich Islands. Bull. Volcanol. 2005, 67, 415–422. [Google Scholar] [CrossRef]
- Patrick, M.R.; Smellie, J.L. Synthesis A Spaceborne Inventory of Volcanic Activity in Antarctica and Southern Oceans, 2000–2010. Antarct. Sci. 2013, 25, 475–500. [Google Scholar] [CrossRef]
- Schilling, S.P.; Carrara, P.E.; Thompson, R.A.; Iwatsubo, E.Y. Posteruption Glacier Development within the Crater of Mount St. Helens, Washington, USA. Quat. Res. 2004, 61, 325–329. [Google Scholar] [CrossRef]
- Walder, J.S.; LaHusen, R.G.; Vallance, J.W.; Schilling, S.P. Emplacement of a Silicic Lava Dome through a Crater Glacier: Mount St Helens, 2004–2006. Ann. Glaciol. 2007, 45, 14–20. [Google Scholar] [CrossRef] [Green Version]
- Walder, J.S.; Schilling, S.P.; Vallance, J.W.; LaHusen, R.G. A Volcano Rekindled: The Renewed Eruption of Mount St. Helens, 2004–2006; Sherrod, D.R., Scott, W.E., Stauffer, P.H., Eds.; Professional paper; U.S. Dept. of the Interior; U.S. Geological Survey: Reston, VA, USA, 2008; pp. 257–276. ISBN 978-1-4113-2401-5. [Google Scholar]
- Elliott, J.R.; Walters, R.J.; Wright, T.J. The Role of Space-Based Observation in Understanding and Responding to Active Tectonics and Earthquakes. Nat. Commun. 2016, 7, 13844. [Google Scholar] [CrossRef] [Green Version]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Krimmel, R.M.; Meier, M.F. Glacier Applications of Erts Images. J. Glaciol. 1975, 15, 391–402. [Google Scholar] [CrossRef] [Green Version]
- Glasser, N.F.; Scambos, T.A. A Structural Glaciological Analysis of the 2002 Larsen B Ice-Shelf Collapse. J. Glaciol. 2008, 54, 3–16. [Google Scholar] [CrossRef] [Green Version]
- Colgan, W.; Steffen, K.; McLamb, W.S.; Abdalati, W.; Rajaram, H.; Motyka, R.; Phillips, T.; Anderson, R. An Increase in Crevasse Extent, West Greenland: Hydrologic Implications: Increased Crevasse Extent West Greenland. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef] [Green Version]
- Colgan, W.; Rajaram, H.; Abdalati, W.; McCutchan, C.; Mottram, R.; Moussavi, M.S.; Grigsby, S. Glacier Crevasses: Observations, Models, and Mass Balance Implications: Glacier Crevasses. Rev. Geophys. 2016, 54, 119–161. [Google Scholar] [CrossRef]
- Rivera, A.; Cawkwell, F.; Wendt, A.; Zamora, R. Mapping Blue-Ice Areas and Crevasses in West Antarctica Using ASTER Images, GPS, and Radar Measurements. In Global Land Ice Measurements from Space; Kargel, J.S., Leonard, G.J., Bishop, M.P., Kääb, A., Raup, B.H., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 743–757. ISBN 978-3-540-79817-0. [Google Scholar]
- Bhardwaj, A.; Sam, L.; Singh, S.; Kumar, R. Automated Detection and Temporal Monitoring of Crevasses Using Remote Sensing and Their Implications for Glacier Dynamics. Ann. Glaciol. 2016, 57, 81–91. [Google Scholar] [CrossRef] [Green Version]
- Scharrer, K.; Spieler, O.; Mayer, C.; Münzer, U. Imprints of Sub-Glacial Volcanic Activity on a Glacier Surface—SAR Study of Katla Volcano, Iceland. Bull. Volcanol. 2008, 70, 495–506. [Google Scholar] [CrossRef]
- Delgado, F.; Pritchard, M.; Lohman, R.; Naranjo, J.A. The 2011 Hudson Volcano Eruption (Southern Andes, Chile): Pre-Eruptive Inflation and Hotspots Observed with InSAR and Thermal Imagery. Bull. Volcanol. 2014, 76, 815. [Google Scholar] [CrossRef]
- Brugman, M.M.; Post, A. Effects of Volcanism on the Glaciers of Mount St. Helens. Geol. Surv. Circ. 1981, 850, 1–11. [Google Scholar]
- Granados, H.D.; Miranda, P.J.; Núñez, G.C.; Alzate, B.P.; Mothes, P.; Roa, H.M.; Cáceres Correa, B.E.; Ramos, J.C. Hazards at Ice-Clad Volcanoes. In Snow and Ice-Related Hazards, Risks and Disasters; Elsevier: Amsterdam, The Netherlands, 2015; pp. 607–646. ISBN 978-0-12-394849-6. [Google Scholar]
- Monsalve, M.L.; Pulgarín, B.A.; Mojica, J.; Santacoloma, C.C.; Cardona, C.E. Interpretación de la Actividad Eruptiva del Volcán Nevado del Huila (Colombia), 2007–2009: Análisis de Componentes de Materiales Emitidos. Bol. Geol. 2011, 33, 73–93. [Google Scholar]
- Púlgarin, B.; Cardona, C.E.; Santacoloma, C.C.; Agudelo, A.; Calvache, M.; Monsalve, M.L. Erupciones del volcan Nevado del Huila (Colombia) en febrero y abril de 2007 y cambios en su masa glaciar. In Glaciares, Nieves y Hielos de America Latina: Cambio Climatico y Amenezas Glaciares; Lopez, C.D., Ramirez, J., Eds.; INGEOMINAS: Bogotá, Colombia, 2010; pp. 279–305. [Google Scholar]
- Naranjo, J.L.; Sigurdsson, H.; Carey, S.N.; Fritz, W. Eruption of the Nevado Del Ruiz Volcano, Colombia, On 13 November 1985: Tephra Fall and Lahars. Science 1986, 233, 961–963. [Google Scholar] [CrossRef] [PubMed]
- Esri. “World Continents” [basemap]. Scale not Given. “World Continents.” Centre d’enseignement Saint-Joseph de Chimay. 31 August 2017. Available online: https://hub.arcgis.com/datasets/CESJ::world-continents/explore?location=-0.076095%2C0.000000%2C1.00 (accessed on 10 March 2021).
Volcano Number | Volcano Name | Volcano Type | Region/Country | Coordinates (Lat, Lon) | Period of Activity |
---|---|---|---|---|---|
1 | Mount Redoubt | stratovolcano | Alaska (US) | 60.485, −152.742 | 03/2009–04/2009 |
2 | Mount St Helens | stratovolcano | United States | 46.2, −122.18 | 03/1980–10/1980 |
09/2004–2006 | |||||
3 | Nevado del Ruiz | stratovolcano | Colombia | 4.892, −75.324 | 11/1985 |
4 | Nevado del Huila | stratovolcano | Colombia | 2.93, −76.03 | 02/2007–05/2009 |
5 | Mount Hudson | stratovolcano | Chile | −45.9, −72.97 | 10/2011–12/2011 |
6 | Mount Belinda (Montagu Island) | shieldvolcano | South Sandwich-Islands (UK) | −58.445, −26.374 | 10/2001–09/2007 |
7 | Eyjafjallajökull | central vocano | Iceland | 63.633, −19.633 | 03/2010–06/2010 |
8 | Katla (Mýrdals- jökull) | subglacial central vocano | Iceland | 63.633, −19.083 | 1999–2005 |
9 | Grímsvötn (Gjálp) | subglacial volcanic fisure | Iceland | 64.416, −17.316 | 09/1996–10/1996 |
10 | Bárðarbunga | subglacial central vocano | Iceland | 64.633, −17.516 | 08/2014–02/2015 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martin, M.D.; Barr, I.; Edwards, B.; Spagnolo, M.; Vajedian, S.; Symeonakis, E. Assessing the Use of Optical Satellite Images to Detect Volcanic Impacts on Glacier Surface Morphology. Remote Sens. 2021, 13, 3453. https://doi.org/10.3390/rs13173453
Martin MD, Barr I, Edwards B, Spagnolo M, Vajedian S, Symeonakis E. Assessing the Use of Optical Satellite Images to Detect Volcanic Impacts on Glacier Surface Morphology. Remote Sensing. 2021; 13(17):3453. https://doi.org/10.3390/rs13173453
Chicago/Turabian StyleMartin, Michael Dieter, Iestyn Barr, Benjamin Edwards, Matteo Spagnolo, Sanaz Vajedian, and Elias Symeonakis. 2021. "Assessing the Use of Optical Satellite Images to Detect Volcanic Impacts on Glacier Surface Morphology" Remote Sensing 13, no. 17: 3453. https://doi.org/10.3390/rs13173453
APA StyleMartin, M. D., Barr, I., Edwards, B., Spagnolo, M., Vajedian, S., & Symeonakis, E. (2021). Assessing the Use of Optical Satellite Images to Detect Volcanic Impacts on Glacier Surface Morphology. Remote Sensing, 13(17), 3453. https://doi.org/10.3390/rs13173453