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Abstract: Reference of Earth-observing satellite sensor data to a common, consistent radiometric
scale is an increasingly critical issue as more of these sensors are launched; such consistency can be
achieved through radiometric cross-calibration of the sensors. A common cross-calibration approach
uses a small set of regions of interest (ROIs) in established Pseudo-Invariant Calibration Sites (PICS)
mainly located throughout North Africa. The number of available cloud-free coincident scene pairs
available for these regions limits the usefulness of this approach; furthermore, the temporal stability
of most regions throughout North Africa is not known, and limited hyperspectral information exists
for these regions. As a result, it takes more time to construct an appropriate cross-calibration dataset.
In a previous work, Shrestha et al. presented an analysis identifying 19 distinct “clusters” of spectrally
similar surface cover that are widely distributed across North Africa, with the potential to provide
near-daily cloud-free imaging for most sensors. This paper proposes a technique to generate a
representative hyperspectral profile for these clusters. The technique was used to generate the profile
for the cluster containing the largest number of aggregated pixels. The resulting profile was found
to have temporal uncertainties within 5% across all the spectral regions. Overall, this technique
shows great potential for generation of representative hyperspectral profiles for any North African
cluster, which could allow the use of the entire North Africa Saharan region as an extended PICS
(EPICS) dataset for sensor cross-calibration. This should result in the increased temporal resolution
of cross-calibration datasets and should help to achieve a cross-calibration quality similar to that of
individual PICS in a significantly shorter time interval. It also facilitates the development of an EPICS
based absolute calibration model, which can improve the accuracy and consistency in simulating any
sensor’s top of atmosphere (TOA) reflectance.

Keywords: Extended Pseudo-Invariant Calibration Site (EPICS); Hyperspectral profile; Sensor
calibration; Absolute calibration model

1. Introduction

Satellite image data have been successfully used to characterize and monitor natural and man-made
changes to the Earth’s surface over time. As the use of these sensors increases, a primary concern
for researchers is ensuring the data are referenced to a common and consistent radiometric scale [1].
This can be achieved through accurate radiometric calibration of each sensor prior to its launch and at
regular intervals after launch throughout its operating lifetime.

Many sensor designs include an onboard calibration data source such as lamps or a solar diffuser
panel. For sensors without an onboard source, it may be possible to image the moon and generate a
calibration dataset from these images. Alternatively, various calibration target regions on the Earth’s
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surface have “ground truth” radiance and/or reflectance measurements available during periods
around a sensor overpass, allowing a more direct vicarious calibration approach. An indirect vicarious
calibration approach involves cross-calibration between multiple sensors based on analysis of cloud-free
coincident or near-coincident image pairs.

Cross-calibration is a post-launch calibration technique that uses a well-calibrated sensor as a
transfer radiometer to achieve the radiometric calibration of an uncalibrated sensor using coincident
and near coincident scenes of the Earth’s surface acquired by both sensors [1] and along with that it is
also used to validate the in-orbit calibrated radiance. A transfer radiometer is radiometer that acts as an
intermediate sensor to transfer the calibration of the well calibrated sensor to the uncalibrated sensor.
Accurate cross-calibration places data from multiple sensors on a common, consistent radiometric
scale [1,2] tied to a specific on-orbit calibration reference. It provides an alternative, cost-effective
calibration method when (i) a sensor does not possess an onboard calibration system; and/or (ii)
opportunities for vicarious calibration using surface radiance or reflectance measurements are limited
or non-existent. Cross-calibration includes direct cross-calibration and indirect cross-calibration.
The direct cross-calibration is the direction inter-calibration between two instruments, including the
Simultaneous Nadir Overpass (SNO) and ray-matching methods. While in-direct cross-calibration
needs a calibrated reference source (e.g., stable target) to inter-calibrate the two sensors. This paper is
focused on the method for the in-direct cross-calibration using the deserts as the transfer.

1.1. Limitation of Region of Interest (ROI) Based Cross-Calibration Approach

Sensor cross-calibration is typically performed at a few Pseudo-Invariant Calibration Sites (PICS),
located throughout the Sahara Desert in North Africa, where there is sufficient information available
about the regional surface stability and a representative hyperspectral profile has been obtained.
Depending on cloud cover at the site during each overpass and the revisit period of the sensor (e.g.,
16 days for the Landsat sensors), several years are needed to construct a useful dataset for performing
cross-calibration of optical satellite sensors and developing absolute calibration model. An absolute
calibration model is a simple data-driven model which can simulate the TOA reflectance of virtually
any optical sensor and is used for absolute calibration [3].

1.2. Proposed Solution to the ROI Based Cross-Calibration Approach

A representative hyperspectral profile of the site is crucial for developing spectral band adjustment
factors (SBAFs) to account for differences in relative spectral response between sensors [1,4]. In a
previous work, Shrestha et al. [5] identified an “extended” PICS (EPICS), widely spread across North
Africa, that could be imaged on a near daily basis by any sensor as shown in Figure 1. These EPICS or
clusters are the contiguous homogeneous regions which are spectrally similarly each other. Despite
of its large spatial extent across North Africa, it behaves as a point site. Shrestha’s work indicated
sufficient temporal and spatial stability to be considered as a candidate cross-calibration data source.
However, it did not address determination of a representative hyperspectral profile from which the
appropriate sensor SBAFs could be derived, thus limiting its suitability for cross-calibration work.

This paper proposes an approach for generating a representative hyperspectral profile applicable
to the set of surface characteristic “clusters” previously identified by Shrestha, mainly focusing on
transmission regions of electromagnetic spectrum. The Earth Observer 1 (EO-1) Hyperion provides the
image data used to generate the profiles; a brief overview of this sensor is provided in the Section 1.4.
In principle, once a cluster’s representative hyperspectral profile has been generated, any region within
the cluster can be used to cross-calibrate a sensor pair. Similarly, with the availability of a representative
hyperspectral profile of an EPICS, they can also be used for the development of an absolute calibration
model which will be briefly mentioned in Section 1.3. In a future paper, a cluster-based cross-calibration
method is proposed that will significantly increase the temporal resolution of calibration time series
datasets, which will help to achieve similar cross-calibration quality in a much shorter period of
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time compared to an individual PICS. Similarly, EPICS based absolute calibration model will also be
developed which can provide a daily calibration point for any sensor.Remote Sens. 2019, 10, x FOR PEER REVIEW  3 of 34 
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1.3. EPICS Based Absolute Calibration Model

Helder et al. [3] developed a simple empirical absolute calibration model using Libya 4 observations
by Terra MODIS and EO-1 Hyperion. In this model, Terra MODIS was used as the calibrated radiometer,
whereas EO-1 Hyperion provided the target hyperspectral profile. Hyperspectral profile of the target
is scaled to “match” the calibration of the sensor. When this scaled hyperspectral profile is integrated
over the sensor relative spectral response (RSR), it will produce the comparable TOA reflectance of
the specific sensor. The model was validated using corresponding Landsat 7 Enhanced Thematic
Mapper (ETM+) observations and finding agreement of approximately 6% root mean square error
(RMSE) between the sensor measured and modeled TOA reflectances, with approximately 2% random
uncertainty. This TOA reflectance is compared to the observed TOA reflectance, resulting in sensor
calibration. Mishra et al. [6] further improved the model by including BRDF effects due to view zenith
angle and also incorporating an atmospheric model. They showed that the PICS-based empirical
absolute calibration model has accuracy on the order of 3% with an uncertainty of approximately 2%
for the sensors they studied. As this work derives representative hyperspectral profiles for all North
Africa clusters, development of absolute calibration models for these EPICS becomes possible. These
models help to (i) significantly increase the temporal resolution of calibration time series to a daily or
nearly a daily basis, and (ii) as the model is data-driven in nature, and the cluster approach provides a
significantly larger number of observations, the resulting calibration should be more accurate.

1.4. Hyperion Sensor Description and Previous Radiometric Calibration Performance

The EO-1 satellite, launched on November 21, 2000, carried Hyperion among its payload of
three sensors. Hyperion is a hyperspectral pushbroom sensor imaging the Earth’s surface in the
400 nm–2500 nm portion of the solar spectrum, in 242 overlapping bands with a spectral resolution of
approximately 10 nm; 196 of these bands are well calibrated [7,8]. It images a 7 km by 100 km swath at
a spatial resolution of 30 m. Between 2001 and 2007, Hyperion flew one minute behind the Landsat 7
ETM+, in the same orbital path; after 2007, its orbit was lowered by approximately 5 km. Beginning in
2011, its orbit steadily degraded as it used up its maneuvering fuel supply [9], resulting in its ultimate
decommissioning from active service in March 2017.

Biggar and other researchers have investigated the stability of Hyperion’s prelaunch calibration
coefficients by performing vicarious calibrations at the Railroad Valley, Ivanpah Playa, Barreal Blanco
and White Sands Missile Range calibration sites [10]. Using the prelaunch coefficients, they observed a
radiometric performance (defined as the ratio of the observed Hyperion image radiance and predicted
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vicarious radiance) of approximately 9% in the VNIR bands and 20% in the SWIR bands, due to
calibration gain changes of approximately 8% and 18%, respectively. Using an updated set of calibration
coefficients derived from a series of vicarious, solar, and lunar calibrations, the radiometric performance
improved to 5% or better [10–13]. McCorkel et al. [14] reported the results of reflectance-based vicarious
calibrations performed at Railroad Valley in 2001-2005 establishing a variability of approximately 2%
and accuracy of approximately 3% to 5% in the non-absorption bands. Campbell et al. [15] analyzed
over 12 years of time series data from the Frenchman Flat, Ivanpah Playa and Railroad Valley Playa
PICS and could not detect statistically significant trends in the data; she concluded that Hyperion
exhibited radiometric stability to within approximately 2% to 2.5% in most bands. Czapla-Myers
et al. [16] evaluated Hyperion’s radiometric calibration using automated Radiometric Calibration Test
Site data from Railroad Valley [RadCaTS/Railroad Valley (RRV)] and found that Hyperion agrees with
the RadCaTs prediction to within approximately 5% in the VNIR region and approximately 10% in
the SWIR region. This suggests that the relative stability between different channels of Hyperion is at
least 5% for the VNIR region and 10% for the SWIR region. Recently, Jing et al. [17] derived a set of
calibration gain and bias coefficients from reflectance-based vicarious calibration at the South Dakota
State University vegetative site and available in-situ Radiometric Calibration Network (RadCalNet)
data from the Railroad Valley site.

This paper is organized as follows. Section 1 provides a brief overview of the topic. Section 2
discusses the methodology used in the analysis. Section 3 presents the results of the hyperspectral
profile estimation and its validation for three of the clusters i.e., Cluster 13,1, and 4. Section 4 discusses
the results and considers potential directions for future research into this topic. Finally, Section 5
presents the conclusion of this work.

2. Methodology

2.1. Hyperion Acquisitions Over North Africa

Shrestha et al. [5] identified 19 distinct clusters using an unsupervised K-means based classification
algorithm over temporally stable pixels of North Africa. All of these clusters are widely spread across
North Africa and can be used for EPICS based cross-calibration at varying levels of uncertainty.
These clusters cannot be used for cross-calibration of optical satellite sensors until they are sufficiently
characterized in the hyperspectral domain. A representative hyperspectral profile is used to compensate
the energy difference between two satellite sensors having a different relative spectral response. Figure 2
shows the locations over North Africa imaged by Hyperion throughout its mission lifetime. Altogether,
3715 images of North Africa are available in the Hyperion archive which will be used to derive a
representative hyperspectral profile for each cluster.

To reduce the uncertainties associated with the estimated hyperspectral data due to variability in
look angle and cloud cover, Hyperion images with view zenith angles less than 5◦ and total cloud
cover less than 10% were selected for the analysis [18]. The view zenith angle threshold was used to
minimize BRDF effects. The cloud cover threshold was used to maximize the likelihood of including
only cloud-free pixels. Figure 3 shows the number of filtered hyperspectral images for corresponding
clusters. Cluster 5 has the largest number of hyperspectral spectra (294), whereas Cluster 4 has the
smallest number (74). Nearly all of the clusters have enough image data to derive a representative
hyperspectral profile. Among all the clusters, Cluster 13 stands out as an early viable candidate
for EPICS based calibration, as it offers lower spatial uncertainty across all the bands and has more
contiguous sub regions widely distributed across North Africa. In this paper, the estimation and
validation of a representative hyperspectral profile of Cluster 13 are described in detail and Cluster 1
and 4 are briefly presented; the same methodology was used to estimate representative hyperspectral
profiles for the remaining clusters.
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2.2. Collection of Hyperspectral Data for Cluster 13

Figure 4 shows Cluster 13 spatial extent across North Africa and within this region, Hyperion has
imaged 21 different locations. Figure 5 shows the number of hyperspectral spectra corresponding to
each World Reference System (WRS)-2 path and row. Among all locations, WRS2 path/rows 177/45,
179/41, and 181/40 were extensively imaged by Hyperion, as they correspond to the well-known
Sudan 1, Egypt 1 and Libya 4 PICS, respectively, that have been extensively used for radiometric
calibration and stability monitoring of optical satellite sensors. The majority of Cluster 13 locations
over North Africa have relatively few images, as Hyperion imaged specified locations upon request.
188 hyperspectral spectra from 16 WRS-2 paths and rows, including all these heavily imaged locations
over North Africa and other locations, are used to estimate a representative hyperspectral profile of
Cluster 13. 28 spectra from six different locations in North Africa, WRS-2 paths/rows 182/42,198/47,
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192/38, 178/43, 185/48, and 200/47, were used to validate the estimated hyperspectral profile of Cluster
13. Validation spectra were chosen from different paths and rows in such a way that they represent the
spatial extent of Cluster 13 as shown in solid black rectangle in Figure 4.
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2.3. Hyperspectral Data for Cluster 13

Two issues were found to have a significant effect on the analysis. The first issue relates to the
number of available Hyperion scenes imaging Cluster 13 pixels. 188 Cluster 13 hyperspectral profiles
help to derive its reliable representative hyperspectral profile. The second issue relates to the total
number of Cluster 13 pixels imaged in a given Hyperion scene; a more representative hyperspectral
profile can be generated from a large number of imaged cluster pixels from any WRS-2 path/row.
To address the second issue, binary masks identifying cluster 13 pixels within the Hyperion images
were generated [19]. Figure 6 shows the Hyperion binary masks for WRS-2 path/rows 181/40, 179/41,
182/42 and 198/47. WRS-2 path/rows 181/40 and 179/41 are among the 15 locations used to derive
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the hyperspectral profile of Cluster 13 whereas 182/42 and 198/47 are among six locations used for
validation of its derived hyperspectral profile. Fortunately, a significant number of Cluster 13 pixels
were found in most Hyperion images. Fewer Cluster 13 pixels were found in the image data from
WRS-2 path/row 182/42; however, the pixel counts (approximately 15.85% of the total number of image
pixels) allowed generation of reliable hyperspectral profiles from those paths and rows, as shown in
Figure 6.
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2.3.1. Data Filtering

Of the 731 hyperspectral images from all the locations of Cluster 13, only 216 images met the
required view zenith angle and cloud cover constraints. The Hyperion data were also affected by
orbital precession. Beginning in 2011, inclination burns to maintain EO-1’s initial orbital position
were stopped due to lack of onboard fuel [9]. As a result, orbital precession effects led to successively
earlier local overpass times and increased solar zenith (decreased solar elevation) angles. The larger
solar zenith angles resulted in a decreased signal-to-noise ratio due to a longer atmospheric path
between the sensor and ground. These effects ultimately led to both absolute and relative changes
in the hyperspectral profiles extracted from the image data. Among these two changes, the relative
changes are of greater concern, as the SBAF is more affected by any relative change. To determine the
absolute and relative changes on the extracted hyperspectral data of Cluster 13, all corrections such as
drift correction, application of calibration gains and biases, and BRDF correction were performed first
in order to reduce the uncertainty of estimated representative hyperspectral profile of each cluster.

2.3.2. Corrections to Hyperspectral Data

The individual normalized hyperspectral profiles meeting the stability criterion described in the
previous section were then corrected to account for potential drift in the sensor response, calibration
gain and bias changes, and seasonal variability due to BRDF effects. Each set of corrections is described
in further detail below.
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Drift correction and Calibration Gain/Bias Application

Generally, satellite sensors exhibit some degree of change in their radiometric response due to
mechanical stresses during launch, operation in a harsh space environment, and aging of the sensor
itself. Angal et al. [20] and Chander et al. [21] assessed Landsat-7 ETM+ and Terra MODIS radiometric
stability using PICS image data. Angal’s analysis found a statistically significant drift in the ETM+ and
MODIS Blue band responses. Chander’s analysis confirmed the drifts in the Blue band responses, and
also found a statistically significant drift in the ETM+ Red band response.

For this work, it was assumed there is potential drift in the radiometric responses that affect
all Hyperion bands. The percentage change in drift was modeled as a linear function of days in a
calendar year:

%driftλ/year =
slopeλ∗365 ∗ 100

interceptλ
(1)

where %dri f tλ/year (reflectance per year) is the percent degradation per year in a band λ,
and slopeλ(reflectance per day) and interceptλ(reflectance) are the slope and intercept coefficients
obtained from a least-squares linear regression of TOA reflectances in band λ. The correction in
potential drift for a given band’s hyperspectral profile was then determined as follows:

ρλ, drift_cor = ρλ −

%driftλ
year ×Yr

100%
(2)

where ρλ is the TOA reflectance of different bands (λ) of Hyperion, Yr is the decimal year representing
the acquisition date and overpass time, ρλ, drift_cor is the Hyperion TOA profile after yearly drift
correction, and %driftλ

year is the percent yearly drift of band λ estimated from (1).
For gain and bias correction, the latest set of calibration coefficients reported by Jing et al. [17]

should be applied after performing the drift correction:

ρCorrected
λ = gainλ∗ρλ,drift_corrected + biasλ (3)

where gainλ and biasλ are the calibration gain and bias coefficients for band λ, and ρλ,drift_corrected is
the drift-corrected TOA reflectance.

Four Angle Bidirectional Reflectance Distribution Function (BRDF) Correction

The Bidirectional Reflectance Distribution function defines the interaction of light with a given
point on the Earth’s surface by relating incoming and outgoing radiance at that point. BRDF is an
inevitable phenomenon for all optical satellite sensors irrespective of their fields of view [22]. Although
nominally operated as a nadir-viewing instrument, Hyperion can be pointed to image from different
viewing angles. Consequently, BRDF can affect the resulting estimated TOA reflectance, requiring
correction [1,2] in order to reduce the uncertainty in the final cross-calibration. Most BRDF models
used in cross-calibration research are based on empirical or semi-empirical considerations, as these
models tend to be simpler to derive and apply than models based on physical considerations. Angal
et al. [20], Liu et al. [23] and Lacherade et al. [2] used Roujean’s BRDF model [24] to remove the
angular effect of solar and viewing geometry while performing the cross-calibration of MODIS and
MVIRS. Lacherade et al. [2] also used Snyder’s BRDF model to perform cross calibration between
different sensor pairs. Wu et al. [25] used the Ross-Li BRDF model to remove the angular effect while
determining the calibration stability of MODIS using Libya Desert and Antarctic surface.

Shrestha showed that the BRDF of sand (Algodones dunes) can be modeled as the quadratic
function of solar zenith angle [26]. Helder et al. [3] and Mishra et al. [6] derived empirical BRDF models
based on linear and quadratic functions of solar zenith angle as part of deriving the absolute calibration
model for the Libya 4 PICS, as the solar zenith angle is considered to be the major contributor to BRDF
effects. However, the level of correction could be increased if the solar azimuth, view zenith, and view
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azimuth angles are also considered in the BRDF model. For this work, development of a full four angle
model begins with the conversion of the view and solar angles from a spherical coordinate basis to a
linear Cartesian basis, in order to obtain the TOA reflectance as a continuous function of independent
variables [27]:

x1 = sin (SZA) ∗ cos (SAA) (4)

y1 = sin (SZA) ∗ sin (SAA) (5)

x2 = sin (VZA) ∗ cos (VAA) (6)

y2 = sin (VZA) ∗ sin (VAA) (7)

where SZA and SAA are the solar zenith and azimuth angles in radians, respectively, and VZA and
VAA are the sensor viewing zenith and azimuth angles, respectively (also in radians). Multiple linear
least-squares regression is used to derive the following linear model [27]:

ρmodel= β0+β1x1+β2y1+β3x2+β4y2 (8)

Once the model coefficients have been generated, the mean of the solar and sensor view zenith
and azimuth angles is chosen as a reference in order to scale the TOA reflectance to a common level.
The resulting reference angles are converted to a Cartesian basis, as in Equations (4)–(7), and then used
to generate a reference TOA reflectance:

ρRef= β0+β1x1_Ref+β2y1_Ref+β3x2_Ref+β4y2_Ref (9)

The reference TOA reflectance is then scaled by the ratio of the observed and model predicted
TOA reflectances to obtain the final BRDF-corrected TOA reflectance:

ρsite =
ρobs

ρmodel
∗ ρRef (10)

Estimation of a Representative Cluster 13 Hyperspectral Profile

After significant yearly drift, calibration gain and bias, and BRDF correction, these hyperspectral
data are further analyzed to identify relative changes in the Cluster 13 hyperspectral profiles.
188 individual profiles were optimally normalized with respect to the overall Cluster 13 mean
hyperspectral profile.

The optimal normalization constant was found by minimizing the sum of squared residual
errors between the mean cluster 13 profile and the individual profiles over a reduced set of
wavelengths: A reduced wavelength set consists of the 81 wavelengths from transmission windows in
the electromagnetic spectrum which have high transmissivity and have been very widely used for
remote sensing purposes, are used to derive optimal constants for all hyperspectral profile.

Optimal Constanti=

∑
ρref(λ)ρi(λ)∑

ρi(λ)
2 (11)

where ρref(λ) is the mean filtered hyperspectral profile of Cluster 13 and ρi(λ) is a filtered individual
hyperspectral profile.

Once the individual profiles were optimally normalized, absolute differences between the
normalized profiles and the mean cluster 13 profile were calculated. Any normalized profile that
significantly deviated from the mean profile in any wavelength range was excluded from further
analysis because such deviation represents the relative change on the hyperspectral profile which
adversely effects the SBAF calculation. With this additional screening step, filtered individual profiles
were determined to be suitable for use in generating the representative profile for the cluster.
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3. Results

3.1. Pre-processing of Hyperspectral Profiles of Cluster 13

Cluster 13 regions are spread throughout North Africa; as a result, Hyperion had images of Cluster
13 at 21 different location of North Africa. Among these locations, hyperspectral data from 15 locations
were used to estimate the hyperspectral profile. These locations were selected for hyperspectral profile
estimation for two reasons that increased the reliability of the estimation: (i) the Hyperion images
contain a significant number of Cluster 13 pixels, and (ii) Hyperion frequently imaged some of these
paths and rows. The hyperspectral data from these 15 locations are subjected to drift correction,
application of calibration gain and bias and BRDF correction before using them to estimate the Cluster
13 representative hyperspectral profile.

Drift correction using equations (1) and (2) was applied to 14 Hyperion channels exhibiting
statistically significant drift in their response [17]. The resulting hyperspectral profiles are shown in
Figure 7, with the red profile representing the original spectrum and the green profile representing
the drift-corrected spectrum. The observed drifts were generally small in magnitude (as low as
0.1% per year); the drift-corrected spectrum is virtually indistinguishable from the original spectrum.
After application of the drift correction, calibration gains and biases were applied to those channels
with significant gain and bias. 25 Hyperion channels have a significant gain (different from unity) and
44 channels have a significant bias (different from 0). Higher wavelength channels have significant
gain and bias, so the effect of gain and bias is clearly visible as represented by the blue spectrum in
Figure 7. After calibration gain and bias application, the four angle BRDF correction was performed to
these spectra. BRDF correction had a greater effect at the wavelength extremes. A minimal correction
was observed in effect the 500–600 nm region, as this spectral region transitions between predominant
atmospheric scattering and more direct transmission to the surface. BRDF correction was more
pronounced at longer wavelengths due to the greater correction of seasonality effects, represented by
the cyan spectrum in Figure 7.
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Figure 7. Corrections applied to the hyperspectral profile. Red symbols represent the original spectrum
and cyan symbols represent the corrected hyperspectral data. Highly absorption wavelength ranges
are not displayed in the figure.

3.2. Collection of Hyperspectral Profiles of Cluster 13

Figure 8 shows the corrected hyperspectral profiles extracted from different locations of Hyperion
image data that are used to estimate a representative Cluster 13 hyperspectral profile. The Hyperion
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image data are divided into three temporal ranges: (i) from EO-1’s launch to 2007; (ii) 2008 through
2015, and (iii) 2016 to its decommissioning in March 2017. During the first time period, EO-1 flew in
the same orbit as Landsat-7 but 1 minute later (green spectra). During the second time period, EO-1
flew in an orbital path approximately 5km below Landsat-7’s path (blue spectra) and began a steady
drop in altitude in 2011 that worsened through 2016 to decommissioning (red spectra). The spectrum
of the surface is similar from EO-1’s launch to 2015, so the green spectra are overlayed by the blue
spectra and aren’t clearly visible in Figure 8.
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Figure 8. Hyperspectral data of cluster 13. Green represents the spectra from EO-1’s launch to 2007.
Blue represents the spectra from 2008 through 2015 and red represent the spectral from 2016 to its
decommissioning in March 2017. Highly absorption wavelength ranges are not displayed in the figure
and vertical dashed lines represent typical wavelength ranges of Coastal, Blue, Green, Red, NIR, SWIR
1, and SWIR 2 bands used for remote sensing purposes.

As seen in Figure 8, the post-2016 hyperspectral data are at decreased reflectance levels compared
to the pre-2016 data. The decreasing altitude of EO-1’s orbit increased its orbital precession, shifting
the local acquisition time progressively earlier and resulting in larger solar zenith angles at the
acquisition time; since shadow increases with solar zenith angle, the measured surface reflectance
decreases. Assuming the shape of the hyperspectral profile did not significantly change from launch to
decommissioning, the decrease in hyperspectral intensity over time will not significantly affect SBAF
calculation, since the SBAF is defined as a ratio of reflectances derived from the same profile, in effect,
the decrease is “cancelled out” in the SBAF calculation. The primary concern, then, relates to whether
the hyperspectral profile shape is exhibiting any significant degree of change over time.

3.3. Investigation of Relative Change of HyperSpectral Profiles of Cluster 13

Figure 9 shows the absolute difference between the individual normalized hyperspectral data and
the mean hyperspectral data of cluster 13. Clearly, the absolute difference between the normalized
hyperspectral data before 2016 and the mean Cluster 13 data is generally constant within 0.035
reflectance units across all wavelengths, indicating no significant relative change in any hyperspectral
profile. The variation in an absolute difference between the normalized individual hyperspectral
profiles and mean Cluster 13 hyperspectral profile is due to the spatial variability within Cluster
13, resulting from the threshold used for the initial classification analysis. The absolute differences
between three of the pre-2007 and post-2016 hyperspectral data and the mean Cluster 13 data are not
constant as represented by green and red dots below 600 nm; having higher absolute difference than
−0.04 and green dots which rises rapidly after 2200 nm as shown in Figure 9. These non-constant
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differences indicate significant relative changes at both shorter and longer wavelengths. These three
relatively unstable hyperspectral profiles of Cluster 13 were excluded from further analysis as such
relative instability affects the SBAF calculation. Only 185 hyperspectral profiles meet the filter criteria
of look angle, cloud cover, and stability in the relative signature. These 185 hyperspectral profiles are
thus suitable for estimating the hyperspectral profile of Cluster 13.
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3.4. Estimation of a Representative Hyperspectral Profile of Cluster 13

After finding relatively stable hyperspectral measurements of cluster 13, the estimated
hyperspectral profile of Cluster 13 is calculated by averaging the 185 hyperspectral data which
is shown by the blue curve in Figure 10. The resultant uncertainty is calculated by taking the ratio of
the standard deviation to the mean as shown by the red curve in Figure 10. The uncertainty of the
VNIR region of Cluster 13 is approximately 5% whereas the SWIR region has less than 4% temporal
uncertainty. These observed uncertainties are due to the combination of both temporal and spatial
uncertainty of Cluster 13.
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3.5. Impact of Atmospheric Parameters on the Hyperspectral Measurements of Cluster 13

Previous studies have shown that the atmosphere contributes to a random uncertainty of about
1% [3,28]. This section discusses the relationship between atmospheric parameters, such as water vapor
and aerosol concentration, on the 185 hyperspectral measurements of Cluster 13. These hyperspectral
measurements are collected from different locations of North Africa, so it is very challenging to quantify
the relationship between the atmospheric parameters and TOA reflectance because the coincident
meteorological measurements are rarely available [28,29]. For this analysis, an empirical method is
used to study the effect of atmospheric parameters on the TOA reflectance of the Hyperion images.

3.5.1. Water Vapor

Atmospheric water vapor is one of the major contributors to the loss of signal along the atmospheric
path. As shown in Figure 8, there are very high absorption features at 950 and 1150 nm due to water
vapor. The impact of absorption at these wavelengths is observed by plotting the TOA reflectance
of all the spectra of Cluster 13 as shown in Figure 11. TOA reflectance at both of these wavelength
ranges from approximately 0.19 to 0.35. A threshold reflectance value is chosen to select the spectra
having extreme water vapor quantity. A spectrum having TOA reflectance less than 0.2 is considered
to have a high water vapor content, whereas a spectrum having TOA reflectance higher than 0.31 is
considered to have a low water vapor content. Based on these thresholds at 950 nm, there are 6 and 15
spectra having high and low water vapor contents, respectively. Similarly, at 1150 nm, there are 3 and
15 spectra having high and low water vapor contents, respectively.
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The mean and standard deviation of these spectra having different water vapor contents are
compared with the representative hyperspectral profile of Cluster 13 as shown in Figure 12. The green
curve represents the normalized representative hyperspectral profile of Cluster 13. Red and black
curves (2 sigma) represent the hyperspectral spectra corresponding to high and low water vapor
contents, respectively. There is some expected difference between the hyperspectral spectrum having
different water vapor content at the absorption wavelengths. However, in the majority of the spectral
regions, error bars of hyperspectral measurement at extreme conditions of water vapor content fall
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inside the uncertainty range of the representative hyperspectral profile of Cluster 13. This implies that
the representative hyperspectral profile can be used for different magnitudes of water vapor quantity.Remote Sens. 2019, 10, x FOR PEER REVIEW  14 of 34 
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Figure 12. Comparison of a representative hyperspectral profile of Cluster 13 and hyperspectral
measurements having different water vapor content. The green curve represents the normalized
hyperspectral profile of Cluster 13. The red curve represents the hyperspectral measurement corresponds
to higher water vapor content whereas the black curve represents the hyperspectral measurement
corresponding to lower water vapor content. (Error bars = 2 sigma).

3.5.2. Aerosol

In addition to absorption loss, atmospheric aerosol also interferes with the signal received by
the optical sensor. Atmospheric aerosol alters the direction and distribution of spectral energy in the
beam of light [30]. The impact of atmospheric aerosol is also analyzed using the TOA reflectance
at 437 nm as shown in Figure 13. The histogram of TOA reflectance at 437 nm is bimodal, which
corresponds to the lower and higher concentration of aerosol. The bimodal histogram has a transition
at around 0.23 reflectance, which is used as a threshold for separating the spectra having lower and
higher aerosol concentrations. The hyperspectral spectrum with a reflectance value of less than 0.23 at
437 nm is considered to have low aerosol content, whereas the spectrum with reflectance higher than
0.23 is considered to have high aerosol content. Based on the threshold, there are 53 spectra with lower
aerosol concentration and 132 spectra with higher aerosol concentration.

Hyperspectral spectra having a different aerosol concentration is compared with the representative
hyperspectral profile of Cluster 13 as shown in Figure 14. The green curve represents the normalized
hyperspectral profile of Cluster 13. Red and black curves (2 sigma) represent the mean hyperspectral
profile corresponding to lower and higher aerosol concentrations, respectively. From Figure 14, it can be
observed that there is more variation in the representative profile of Cluster 13 at a shorter wavelength
(<600 nm) than the rest of the spectral regions. This is because the signal at shorter wavelengths is
more scattered by the atmospheric aerosol. This results in a reflectance difference of 0.03 between the
spectra having the lower and the higher aerosol concentrations. If a reliable aerosol measurement
had existed, the effects of aerosol on TOA reflectance could have been quantified. This would help in
estimating the separate representative hyperspectral profiles of Cluster 13 with lower uncertainty—one
for lower aerosol content and the other for high aerosol content. Since the aerosol measurements are
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less likely to be available across a continental-scale EPICS, a generic profile with more uncertainty is
estimated rather than a separate one for different aerosol concentrations. Furthermore, hyperspectral
measurements with different aerosol quantities fall within the uncertainty range of the representative
profile of Cluster 13 across all wavelengths. This implies that the representative hyperspectral profile
of Cluster 13 can be used for different magnitudes of aerosol quantity.
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3.6. Estimation of a Representative Hyperspectral Profile for Different Reflectance Clusters

A similar methodology was used to estimate a representative hyperspectral profile of clusters
exhibiting different reflectance levels. Among the clusters, Cluster 4 is the darkest cluster and is shown
in Figure 15. Overall, Cluster 4 has 43 locations providing 65 spectra suitable for estimation of a
representative hyperspectral profile, and another 3 locations providing 6 spectra suitable for validation.
The temporal uncertainty over much of the spectral range is approximately 10%, with an additional
1–2% uncertainty at the wavelength extremes.
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Figure 15. Estimated representative hyperspectral profile of Cluster 4 and its resultant uncertainty.

The intensity level of Cluster 1 is between those of Cluster 13 and Cluster 4. Cluster 1 has
161 spectra from 56 locations of North Africa which are suitable for estimation and validation of its
representative hyperspectral profile. 150 hyperspectral profiles from 53 locations were used to estimate
a representative hyperspectral profile of Cluster 1 as shown in Figure 16, and 3 locations provide 6
spectra suitable for validation. The temporal uncertainty for the hyperspectral profile of Cluster 1 is
approximately 6 percent for most of the spectral region whereas it exhibits approximately 1% less
uncertainty in the shorter wavelengths and 2–3% additional uncertainty at longer wavelengths.
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Hyperspectral data for the rest of the clusters are estimated with the same procedure and are
included in Appendix A.

3.7. Validation of the Estimated Hyperspectral Profile for Cluster 13

3.7.1. Hyperspectral Domain

For validating the hyperspectral spectrum of Cluster 13, spectra from Path/Row 182/42 (mean of 2
spectra), 198/47 (mean of 2 spectra), 192/38 (mean of 17 spectra), 178/43 (mean of 2 spectra), 185/48
(mean of 2 spectra) and 200/47 (mean of 2 spectra) were used. Figure 17 shows the normalized TOA
reflectance of the estimated hyperspectral signature of Cluster 13 with its 2-sigma standard deviation
and the normalized spectrum from the validation path/rows. The estimated hyperspectral profile of
Cluster 13 is used as a reference spectrum for normalizing the hyperspectral profile. As the Cluster
13 hyperspectral profile was used as a reference spectrum for normalization, deviations from unity
illustrate the difference between the Cluster 13 spectra and the validation spectra broken down by
path/row. These spectra fall inside the uncertainty range of the Cluster 13 spectrum, ensuring that the
hyperspectral signatures from those selected paths are the same as the estimated hyperspectral data of
Cluster 13. This suggests that the estimated Cluster 13 spectrum can be used to represent the spectrum
for any sub region of Cluster 13.
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To validate the representative hyperspectral profile of Cluster 4, two spectra each were derived
from images of WRS-2 Path/Row 176/40, 202/42 and 198/38. The mean from these three paths/rows
were used and all the spectra were normalized to the representative hyperspectral profile of Cluster
4. Figure 18 shows the normalized Cluster 4 profile with a 2-sigma standard deviation (green color),
and the normalized spectra from the validation path/rows represented by the blue, red, and black
profiles. These spectra lie within the Cluster 4 uncertainty range, suggesting that the estimated
hyperspectral profile can be used to represent the spectrum for any of its sub-regions.
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Figure 18. Validation of hyperspectral spectrum of Cluster 4.

Similarly, hyperspectral validation of the representative hyperspectral profile of Cluster 1 was
performed by using two spectra from each of three different WRS-2 Path/Rows: 175/41, 205/44 and
190/47. Figure 19 gives the normalized hyperspectral profile of Cluster 1 (green) and the normalized
spectra from the validation path/rows represented by blue, red and black. These spectra lie inside the
uncertainty range of a representative hyperspectral profile of Cluster 1 implying that this estimated
hyperspectral profile can be used to represent the spectrum for any of its subregions.
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3.7.2. Multispectral Domain

Multispectral validation was performed by comparing the SBAF derived from the hyperspectral
data of Cluster 13 and the ratio of multispectral TOA reflectance from two well-calibrated sensors:
Landsat 7 ETM+ and Sentinel 2A MSI. The absolute radiometric calibration uncertainty of Landsat
7 ETM+ and Sentinel 2A MSI is 5% and 3%, respectively [31–33]. It was assumed that for two
well-calibrated sensors, the SBAF is equal to their TOA reflectance ratio. For a multispectral validation,
the representative hyperspectral data of Cluster 13 was used and 50 near-coincident (3 days apart)
Sentinel 2A MSI/Landsat 7 ETM+ scene pairs were selected from Libya 4 and Egypt 1 since both of these
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sites were used to estimate the hyperspectral profile of Cluster 13. Among 50 near-coincident scene
pairs, 32 were from Libya 4 and the remaining 18 were from Egypt 1. Each sensor’s TOA reflectance
was calculated from a region common to Cluster 13 and the corresponding Hyperion images (Figure 6),
Sentinel 2A MSI, and Landsat 7 ETM+ images of Libya 4 (Figure 20a,c) and Egypt 1 (Figure 20b,d).
The patterns in Figure 16 are due to the dark rock surface in the trough of dunes which are either
temporally unstable or classified as a different cluster by unsupervised K-means algorithm.
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Figure 20. Cluster 13 binary masks (a) Sentinel 2A MSI Libya 4 (b) Sentinel 2A MSI Egypt 1 (c) Landsat
7 Libya 4 (d) Landsat 7 Egypt 1. Black color pixel represents the Cluster 13 pixels.

The multispectral SBAFs for Libya 4 and Egypt 1 were calculated as the ratio of the Sentinel
2A BRDF-corrected TOA reflectance to the corresponding Landsat 7 TOA reflectances. The BRDF
corrections were performed according to the model given in Equations (4)–(10) assuming the Landsat 7
solar and sensor view geometry as the reference.
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The hyperspectral SBAF for Cluster 13 was calculated as the ratio of the simulated Sentinel 2A
TOA reflectances and the Landsat 7 ETM+ TOA reflectance, as follows:

SBAF =
ρλ, Sentinel 2A

ρλ, Landsat 7
=

∫
ρλRSRλ(Sentinel 2A)dλ∫

RSRλ(Sentinel 2A)dλ∫
ρλRSRλ(Landsat 7)dλ∫

RSRλ(Landsat 7)dλ

(12)

where: ρλ, Sentinel 2A and ρλ, Landsat 7, respectively, are the simulated TOA reflectance for Sentinel 2A
and Landsat 7, ρλ is the hyperspectral profile of Cluster 13, and RSRλ(sensor) is the relative spectral
response of the corresponding sensor.

Figure 21 shows the resulting simulated multispectral SBAFs between Sentinel 2A MSI/Landsat 7
ETM+ and the multispectral TOA reflectance ratios for each band, along with the corresponding 1σ
standard deviations. The error bar of the simulated multispectral SBAF is standard deviation of the SBAF
calculated using 185 hyperspectral profile of Cluster 13 used to estimate the representative hyperspectral
profile of Cluster 13. The error bar of the multispectral SBAF is the standard deviation of the ratio of
TOA reflectance of Sentinel 2A and Landsat 7 along with their absolute radiometric uncertainty.
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Overall, the simulated multispectral SBAFs have lower uncertainties due to a large number of
hyperspectral data of Cluster 13. The largest difference between the two can be clearly seen in Blue
and Green band which is approximately 2.5% and 2.25% whereas the Red band has the smallest
different of 0.87% between the simulated multispectral SBAF, derived from hyperspectral profiles
of Cluster 13, and the multispectral SBAF. Similarly, the difference between the two sets of SBAF’s
is approximately 1.5% for the rest of the bands. As the error bar of multispectral SBAF includes
the simulated multispectral SBAF, these two sets of SBAF are statistically indistinguishable for all
the bands.

4. Discussion

This work focuses on estimating a representative hyperspectral profile for all clusters. With the
assigned hyperspectral profile for clusters, they can be used for both EPICS based cross-calibration
of optical satellite sensors [34] and development of EPICS based absolute calibration models.
A representative hyperspectral profile for all the clusters was estimated by using the hyperspectral
data from the intersection region of Hyperion images and corresponding clusters. The cluster images
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were filtered for look angles up to ±5◦ and cloud cover of 10% or less, in order to reduce the uncertainty
in the estimated representative hyperspectral profile. In addition to these filters, relative spectral
stability of the hyperspectral profiles is also important; any change to the overall shape of the profile
yields a different SBAF value, whereas any shift in the intensity level of the spectrum has no effect in
SBAF calculation.

It was found that each cluster has a different number of spectra that can be used to estimate
the representative hyperspectral profile of each cluster. The majority of the clusters have more than
120 filtered hyperspectral profiles as shown in Figure 3, which provides confidence for the estimated
hyperspectral profile of each cluster. In addition, it was found that the largest number of pixels doesn’t
guarantee the largest number of hyperspectral profiles; Cluster 3 contains the largest number of pixels
(4.3 million pixels) yet has only 250 useable hyperspectral profiles. Among all the clusters, Cluster 5
has the highest number of hyperspectral profiles (294), and Cluster 4 has the lowest number (71) which
is still useful for estimating its hyperspectral profile.

The methodology of estimating the hyperspectral profile of North African clusters was
demonstrated by using Cluster 13 as it stands out as an early viable candidate for EPICS-based
calibration [5]. The resultant uncertainty of the estimated hyperspectral profile of Cluster 13 is
approximately 4–5% in the majority of the spectral regions. The resultant uncertainty associated with
the representative hyperspectral profile is the combination of both spatial and temporal uncertainties
as the representative hyperspectral profile for each cluster is estimated by using hyperspectral spectra
collected from different regions of clusters over the EO-1 Hyperion lifetime. It has approximately 5%
resultant uncertainty for most of the spectral regions as shown in Figure 10. It has resultant uncertainty
of 6% for the wavelengths less than 600 nm which is expected as the spatial uncertainty of Cluster 13
for Coastal/Aerosol and Blue bands are approximately 5%.

Figure 22 presents the comparison of one of the brightest clusters (Cluster 13), the darkest cluster
(Cluster 4) and a cluster with an intermediate intensity level. At longer wavelengths, the hyperspectral
profiles exhibit more pronounced differences in intensity, providing a wider dynamic range for
calibration. Among these three clusters, Cluster 13 has the lowest uncertainty (approximately 5% across
all the spectral regions) and Cluster 4 has the highest uncertainty (10% across all the spectral region).
The uncertainty is due to the combination of both temporal and spatial uncertainty, more driven by
the spatial uncertainty of the clusters. In relative scale, the resultant uncertainty of the Cluster 4 is
double to that of the Cluster 13 but in an absolute scale, both of the clusters have similar changes of
0.03 reflectance units across most of the spectral regions as shown in Figure 23.

Clusters 13 and 4 have approximately 5% and 12% spatial uncertainty, respectively, across the
spectral regions which are expected as the initial analysis of these clusters shows a similar uncertainty
level [5]. As the hyperspectral data are only filtered for relative spectral stability, hyperspectral profiles
of clusters weren’t filtered for temporal stability which significantly contributed to the resultant
uncertainty of the estimated hyperspectral profile. Residual BRDF effects introduce some level of
uncertainty into the hyperspectral profile, as the look-angle filtering and the full four-angle correction
model do not provide perfect correction. In addition, BRDF correction cannot be performed properly if
the cluster doesn’t have a large number of hyperspectral profiles such as Cluster 4. It has the smallest
number of hyperspectral profiles (74) due to lower coverage over North Africa, suggesting that it
has lower angular sampling than other clusters, which increases the uncertainty of retrieved BRDF
parameters [35]. Along with all the above uncertainty, the calibration uncertainty of the EO-1 Hyperion
sensor also contributes to the uncertainty of the estimated hyperspectral profiles.
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During this analysis, it was observed that most of the hyperspectral profiles of all the clusters
are relatively stable over time. Overall, the spectral stability of the representative hyperspectral
spectrum of each cluster is similar from 600 nm to 2200 nm as shown in Figure 22 and Appendix A.
The representative hyperspectral profile of Clusters 13, 5, 8, 12, 15, and 17 have more resultant
uncertainty at spectral range of approximately less than 600 nm than the majority region of the
spectrum, i.e., 600–2200 nm. The remaining cluster’s representative hyperspectral profiles have similar
resultant uncertainty across the entire wavelength range from 400 nm to 2100 nm. For all the clusters,
the resultant uncertainty of the wavelengths higher than 2200 nm has very high resultant uncertainty,
almost increasing exponentially as a function of wavelength.
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Validation of the representative spectrum data of Cluster 13 was done in both the hyperspectral
and multispectral domains. For hyperspectral validation of Cluster 13, six different regions were
chosen and hyperspectral spectra from these selected regions were compared with the representative
hyperspectral profile of Cluster 13. These hyperspectral profiles from the six regions spectral all lie
within the uncertainty of the representative hyperspectral profile of Cluster 13. There is more deviation
between the representative and validating spectra of Cluster 13 at the wavelengths less than 600 nm
and more than 2000 nm than in the rest of the spectral regions as shown in Figure 17. In contrast,
the deviation between the validation and representative spectra of Clusters 1 and 4 is similar across the
entire spectral range as shown in Figures 18 and 19.

Similarly, for multispectral validation, 50 near-coincident scene pairs between Sentinel 2A MSI and
Landsat 7 ETM+ and the representative hyperspectral profile of Cluster 13 were used. The simulated
multispectral SBAF calculated using the representative hyperspectral of Cluster 13 was compared
to the multispectral SBAFs (ratio of multispectral TOA reflectance of Sentinel 2A MSI and Landsat 7
ETM+). Blue and Green bands had the largest difference of approximately 2.5% and 2.25% respectively,
and the Red band has the smallest difference of approximately 0.87%. These differences are driven by
various factors such as spatial uncertainty of Cluster 13, atmospheric uncertainty, BRDF effects and the
calibration of the sensors. As the error bar of multispectral SBAF includes the simulated multispectral
SBAF, these two sets of SBAF are statistically indistinguishable for all the bands.

Figure 20 shows a common region between Cluster 13 and corresponding Sentinel 2A MSI and
Landsat 7 ETM+ images of Libya 4. In the figure, there is a pattern of the dunes which is due to the
dark rock in the trough of the dunes formed by the aeolian process; where wind shapes the Earth
surface. In large portions of the Libyan desert the wind has scoured the sand to the point it’s reached
the hard rock below the surface. So, the deep valleys represent rock not sand and with the sun at solar
noon, not shadow. On the windward side of the dunes, heavier particles remain, while on the leeward
side the finer particles of sand have been lifted and carried. So for this desert, it’s less about BRDF
and shadowing, and much more about how the wind has shaped the dunes, with the dark rock in the
valley floors, coarser particles on the windward side which appear to be “medium brightness” and
finer particles on the leeward side that appear much brighter. Unsupervised K-means algorithm sees
these differences and groups them appropriately. So, these patterns are due to the rock surface which
are either unstable over time or classified as a different cluster.

Figure 24 presents the mean resultant uncertainty of the representative hyperspectral profile for
each North African cluster. The mean resultant uncertainty was calculated by taking the average
resultant uncertainty across all the transmission bands. Since the absorption bands are loosely filtered
out, it includes the uncertainty of some of the transition bands across different spectral regions;
consequently, the temporal uncertainty is exaggerated and overestimated by approximately 2–3%.
For example, Cluster 13 has approximately 5% resultant uncertainty across the majority of its spectral
regions, but the mean resultant uncertainty is estimated as approximately 8% in Figure 24.

Figure 24 shows that a representative hyperspectral profile of Clusters 15 and 4 has the lowest and
highest resultant uncertainty, respectively. Cluster 15 is one of the brightest clusters and it spreads wide
across North Africa resulting in 166 spectra which helps to estimate a more stable spectrum. Similarly,
other clusters such as Clusters 13, 2, 5, and 8 also have comparable uncertainties of approximately
7–8%. The majority of the clusters exhibiting higher uncertainty has lower intensity levels, such as
Clusters 1 and 4. As uncertainty is a relative measurement, for the same amount of change in absolute
scale, the relative measurement (uncertainty) is higher for the clusters having low intensity than for
the clusters having high intensity.

The representative hyperspectral profile for each cluster is estimated using filters such as view
zenith angle less than 5◦ and cloud cover less than 10%. In addition, BRDF correction was further
applied to these filtered spectra. So, these representative hyperspectral profiles of different clusters
work best for nadir viewing medium and high-resolution optical satellite sensors. As these clusters are
estimated using the Hyperion image of all the seasons across the whole of North Africa, a large number
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of calibration opportunities from all seasons would give a result with lower uncertainty. Whereas,
using a fewer number of calibration events would give rise to extra uncertainty, which in turn escalates
the overall calibration uncertainty. As the estimated hyperspectral profile is mainly focused on the
transmission regions of the electromagnetic spectrum, the profile is not recommended for absorption
regions or at spectral regions where there is a sharp gradient in reflectance.Remote Sens. 2019, 10, x FOR PEER REVIEW  24 of 34 
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Identification of widespread clusters within North Africa provides a great opportunity to improve
PICS-based calibration, as the cluster regions tend to cover much greater areas than the ROIs used in
traditional PICS calibration. Overall, the uncertainties of most clusters are within 5% and some are
around 10%; but still all are usable for moving from ROI-based PICS calibration to Cluster- based
PICS calibration.

Potential extensions to the present work include the following:

1. Perform EPICS based cross-calibration and compare it to the cross-calibration gain and bias
obtained from an ROI-based cross-calibration approach.

2. Generate a cluster-based absolute calibration model and compare its performance to the current
absolute calibration model derived for an individual PICS. In contrast to the current approach,
the cluster-based approach could potentially offer calibration of any optical satellite sensor on a
daily or near-daily basis.

5. Conclusions

A large number of satellite sensors has been launched to monitor changes on the Earth
surface. To take advantage of their data, they should be calibrated to a common radiometric
scale. Cross-calibration of optical satellite sensors helps to put data from multiple sensors to a common
radiometric scale by transferring the calibration from a well-calibrated sensor to an uncalibrated sensor
using coincident or near-coincident observations of various targets on the Earth’s surface selected for
their temporal stability. Accurate hyperspectral characterization of a target is mandatory for performing
cross-calibration as it is used for generating the SBAF required to compensate for differences in relative
spectral response (RSR) between sensors.
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This work presented a methodology to estimate representative hyperspectral profiles for previously
derived clusters of North Africa. Cluster 13 was initially chosen to demonstrate the methodology as
it possessed the largest contiguous regions that were widely distributed across North Africa. It also
exhibited the lowest overall spatial uncertainty across the VNIR and SWIR spectral range, as well as
partial inclusion of the well-known Libya 4 and Egypt 1 PICS within its sub-regions.

The “representative” hyperspectral profile for Cluster 13 in North Africa was estimated for
potential use as an extended PICS (EPICS), using 185 hyperspectral profiles derived from 15 WRS-2
Path/Row Hyperion images acquired over its lifetime. The profile exhibited an uncertainty of
approximately 5% across all the spectral regions.

Data from WRS-2 Path/Row 182/42, 198/47, 192/38, 178/43, 185/48 and 200/47 were then used
to validate the estimated profiles. As the spectra from the selected paths and rows fell within the
uncertainty range of the Cluster 13 spectrum, these were used as the “representative” Cluster 13
spectrum. For validation from a multispectral banded perspective, simulated multispectral SBAFs
derived from the hyperspectral data were compared to BRDF-corrected multispectral SBAFs (specified
as the ratio of TOA reflectance from two well-calibrated sensors). As the error bar of the multispectral
SBAFs for MSI and ETM+ includes the simulated multispectral SBAF, these two sets of SBAF are
statistically indistinguishable.

Most of the rest of the clusters of North Africa exhibit a resultant uncertainty from 5–12%.
Among them, Cluster 15 has the lowest resultant uncertainty of 5% whereas Cluster 4 has the highest
uncertainty of around 12%. The major source of uncertainty of the estimated hyperspectral profile is
the spatial uncertainty of the cluster itself determined by the threshold used for the initial analysis of
the classification of North Africa. In addition, temporal uncertainty of EPICS, residual BRDF effects,
and Hyperion calibration uncertainty also contributed some of the resultant uncertainty.

With an accurate hyperspectral signature, any sub-region within Cluster 13 can be used for
cross-calibration of optical satellite sensors and also for building an absolute calibration model.
Furthermore, hyperspectral profiles for all the clusters found by Shrestha et al., are estimated using a
similar methodology, and vast regions of North Africa can be used as EPICS for performing sensor
cross-calibration. Using EPICS, the number of coincident and near-coincident scene pairs between
sensors to be calibrated is significantly larger than the number obtained using the traditional PICS
approach. There is potential that EPICS-based sensor cross-calibration can deliver results of similar
or higher quality within a much shorter timeframe than the traditional cross-calibration approach.
Furthermore, EPICS-based absolute calibration models will have a significantly larger number of
observations which will help to improve the accuracy and consistency of the resulting calibration.
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Appendix A

In this appendix, we include the estimated representative hyperspectral profile of remaining
clusters of North Africa.
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