Persistent Scatterer Interferometry and Statistical Analysis of Time-Series for Landslide Monitoring: Application to Santo Stefano d’Aveto (Liguria, NW Italy)
Abstract
:1. Introduction
2. General Setting
- (i)
- Casanova Complex: ophiolitic sandstones, breccias in clayey matrix, and breccias in sandy matrix;
- (ii)
- Veri Mt. Complex: shale olistoliths in a shale matrix and breccias in sandy matrix;
- (iii)
- Ottone Flysch: calcareous turbidites characterized by intervals of calcareous marls, marly limestone, and marls that may contain decametric ultramafic and basaltic olistoliths;
- (iv)
- Orocco Mt. Flysch: flysch-type formation constituted by calcareous marls, marly limestone, and marls.
3. Materials and Methods
3.1. Software and Computing
3.2. Sentinel-1 Images
3.3. Data Processing
- -
- unwrap_time_win: is the length in days of the time window used to filter/smooth the phase in time by estimating the noise for each pair of neighboring pixels;
- -
- unwrap_grid_size: is the spacing of the resampling grid;
- -
- unwrap_gold_n_win: is the size of the window for the Goldstein filter;
- -
- scla_deramp: estimates the phase ramp for each interferogram (if set to “y”);
- -
- scn_time_win: is a low-pass temporal filter.
3.4. Ascending and Descending Coupling
3.5. Cross-Correlation and Waveform Similarity Analysis
3.6. Trend Analysis
4. Results
4.1. Ascending and Descending Maps of PS
4.2. Vertical and Horizontal Motion
4.3. Waveform Similarity Analysis
4.4. Trend Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Copernicus: Europe’s Eye on Earth. Available online: https://www.copernicus.eu (accessed on 10 August 2021).
- Bürgmann, R.; Rosen, P.A.; Fielding, E.J. Synthetic aperture radar interferometry to measure Earth’s surface topography and its deformation. Annu. Rev. Earth Planet. Sci. 2000, 28, 169–209. [Google Scholar] [CrossRef]
- Bonì, R.; Bosino, A.; Meisina, C.; Novellino, A.; Bateson, L.; McCormack, H. A methodology to detect and characterize uplift phenomena in urban areas using sentinel-1 data. Remote Sens. 2018, 10, 607. [Google Scholar] [CrossRef] [Green Version]
- Gaudreau, É.; Nissen, E.K.; Bergman, E.A.; Benz, H.M.; Tan, F.; Karasözen, E. The august 2018 kaktovik earthquakes: Active tectonics in northeastern Alaska revealed with InSAR and seismology. Geophys. Res. Lett. 2019, 46, 14412–14420. [Google Scholar] [CrossRef]
- Delgado Blasco, J.M.; Foumelis, M.; Stewart, C.; Hooper, A. Measuring urban subsidence in the Rome metropolitan area (Italy) with sentinel-1 SNAP-StaMPS Persistent Scatterer Interferometry. Remote Sens. 2019, 11, 129. [Google Scholar] [CrossRef] [Green Version]
- Shi, X.; Zhang, L.; Zhong, Y.; Zhang, L.; Liao, M. Detection and characterization of active slope deformations with sentinel-1 InSAR analyses in the southwest area of Shanxi, China. Remote Sens. 2020, 12, 392. [Google Scholar] [CrossRef] [Green Version]
- Ferretti, A.; Prati, C.; Rocca, F. Analysis of permanent scatterers in SAR interferometry. In Proceedings of the IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120), Honolulu, HI, USA, 24-28 July 2000; Volume 2, pp. 761–763. [Google Scholar] [CrossRef]
- Hooper, A.; Zebker, H.; Segall, P.; Kampes, B. A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geoph. Res. Let. 2004, 31. [Google Scholar] [CrossRef]
- Ferretti, A.; Fumagalli, A.; Novali, F.; Prati, C.; Rocca, F.; Rucci, A. A new algorithm for processing interferometric data-stacks: SqueeSAR. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3460–3470. [Google Scholar] [CrossRef]
- Crosetto, M.; Monserrat, O.; Cuevas-González, M.; Devanthéry, N.; Crippa, B. Persistent scatterer interferometry: A review. ISPRS J. Photogramm. Remote Sens. 2016, 115, 78–89. [Google Scholar] [CrossRef] [Green Version]
- Gheorghe, M.; Armaş, I. Comparison of multi-temporal differential interferometry techniques applied to the measurement of Bucharest City Subsidence. Procedia Environ. Sci. 2016, 32, 221–229. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Jia, C.; Chen, S.; Li, H. SBAS-InSAR based deformation detection of urban land, created from mega-scale mountain excavating and valley filling in the loess plateau: The case study of Yan’an city. Remote Sens. 2019, 11, 1673. [Google Scholar] [CrossRef] [Green Version]
- Yazici, B.V.; Tunc Gormus, E. Investigating persistent scatterer InSAR (PSInSAR) technique efficiency for landslides mapping: A case study in Artvin dam area, in Turkey. Geocarto Int. 2020, 1–19. [Google Scholar] [CrossRef]
- Sousa, J.J.; Hooper, A.J.; Hanssen, R.F.; Bastos, L.C.; Ruiz, A.M. Persistent Scatterer InSAR: A comparison of methodologies based on a model of temporal deformation vs. spatial correlation selection criteria. Remote Sens. Environ. 2011, 115, 2652–2663. [Google Scholar] [CrossRef]
- Vajedian, S.; Motagh, M.; Nilfouroushan, F. StaMPS Improvement for deformation analysis in mountainous regions: Implications for the Damavand volcano and Mosha fault in Alborz. Remote Sens. 2015, 7, 8323–8347. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, A.; Dwivedi, R.; Dikshit, O.; Singh, A.K. A study on measuring surface deformation of the L’Aquila region using the StaMPS technique. Int. J. Remote Sens. 2016, 37, 819–830. [Google Scholar] [CrossRef]
- Tofani, V.; Raspini, F.; Catani, F.; Casagli, N. Persistent Scatterer Interferometry (PSI) technique for landslide characterization and monitoring. Remote Sens. 2013, 5, 1045–1065. [Google Scholar] [CrossRef] [Green Version]
- Intrieri, E.; Frodella, W.; Raspini, F.; Bardi, F.; Tofani, V. Using satellite interferometry to infer landslide sliding surface depth and geometry. Remote Sens. 2020, 12, 1462. Available online: https://www.mdpi.com/2072-4292/12/9/1462 (accessed on 7 July 2020). [CrossRef]
- Marino, M.; Terranova, R. Ophiolithifer Complexes of Mt.Aiona and Mt.Penna and their relation with sedimentary series (Ligurian-Parmisan Appenine). Boll. Soc. Geol. It. 1980, 99, 183–203. [Google Scholar]
- Casnedi, R.; Galbiati, B.; Vernia, L.; Zanzucchi, G. Geological map explanatory notes of ophiolithes of Mt.Penna and Mt.Aiona (Appennino ligure-emiliano). Atti Tic. Sc. Terra 1993, 36, 231–268. [Google Scholar]
- Elter, P.; Lasagna, S.; Marroni, M.; Pandolfi, L.; Vescovi, P.; Zanzucchi, G. Note illustrative della Carta Geologica d’Italia alla scala 1:50.000, foglio 215 Bedonia; Regione Emilia Romagna, S.EL.CA. srl: Firenze, Italy, 2005; p. 117. [Google Scholar]
- Mann, H. Nonparametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods, 4th ed.; Charles Griffin: London, UK, 1975. [Google Scholar]
- Gilbert, R.O. Statistical Methods for Environmental Pollution Monitoring; Wiley: New York, NY, 1987. [Google Scholar]
- Regione Liguria Carta Geologica Regionale sc. 1:25000-tav 215.4-S(CARG) Stefano D’Aveto (2006). Available online: http://srvcarto.regione.liguria.it/geoviewer/pages/apps/ambienteinliguria/mappa.html?id=661&ambiente=I (accessed on 21 August 2021).
- IFFI. Available online: https://idrogeo.isprambiente.it/app/iffi/f/0100044102?@=44.54534812551225,9.45722007472386,17 (accessed on 7 July 2021).
- ARPAL, Remover Project 2008–2017. Available online: http://www.vincolimap.it/img/Remover/Commenti_Siti/GE013_commento_tot.pdf (accessed on 7 July 2021).
- Bottero, B.; Poggi, F. The integration of different monitoring techniques for the analysis of slow moving landlside hazard: S. Stefano d’Aveto case study (Genoa-Liguria). Geoing. E Attività Estrattiva 2014, 1, 5–18. [Google Scholar]
- Faccini, F.; Piccazzo, M.; Robbiano, A.; Roccati, A.; Vaccarezza, C. A deep seated slope gravitational deformation at the origin of Prato della Cipolla wetland (Upper Aveto Valley, Ligurian Apennine). In Proceedings of the Wetlands as Archives of the Cultural Landscapes from Research to Management, Genoa, Italy, 29–30 January 2009; Archivio di Stato di Genova: Genova, Italy, 2009. [Google Scholar]
- Faccini, F.; Robbiano, A.; Roccati, A. Geomorphological characterization, site investigation and management of the S Stefano d’Aveto Landslide (Ligurian Apennine Italy). In Proceedings of the 33rd International Geological Society Congress, GSM-01 General Contributions to Geomorphology, Oslo, Norway, 6–14 August 2008. [Google Scholar]
- Veci, L.; Lu, J.; Prats-Iraola, P.; Scheiber, R.; Collard, F.; Fomferra, N.; Engdahl, M. The Sentinel-1 Toolbox. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Quebec City, QC, Canada, 13–18 July 2014; pp. 1–3. [Google Scholar]
- Foumelis, M.; Delgado Blasco, J.M.; Desnos, Y.-L.; Engdahl, M.; Fernandez, D.; Veci, L.; Lu, J.; Wong, C. ESA SNAP-StaMPS integrated processing for sentinel-1 persistent scatterer interferometry. In Proceedings of the 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 1364–1367. [Google Scholar] [CrossRef]
- Hooper, A.; Bekaert, D.; Spaans, K.; Arıkan, M. Recent advances in SAR interferometry time-series analysis for measuring crustal deformation. Tectonophysics 2012, 514–517, 1–13. [Google Scholar] [CrossRef]
- Höser, T. Analysing the Capabilities and Limitations of InSAR using Sentinel-1 Data for Landslide Detection and Monitoring. Master’s Thesis, Department of Geography, University of Bonn, Bonn, Germany, 2018. [Google Scholar]
- Foumelis, M. Vector-based approach for combining ascending and descending persistent scatterers interferometric point measurements. Geocarto 2016, 38–52. [Google Scholar] [CrossRef]
- Clark, P.J.; Evans, F.C. Distance to nearest neighbor as a measure of spatial relationships in populations. Ecology 1954, 35, 445–453. [Google Scholar] [CrossRef]
- Shearer, P.M. Evidence from a cluster of small earthquakes for a fault at 18 km depth beneath Oak Ridge, Southern California. Bull. Seismol. Soc. Am. 1998, 88, 1327–1336. [Google Scholar]
- Astiz, L.; Shearer, P.M.; Agnew, D.C. Precise relocations and stress change calculations for the Upland earthquake sequence in Southern California. J. Geophys. Res. 2000, 105, 2937–2953. [Google Scholar] [CrossRef]
- Ferretti, G.; Massa, M.; Solarino, S. An improved method for the identification of seismic families: Application to the Garfagnana–Lunigiana area (Italy). Bull. Seismol. Soc. Am. 2005, 95, 1903–1915. [Google Scholar] [CrossRef] [Green Version]
- Barani, S.; Ferretti, G.; Massa, M.; Spallarossa, D. The waveform similarity approach to identify dependent events in instrumental seismic catalogues. Geophys. J. Int. 2007, 168, 100–108. [Google Scholar] [CrossRef] [Green Version]
- Barani, S.; Ferretti, G.; Scafidi, D.; Spallarossa, D. Analysis of seismicity and micro-seismicity associated with the October–November 2010 Sampeye swarm, Southwestern Alps. Tectonophysics 2014, 611, 130–140. [Google Scholar] [CrossRef]
- Cattaneo, M.; Augliera, P.; Spallarossa, D.; Lanza, V. A waveform similarity approach to investigate seismicity patterns. Nat. Haz. 1999, 19, 123–138. [Google Scholar] [CrossRef]
Track | Frame | First Image | Last Image | Total Images | Master Data | Sub-Swath | |
---|---|---|---|---|---|---|---|
Descending | 168 | 441-2-3-4-5-6 | 22 March 2015 | 14 March 2021 | 177 | 12 June 2018 | IW3 |
Ascending | 015 | 139, 141-2-3-4-5 | 23 March 2015 | 15 March 2021 | 178 | 7 April 2017 | IW2 |
Parameter | StaMPS Step | Default | Used |
---|---|---|---|
unwrap_time_win | 6 | 730 | 24 |
unwrap_grid_size | 6 | 200 | 10 |
unwrap_gold_n_win | 6 | 32 | 8 |
scla_deramp | 7 | n | y |
scn_time_win | 8 | 365 | 50 |
Temporal Interval | |||||||||
---|---|---|---|---|---|---|---|---|---|
from | 2015 | 2016 | 2017 | 2018 | 2019 | 2015 | 2015 | 2018 | 2015 |
to | 2017 | 2018 | 2019 | 2020 | 2021 | 2019 | 2018 | 2021 | 2021 |
Family 1 | –28.56 | –26.71 | –28.08 | –36.89 | –35.24 | –27.91 | –27.5 | –35.68 | –30.97 |
Family 2 | –12.12 | –8.87 | –14.97 | –18.74 | –22.94 | –11.87 | –10.39 | –20.25 | –14.97 |
Family 3 | –5.92 | –3.55 | –10.97 | –13.08 | –16.32 | –7.09 | –4.72 | –14.43 | –10.21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balbi, E.; Terrone, M.; Faccini, F.; Scafidi, D.; Barani, S.; Tosi, S.; Crispini, L.; Cianfarra, P.; Poggi, F.; Ferretti, G. Persistent Scatterer Interferometry and Statistical Analysis of Time-Series for Landslide Monitoring: Application to Santo Stefano d’Aveto (Liguria, NW Italy). Remote Sens. 2021, 13, 3348. https://doi.org/10.3390/rs13173348
Balbi E, Terrone M, Faccini F, Scafidi D, Barani S, Tosi S, Crispini L, Cianfarra P, Poggi F, Ferretti G. Persistent Scatterer Interferometry and Statistical Analysis of Time-Series for Landslide Monitoring: Application to Santo Stefano d’Aveto (Liguria, NW Italy). Remote Sensing. 2021; 13(17):3348. https://doi.org/10.3390/rs13173348
Chicago/Turabian StyleBalbi, Evandro, Martino Terrone, Francesco Faccini, Davide Scafidi, Simone Barani, Silvano Tosi, Laura Crispini, Paola Cianfarra, Flavio Poggi, and Gabriele Ferretti. 2021. "Persistent Scatterer Interferometry and Statistical Analysis of Time-Series for Landslide Monitoring: Application to Santo Stefano d’Aveto (Liguria, NW Italy)" Remote Sensing 13, no. 17: 3348. https://doi.org/10.3390/rs13173348
APA StyleBalbi, E., Terrone, M., Faccini, F., Scafidi, D., Barani, S., Tosi, S., Crispini, L., Cianfarra, P., Poggi, F., & Ferretti, G. (2021). Persistent Scatterer Interferometry and Statistical Analysis of Time-Series for Landslide Monitoring: Application to Santo Stefano d’Aveto (Liguria, NW Italy). Remote Sensing, 13(17), 3348. https://doi.org/10.3390/rs13173348