Automated Detection of Animals in Low-Resolution Airborne Thermal Imagery
Abstract
:1. Introduction
- We introduce animal detection from a high altitude with improved accuracy and speed using a deep learning-based object detection approach.
- We improve traditional YOLO by considering model training and structure optimisation to detect smaller and more distant objects.
- We validate our process on an extensive thermal video dataset collected by thermal imagery researchers. This dataset was very challenging as it included low resolution imagery of small animals like rabbits, and imagery of animals that, under certain conditions, can have similar thermal signatures, such as pigs and kangaroos.
2. Materials and Methodology
2.1. Data Collection
2.2. Data Pre-Processing
2.3. Data Annotation, Model Training and Detection
2.4. Geo-Tagging and Visualizing of Detected Targets
2.5. Experiments and Results
3. Dicussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Van Hespen, R.; Hauser, C.E.; Benshemesh, J.; Rumpff, L.; Monfort, J.J.L. Designing a camera trap monitoring program to measure efficacy of invasive predator management. Wildl. Res. 2019, 46, 154–164. [Google Scholar] [CrossRef]
- Jepsen, E.M.; Ganswindt, A.; Ngcamphalala, C.A.; Bourne, A.R.; Ridley, A.R.; McKechnie, A.E. Non-invasive monitoring of physiological stress in an afrotropical arid-zone passerine bird, the southern pied babbler. Gen. Comp. Endocrinol. 2019, 276, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Georgieva, M.; Georgiev, G.; Mirchev, P.; Filipova, E. Monitoring on appearance and spread of harmful invasive pathogens and pests in Belasitsa Mountain. In Proceedings of the X International Agriculture Symposium, Agrosym 2019, Jahorina, Bosnia and Herzegovina, 3–6 October 2019; Faculty of Agriculture, University of East Sarajevo: Lukavica, Bosnia and Herzegovina, 2019; pp. 1887–1892. [Google Scholar]
- Burke, C.; Rashman, M.; Wich, S.; Symons, A.; Theron, C.; Longmore, S. Optimizing observing strategies for monitoring animals using drone-mounted thermal infrared cameras. Int. J. Remote Sens. 2019, 40, 439–467. [Google Scholar] [CrossRef] [Green Version]
- Witczuk, J.; Pagacz, S.; Zmarz, A.; Cypel, M. Exploring the feasibility of unmanned aerial vehicles and thermal imaging for ungulate surveys in forests-preliminary results. Int. J. Remote Sens. 2018, 39, 5504–5521. [Google Scholar] [CrossRef]
- Colomina, I.; Molina, P. Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2014, 92, 79–97. [Google Scholar] [CrossRef] [Green Version]
- Cox, T.E.; Matthews, R.; Halverson, G.; Morris, S. Hot stuff in the bushes: Thermal imagers and the detection of burrows in vegetated sites. Ecol. Evol. 2021, 11, 6406–6414. [Google Scholar] [CrossRef] [PubMed]
- Karp, D. Detecting small and cryptic animals by combining thermography and a wildlife detection dog. Sci. Rep. 2020, 10, 5220. [Google Scholar] [CrossRef] [PubMed]
- Berg, A.; Johnander, J.; Durand de Gevigney, F.; Ahlberg, J.; Felsberg, M. Semi-automatic annotation of objects in visual-thermal video. In Proceedings of the IEEE International Conference on Computer Vision Workshops, Seoul, Korea, 27–28 October 2019. [Google Scholar]
- Kellenberger, B.; Marcos, D.; Lobry, S.; Tuia, D. Half a percent of labels is enough: Efficient animal detection in UAV imagery using deep cnns and active learning. IEEE Trans. Geosci. Remote Sens. 2019, 57, 9524–9533. [Google Scholar] [CrossRef] [Green Version]
- Meena, D.; Agilandeeswari, L. Invariant Features-Based Fuzzy Inference System for Animal Detection and Recognition Using Thermal Images. Int. J. Fuzzy Syst. 2020, 22, 1868–1879. [Google Scholar] [CrossRef]
- Shepley, A.J.; Falzon, G.; Meek, P.; Kwan, P. Location Invariant Animal Recognition Using Mixed Source Datasets and Deep Learning. bioRxiv 2020. [Google Scholar] [CrossRef]
- Corcoran, E.; Denman, S.; Hanger, J.; Wilson, B.; Hamilton, G. Automated detection of koalas using low-level aerial surveillance and machine learning. Sci. Rep. 2019, 9, 3208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar]
- Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. Adv. Neural Inf. Process. Syst. 2015, 28, 91–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2961–2969. [Google Scholar]
- Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2016; pp. 21–37. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271. [Google Scholar]
- Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft coco: Common objects in context. In European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2014; pp. 740–755. [Google Scholar]
- Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Liu, M.; Wang, X.; Zhou, A.; Fu, X.; Ma, Y.; Piao, C. UAV-YOLO: Small Object Detection on Unmanned Aerial Vehicle Perspective. Sensors 2020, 20, 2238. [Google Scholar] [CrossRef] [Green Version]
- LabelMe. The Open Annotation Tool. Available online: http://labelme2.csail.mit.edu/Release3.0/index.php?message=1 (accessed on 9 July 2021).
- Guo, W.; Li, W.; Gong, W.; Cui, J. Extended Feature Pyramid Network with Adaptive Scale Training Strategy and Anchors for Object Detection in Aerial Images. Remote Sens. 2020, 12, 784. [Google Scholar] [CrossRef] [Green Version]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Yu, F.; Koltun, V. Multi-scale context aggregation by dilated convolutions. arXiv 2015, arXiv:1511.07122. [Google Scholar]
- Yu, F.; Koltun, V.; Funkhouser, T. Dilated residual networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 472–480. [Google Scholar]
Imager | Platform | View (Hz) | Export (Hz) | Sensor (w × h) (mm) | Lens (mm) | Pixel Pitch | Target Animal Species |
---|---|---|---|---|---|---|---|
FLIR Zenmuse | DJI Innspire-1 RPA | 30 | 9 | 12.38 × 9.68 | 640 × 512 | 17 | Rabbit and rabbit warren |
Janoptik Vario CAM HD | DJI S1000+ RPA/Ground based survey | 30 | 30 | 17.4 × 9.68 | 1024 × 800 | 17 | Rabbit |
Sierra Olympic Vayu HD | DJI M600 RPA | 60 | >30 | 24 × 14.5 | 1920 × 1200 | 12 | Rabbit, rabbit warren, pigs and kangaroo |
FLIR Zenmuse XT 640 | DJI Matrice 210 RPA | 9 | 9 | 12.38 × 9.68 | 640 × 512 | 17 | Pigs and Kangaroo |
Class Name | Labelled | Total Images |
---|---|---|
Rabbit | Rabbit | 1246 |
Kangaroos | Kangaroo | 4211 |
Pigs | Pig | 6000 |
System Hardware/Software (Operating System) | Specifications |
---|---|
RAM | 64 GB RAM |
CPU | Intel 9th Gen i9 9900K |
GPU(s) | 2x NVIDIA RTX 2080 Ti 11 GB VRAM |
Operating System | Windows 10 Professional and Ubuntu 18.04 |
Dataset (Train/Test) Split in % | Accuracy (%) | ||||
---|---|---|---|---|---|
10 Epochs | 20 Epochs | 30 Epochs | 40 Epochs | 50 Epochs | |
85–15 | 92.31 | 95.84 | 96.86 | 97.39 | 98.38 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ulhaq, A.; Adams, P.; Cox, T.E.; Khan, A.; Low, T.; Paul, M. Automated Detection of Animals in Low-Resolution Airborne Thermal Imagery. Remote Sens. 2021, 13, 3276. https://doi.org/10.3390/rs13163276
Ulhaq A, Adams P, Cox TE, Khan A, Low T, Paul M. Automated Detection of Animals in Low-Resolution Airborne Thermal Imagery. Remote Sensing. 2021; 13(16):3276. https://doi.org/10.3390/rs13163276
Chicago/Turabian StyleUlhaq, Anwaar, Peter Adams, Tarnya E. Cox, Asim Khan, Tom Low, and Manoranjan Paul. 2021. "Automated Detection of Animals in Low-Resolution Airborne Thermal Imagery" Remote Sensing 13, no. 16: 3276. https://doi.org/10.3390/rs13163276
APA StyleUlhaq, A., Adams, P., Cox, T. E., Khan, A., Low, T., & Paul, M. (2021). Automated Detection of Animals in Low-Resolution Airborne Thermal Imagery. Remote Sensing, 13(16), 3276. https://doi.org/10.3390/rs13163276