Spatial Modeling of Asthma-Prone Areas Using Remote Sensing and Ensemble Machine Learning Algorithms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Asthma Data
2.3. Effective Criteria
- Altitude
- Meteorology data
- Air pollutants
- Distance to street
- Traffic volume
- Normalized difference vegetation index (NDVI)
2.4. Factors Importance Using Gini Index
2.5. Multicollinearity Analysis
2.6. Weight of Evidence (WOE) Model
2.7. Bagging Algorithm
2.8. AdaBoost Algorithm
2.9. Stacking Algorithm
2.10. Validation Metrics
- Receiver operating characteristic (ROC) curve
- Prediction error metrics
3. Results
3.1. Result of Multicollinearity Analysis
3.2. Result of Gini Index
3.3. Result of WOE Model
3.4. Result of Modeling and Mapping
3.5. Result of Validation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ehteshami-Afshar, S.; FitzGerald, J.; Doyle-Waters, M.; Sadatsafavi, M. The global economic burden of asthma and chronic obstructive pulmonary disease. Int. J. Tuberc. Lung Dis. 2016, 20, 11–23. [Google Scholar] [CrossRef]
- Nunes, C.; Pereira, A.M.; Morais-Almeida, M. Asthma costs and social impact. Asthma Res. Pract. 2017, 3, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Lundbäck, B.; Backman, H.; Lötvall, J.; Rönmark, E. Is asthma prevalence still increasing? Expert Rev. Respir. Med. 2016, 10, 39–51. [Google Scholar] [CrossRef] [PubMed]
- Ma, R.; Liang, L.; Kong, Y.; Zhai, S.; Gu, J.; Zhang, G.; Wang, T. Hotspot detection and socio-ecological factor analysis of asthma hospitalization rate in guangxi, china. Environ. Res. 2020, 183, 109201. [Google Scholar] [CrossRef] [PubMed]
- Becker, A.B.; Abrams, E.M. Asthma guidelines: The global initiative for asthma in relation to national guidelines. Curr. Opin. Allergy Clin. Immunol. 2017, 17, 99–103. [Google Scholar] [CrossRef]
- Žavbi, M.; Korošec, P.; Fležar, M.; Kristan, S.Š.; Malovrh, M.M.; Rijavec, M. Polymorphisms and haplotypes of the chromosome locus 17q12-17q21. 1 contribute to adult asthma susceptibility in slovenian patients. Hum. Immunol. 2016, 77, 527–534. [Google Scholar] [CrossRef]
- Razavi-Termeh, S.V.; Sadeghi-Niaraki, A.; Choi, S.-M. Asthma-prone areas modeling using a machine learning model. Sci. Rep. 2021, 11, 1–16. [Google Scholar] [CrossRef]
- Dias, C.S.; Dias, M.A.S.; Friche, A.A.d.L.; Almeida, M.C.d.M.; Viana, T.C.; Mingoti, S.A.; Caiaffa, W.T. Temporal and spatial trends in childhood asthma-related hospitalizations in belo horizonte, minas gerais, brazil and their association with social vulnerability. Int. J. Environ. Res. Public Health 2016, 13, 704. [Google Scholar] [CrossRef] [Green Version]
- Kabesch, M. Gene by environment interactions and the development of asthma and allergy. Toxicol. Lett. 2006, 162, 43–48. [Google Scholar] [CrossRef]
- Khan, I.A.; Arsalan, M.H.; Mehdi, M.R.; Kazmi, J.H.; Seong, J.C.; Han, D. Assessment of asthma-prone environment in karachi, pakistan using gis modeling. JPMA J. Pak. Med Assoc. 2020, 70, 636–649. [Google Scholar] [CrossRef]
- Portnov, B.A.; Reiser, B.; Karkabi, K.; Cohen-Kastel, O.; Dubnov, J. High prevalence of childhood asthma in northern israel is linked to air pollution by particulate matter: Evidence from gis analysis and bayesian model averaging. Int. J. Environ. health Res. 2012, 22, 249–269. [Google Scholar] [CrossRef]
- Svendsen, E.R.; Gonzales, M.; Mukerjee, S.; Smith, L.; Ross, M.; Walsh, D.; Rhoney, S.; Andrews, G.; Ozkaynak, H.; Neas, L.M. Gis-modeled indicators of traffic-related air pollutants and adverse pulmonary health among children in el paso, texas. Am. J. Epidemiol. 2012, 176, S131–S141. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.-J.; Yeatts, K.B.; Serre, M.L. A bayesian maximum entropy approach to address the change of support problem in the spatial analysis of childhood asthma prevalence across north carolina. Spat. Spatio-Temporal Epidemiol. 2009, 1, 49–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaya, I.G.N.M.; Folmer, H. Bayesian spatiotemporal mapping of relative dengue disease risk in bandung, indonesia. J. Geogr. Syst. 2020, 22, 105–142. [Google Scholar] [CrossRef]
- Mertikas, S.P.; Partsinevelos, P.; Mavrocordatos, C.; Maximenko, N.A. Environmental Applications of Remote Sensing. In Pollution Assessment for Sustainable Practices in Applied Sciences and Engineering; Elsevier: Amsterdam, The Netherlands, 2021; pp. 107–163. [Google Scholar]
- Dash, J.P.; Pearse, G.D.; Watt, M.S. Uav multispectral imagery can complement satellite data for monitoring forest health. Remote Sens. 2018, 10, 1216. [Google Scholar] [CrossRef] [Green Version]
- Beloconi, A.; Vounatsou, P. Bayesian geostatistical modelling of high-resolution no2 exposure in europe combining data from monitors, satellites and chemical transport models. Environ. Int. 2020, 138, 105578. [Google Scholar] [CrossRef]
- Yuniarti, E.; Hermon, D.; Dewata, I.; Barlian, E.; Iswamdi, U. Mapping the high risk populations against coronavirus disease 2019 in padang west sumatra indonesia. Int. J. Progress. Sci. Technol. 2020, 20, 50–58. [Google Scholar]
- Razavi-Termeh, S.V.; Sadeghi-Niaraki, A.; Choi, S.-M. Coronavirus disease vulnerability map using a geographic information system (gis) from 16 april to 16 may 2020. Phys. Chem. Earth Parts A/B/C 2021, 103043. [Google Scholar] [CrossRef]
- Gebre-Michael, T.; Malone, J.; Balkew, M.; Ali, A.; Berhe, N.; Hailu, A.; Herzi, A. Mapping the potential distribution of phlebotomus martini and p. Orientalis (diptera: Psychodidae), vectors of kala-azar in east africa by use of geographic information systems. Acta Tropica 2004, 90, 73–86. [Google Scholar] [CrossRef]
- BenBella, D.; Ghosh, D. Combining geospatial analysis with hiv care continuum to identify differential hiv/aids treatment indicators in uganda. Prof. Geogr. 2021, 73, 213–229. [Google Scholar] [CrossRef]
- Pham, N.T.; Nguyen, C.T.; Vu, H.H. Assessing and modelling vulnerability to dengue in the mekong delta of vietnam by geospatial and time-series approaches. Environ. Res. 2020, 186, 109545. [Google Scholar] [CrossRef]
- Jenila, V.M.; Varalakshmi, P.; Rajasekar, S.J.S. Geospatial Mapping, Epidemiological Modelling, Statistical Correlation and Analysis of Covid-19 with Forest Cover and Population in the Districts of Tamil Nadu, India. In Proceedings of the 2020 IEEE International Conference on Advent Trends in Multidisciplinary Research and Innovation (ICATMRI), Buldana, India, 3 December 2020; pp. 1–7. [Google Scholar]
- Abdullah, A.Y.M.; Dewan, A.; Shogib, M.R.I.; Rahman, M.M.; Hossain, M.F. Environmental factors associated with the distribution of visceral leishmaniasis in endemic areas of bangladesh: Modeling the ecological niche. Trop. Med. Health 2017, 45, 1–15. [Google Scholar] [CrossRef]
- Gordian, M.E.; Haneuse, S.; Wakefield, J. An investigation of the association between traffic exposure and the diagnosis of asthma in children. J. Expo. Sci. Environ. Epidemiol. 2006, 16, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Gorai, A.K.; Tuluri, F.; Tchounwou, P.B. A gis based approach for assessing the association between air pollution and asthma in new york state, USA. Int. J. Environ. Res. Public Health 2014, 11, 4845–4869. [Google Scholar] [CrossRef] [Green Version]
- Samuels-Kalow, M.E.; Camargo, C.A. The use of geographic data to improve asthma care delivery and population health. Clin. chest Med. 2019, 40, 209–225. [Google Scholar] [CrossRef]
- Ouédraogo, A.M.; Crighton, E.J.; Sawada, M.; To, T.; Brand, K.; Lavigne, E. Exploration of the spatial patterns and determinants of asthma prevalence and health services use in ontario using a bayesian approach. PLoS ONE 2018, 13, e0208205. [Google Scholar] [CrossRef] [Green Version]
- Zook, M.; Wollersheim, D.; Erbas, B.; Jacobsen, K.H. Integrating spatial analysis into policy formulation: A case study examining traffic exposure and asthma. World Med Health Policy 2018, 10, 99–110. [Google Scholar] [CrossRef]
- Pala, D.; Pagán, J.; Parimbelli, E.; Rocca, M.T.; Bellazzi, R.; Casella, V. Spatial enablement to support environmental, demographic, socioeconomics, and health data integration and analysis for big cities: A case study with asthma hospitalizations in new york city. Front. Med. 2019, 6, 84. [Google Scholar] [CrossRef] [Green Version]
- Leynaert, B.; Le Moual, N.; Neukirch, C.; Siroux, V.; Varraso, R. Environmental risk factors for asthma developement. Presse Med. 2019, 48, 262–273. [Google Scholar] [CrossRef]
- Kinghorn, B.; Fretts, A.M.; O’Leary, R.A.; Karr, C.J.; Rosenfeld, M.; Best, L.G. Socioeconomic and environmental risk factors for pediatric asthma in an american indian community. Acad. Pediatrics 2019, 19, 631–637. [Google Scholar] [CrossRef]
- Krautenbacher, N.; Kabesch, M.; Horak, E.; Braun-Fahrländer, C.; Genuneit, J.; Boznanski, A.; von Mutius, E.; Theis, F.; Fuchs, C.; Ege, M.J. Asthma in farm children is more determined by genetic polymorphisms and in non-farm children by environmental factors. Pediatric Allergy Immunol. 2021, 32, 295–304. [Google Scholar] [CrossRef]
- Hauptman, M.; Gaffin, J.M.; Petty, C.R.; Sheehan, W.J.; Lai, P.S.; Coull, B.; Gold, D.R.; Phipatanakul, W. Proximity to major roadways and asthma symptoms in the school inner-city asthma study. J. Allergy Clin. Immunol. 2020, 145, 119–126.e114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-Orozco, A.R.; Galeana-Osuna, E.G.; Bollo-Manent, M.; Figueroa-Núñez, B. Spatial analysis of asthma morbidity in the city of morelia, mexico, for the decade 2000–2010. Atencion Primaria 2020, 52, 578–579. [Google Scholar] [CrossRef]
- Razavi-Termeh, S.V.; Sadeghi-Niaraki, A.; Choi, S.-M. Effects of air pollution in spatio-temporal modeling of asthma-prone areas using a machine learning model. Environ. Res. 2021, 200, 111344. [Google Scholar] [CrossRef]
- Shinkuma, R.; Nishio, T. Data Assessment and Prioritization in Mobile Networks for Real-Time Prediction of Spatial Information with Machine Learning. In Proceedings of the 2019 IEEE First International Workshop on Network Meets Intelligent Computations (NMIC), Dallas, TX, USA, 7–9 July 2019; pp. 1–6. [Google Scholar]
- Shahhosseini, M.; Hu, G.; Pham, H. Optimizing ensemble weights and hyperparameters of machine learning models for regression problems. arXiv 2019, arXiv:1908.05287. [Google Scholar]
- Ribeiro, M.H.D.M.; dos Santos Coelho, L. Ensemble approach based on bagging, boosting and stacking for short-term prediction in agribusiness time series. Appl. Soft Comput. 2020, 86, 105837. [Google Scholar] [CrossRef]
- Wen, L.; Hughes, M. Coastal wetland mapping using ensemble learning algorithms: A comparative study of bagging, boosting and stacking techniques. Remote Sens. 2020, 12, 1683. [Google Scholar] [CrossRef]
- Giraldo-Cadavid, L.F.; Perdomo-Sanchez, K.; Córdoba-Gravini, J.L.; Escamilla, M.I.; Suarez, M.; Gelvez, N.; Gozal, D.; Duenas-Meza, E. Allergic rhinitis and osa in children residing at a high altitude. Chest 2020, 157, 384–393. [Google Scholar] [CrossRef]
- Delamater, P.L.; Finley, A.O.; Banerjee, S. An analysis of asthma hospitalizations, air pollution, and weather conditions in Los Angeles County, california. Sci. Total Environ. 2012, 425, 110–118. [Google Scholar] [CrossRef] [Green Version]
- Shogrkhodaei, S.Z.; Razavi-Termeh, S.V.; Fathnia, A. Spatio-temporal modeling of pm2. 5 risk mapping using three machine learning algorithms. Environ. Pollut. 2021, 289, 117859. [Google Scholar] [CrossRef]
- Schraufnagel, D.E.; Balmes, J.R.; Cowl, C.T.; De Matteis, S.; Jung, S.-H.; Mortimer, K.; Perez-Padilla, R.; Rice, M.B.; Riojas-Rodriguez, H.; Sood, A. Air pollution and noncommunicable diseases: A review by the forum of international respiratory societies’ environmental committee, part 2: Air pollution and organ systems. Chest 2019, 155, 417–426. [Google Scholar] [CrossRef] [PubMed]
- Tong, Z.; Li, Y.; Westerdahl, D.; Adamkiewicz, G.; Spengler, J.D. Exploring the effects of ventilation practices in mitigating in-vehicle exposure to traffic-related air pollutants in china. Environ. Int. 2019, 127, 773–784. [Google Scholar] [CrossRef] [PubMed]
- Cazorla, A.; Bahadur, R.; Suski, K.; Cahill, J.F.; Chand, D.; Schmid, B.; Ramanathan, V.; Prather, K. Relating aerosol absorption due to soot, organic carbon, and dust to emission sources determined from in-situ chemical measurements. Atmos. Chem. Phys. 2013, 13, 9337–9350. [Google Scholar] [CrossRef] [Green Version]
- Jamali, S.; Seaquist, J.; Eklundh, L.; Ardö, J. Automated mapping of vegetation trends with polynomials using ndvi imagery over the sahel. Remote Sens. Environ. 2014, 141, 79–89. [Google Scholar] [CrossRef]
- Liu, H.; Zhou, M.; Lu, X.S.; Yao, C. Weighted Gini Index Feature Selection Method for Imbalanced Data. In Proceedings of the 2018 IEEE 15th International Conference on Networking, Sensing and Control (ICNSC), Zhuhai, China, 27–29 March 2018; pp. 1–6. [Google Scholar]
- Tangirala, S. Evaluating the impact of gini index and information gain on classification using decision tree classifier algorithm. Int. J. Adv. Comput. Sci. Appl. 2020, 11, 612–619. [Google Scholar] [CrossRef]
- Olivoto, T.; de Souza, V.Q.; Nardino, M.; Carvalho, I.R.; Ferrari, M.; de Pelegrin, A.J.; Szareski, V.J.; Schmidt, D. Multicollinearity in path analysis: A simple method to reduce its effects. Agron. J. 2017, 109, 131–142. [Google Scholar] [CrossRef]
- Golbamaki, A.; Golbamaki, N.; Sizochenko, N.; Rasulev, B.; Leszczynski, J.; Benfenati, E. Genotoxicity induced by metal oxide nanoparticles: A weight of evidence study and effect of particle surface and electronic properties. Nanotoxicology 2018, 12, 1113–1129. [Google Scholar] [CrossRef]
- Hong, H.; Ilia, I.; Tsangaratos, P.; Chen, W.; Xu, C. A hybrid fuzzy weight of evidence method in landslide susceptibility analysis on the wuyuan area, china. Geomorphology 2017, 290, 1–16. [Google Scholar] [CrossRef]
- Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef] [Green Version]
- Galar, M.; Fernandez, A.; Barrenechea, E.; Bustince, H.; Herrera, F. A review on ensembles for the class imbalance problem: Bagging-, boosting-, and hybrid-based approaches. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 2011, 42, 463–484. [Google Scholar] [CrossRef]
- Xia, T.; Zhuo, P.; Xiao, L.; Du, S.; Wang, D.; Xi, L. Multi-stage fault diagnosis framework for rolling bearing based on ohf elman adaboost-bagging algorithm. Neurocomputing 2021, 433, 237–251. [Google Scholar] [CrossRef]
- Freund, Y.; Schapire, R.E. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 1997, 55, 119–139. [Google Scholar] [CrossRef] [Green Version]
- Sultana, N.; Islam, M.M. Meta Classifier-Based Ensemble Learning for Sentiment Classification. In Proceedings of the International Joint Conference on Computational Intelligence, Budapest, Hungary, 2–4 November 2020; pp. 73–84. [Google Scholar]
- Dev, V.A.; Eden, M.R. Evaluating the Boosting Approach to Machine Learning for Formation Lithology Classification. In Computer Aided Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2018; Volume 44, pp. 1465–1470. [Google Scholar]
- Wolpert, D.H. Stacked generalization. Neural Netw. 1992, 5, 241–259. [Google Scholar] [CrossRef]
- Sesmero, M.P.; Ledezma, A.I.; Sanchis, A. Generating ensembles of heterogeneous classifiers using stacked generalization. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2015, 5, 21–34. [Google Scholar] [CrossRef]
- Ghalejoogh, G.S.; Kordy, H.M.; Ebrahimi, F. A hierarchical structure based on stacking approach for skin lesion classification. Expert Syst. Appl. 2020, 145, 113127. [Google Scholar] [CrossRef]
- Farhangi, F.; Sadeghi-Niaraki, A.; Nahvi, A.; Razavi-Termeh, S.V. Spatial modeling of accidents risk caused by driver drowsiness with data mining algorithms. Geocarto Int. 2020, 1–15. [Google Scholar] [CrossRef]
- Ranjgar, B.; Razavi-Termeh, S.V.; Foroughnia, F.; Sadeghi-Niaraki, A.; Perissin, D. Land subsidence susceptibility mapping using persistent scatterer sar interferometry technique and optimized hybrid machine learning algorithms. Remote Sens. 2021, 13, 1326. [Google Scholar] [CrossRef]
- Hajian-Tilaki, K. Receiver operating characteristic (roc) curve analysis for medical diagnostic test evaluation. Casp. J. Intern. Med. 2013, 4, 627. [Google Scholar]
- Razavi-Termeh, S.V.; Khosravi, K.; Sadeghi-Niaraki, A.; Choi, S.-M.; Singh, V.P. Improving groundwater potential mapping using metaheuristic approaches. Hydrol. Sci. J. 2020, 65, 2729–2749. [Google Scholar] [CrossRef]
- Razavi-Termeh, S.V.; Sadeghi-Niaraki, A.; Choi, S.-M. Ubiquitous gis-based forest fire susceptibility mapping using artificial intelligence methods. Remote Sens. 2020, 12, 1689. [Google Scholar] [CrossRef]
- Rhomberg, L.R.; Bailey, L.A.; Goodman, J.E. Hypothesis-based weight of evidence: A tool for evaluating and communicating uncertainties and inconsistencies in the large body of evidence in proposing a carcinogenic mode of action—naphthalene as an example. Crit. Rev. Toxicol. 2010, 40, 671–696. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Wang, Y.; Wu, F.; Tang, G.; Wang, L.; Wang, Y.; Yang, Y. Vertical characteristics of vocs in the lower troposphere over the north china plain during pollution periods. Environ. Pollut. 2018, 236, 907–915. [Google Scholar] [CrossRef] [PubMed]
- Shukla, J.; Misra, A.; Sundar, S.; Naresh, R. Effect of rain on removal of a gaseous pollutant and two different particulate matters from the atmosphere of a city. Math. Comput. Model. 2008, 48, 832–844. [Google Scholar] [CrossRef]
- Ho, W.-C.; Hartley, W.R.; Myers, L.; Lin, M.-H.; Lin, Y.-S.; Lien, C.-H.; Lin, R.-S. Air pollution, weather, and associated risk factors related to asthma prevalence and attack rate. Environ. Res. 2007, 104, 402–409. [Google Scholar] [CrossRef]
- Kaminsky, D.A.; Bates, J.H.; Irvin, C.G. Effects of cool, dry air stimulation on peripheral lung mechanics in asthma. Am. J. Respir. Crit. Care Med. 2000, 162, 179–186. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, Y.; Gong, J.; Yang, B.; Zhang, Z.; Wang, B.; Zhu, C.; Shi, J.; Yue, K. Comparison of the suitability of plant species for greenbelt construction based on particulate matter capture capacity, air pollution tolerance index, and antioxidant system. Environ. Pollut. 2020, 263, 114615. [Google Scholar] [CrossRef]
- Leung, K.H.; Arnillas, C.A.; Cheng, V.Y.; Gough, W.A.; Arhonditsis, G.B. Seasonality patterns and distinctive signature of latitude and population on ozone concentrations in southern ontario, canada. Atmos. Environ. 2021, 246, 118077. [Google Scholar] [CrossRef]
- Shuangchen, M.; Jin, C.; Kunling, J.; Lan, M.; Sijie, Z.; Kai, W. Environmental influence and countermeasures for high humidity flue gas discharging from power plants. Renew. Sustain. Energy Rev. 2017, 73, 225–235. [Google Scholar] [CrossRef]
- Essa, K.S.; Mubarak, F.; Elsaid, S.E. Effect of the plume rise and wind speed on extreme value of air pollutant concentration. Meteorol. Atmos. Phys. 2006, 93, 247–253. [Google Scholar] [CrossRef]
- Shindell, D.; Smith, C.J. Climate and air-quality benefits of a realistic phase-out of fossil fuels. Nature 2019, 573, 408–411. [Google Scholar] [CrossRef]
- Bhanarkar, A.; Goyal, S.; Sivacoumar, R.; Rao, C.C. Assessment of contribution of so2 and no2 from different sources in jamshedpur region, india. Atmos. Environ. 2005, 39, 7745–7760. [Google Scholar] [CrossRef]
- D’Amato, G.; Cecchi, L.; D’amato, M.; Liccardi, G. Urban air pollution and climate change as environmental risk factors of respiratory allergy: An update. J. Investig. Allergol. Clin. Immunol. 2010, 20, 95–102. [Google Scholar] [PubMed]
- Safarianzengir, V.; Sobhani, B.; Yazdani, M.H.; Kianian, M. Monitoring, analysis and spatial and temporal zoning of air pollution (carbon monoxide) using sentinel-5 satellite data for health management in iran, located in the middle east. Air Qual. Atmos. Health 2020, 13, 709–719. [Google Scholar] [CrossRef]
- De Coensel, B.; Can, A.; Degraeuwe, B.; De Vlieger, I.; Botteldooren, D. Effects of traffic signal coordination on noise and air pollutant emissions. Environ. Model. Softw. 2012, 35, 74–83. [Google Scholar] [CrossRef] [Green Version]
- Zhou, M.; Huang, Y.; Li, G. Changes in the concentration of air pollutants before and after the covid-19 blockade period and their correlation with vegetation coverage. Environ. Sci. Pollut. Res. 2021, 28, 23405–23419. [Google Scholar] [CrossRef]
- Bröms, K.; Norbäck, D.; Eriksson, M.; Sundelin, C.; Svärdsudd, K. Effect of degree of urbanisation on age and sex-specific asthma prevalence in swedish preschool children. BMC Public Health 2009, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Xiao, L.; Dong, Y.; Dong, Y. An improved combination approach based on adaboost algorithm for wind speed time series forecasting. Energy Convers. Manag. 2018, 160, 273–288. [Google Scholar] [CrossRef]
- Jiang, M.; Liu, J.; Zhang, L.; Liu, C. An improved stacking framework for stock index prediction by leveraging tree-based ensemble models and deep learning algorithms. Phys. A Stat. Mech. Its Appl. 2020, 541, 122272. [Google Scholar] [CrossRef]
- Menahem, E.; Rokach, L.; Elovici, Y. Troika–an improved stacking schema for classification tasks. Inf. Sci. 2009, 179, 4097–4122. [Google Scholar] [CrossRef] [Green Version]
Factors | RMSE | % RMSE | Functioning |
---|---|---|---|
Rainfall | 95.86 | 30.64 | Acceptable |
Temperature | 3.03 | 22.85 | Acceptable |
Humidity | 2.9 | 6.47 | Acceptable |
Wind speed | 2.63 | 17.13 | Acceptable |
CO | 0.36 | 24.86 | Acceptable |
NO2 | 16.54 | 32.61 | Acceptable |
O3 | 3.78 | 18.83 | Acceptable |
SO2 | 5.45 | 34.95 | Acceptable |
PM2.5 | 5.8 | 18.14 | Acceptable |
PM10 | 13.23 | 16.6 | Acceptable |
Independent Variables | VIF |
---|---|
CO | 1.438 |
Altitude | 2.689 |
Humidity | 1.427 |
NDVI | 1.148 |
NO2 | 1.550 |
O3 | 1.977 |
PM10 | 1.212 |
PM2.5 | 1.388 |
Rainfall | 1.301 |
Distance to road | 1.143 |
SO2 | 1.304 |
Temperature | 1.440 |
Traffic volume | 1.103 |
Wind speed | 1.939 |
Factors | Total Area (pixels) | Asthma Patients | |||
---|---|---|---|---|---|
Altitude (m) | |||||
1032–1185.72 | 247,478 | 335 | 0.56 | −0.42 | 12.13 |
1185.72–1311.21 | 236,755 | 159 | −0.13 | 0.05 | −2.05 |
1311.21–1449.25 | 141,573 | 43 | −0.93 | 0.12 | −6.66 |
1449.25–1609.25 | 115,491 | 45 | −0.68 | 0.08 | −4.91 |
1609.25–1828.86 | 52,535 | 29 | −0.33 | 0.01 | −1.85 |
Rainfall (mm) | |||||
229.1–265.45 | 272,915 | 129 | −0.48 | 0.18 | −6.77 |
265.45–303.98 | 198,666 | 137 | −0.1 | 0.03 | −1.48 |
303.98–338.15 | 133,321 | 180 | 0.56 | −0.16 | 8.19 |
338.15–374.51 | 130,669 | 121 | 0.18 | −0.04 | 2.22 |
374.51–414.49 | 58,263 | 44 | −0.01 | 0.001 | −0.13 |
Temperature (°C) | |||||
14.45–15.16 | 30,509 | 17 | −0.32 | 0.01 | −1.35 |
15.16–15.6 | 44,501 | 21 | −0.48 | 0.02 | −2.3 |
15.6–16.07 | 165,866 | 196 | 0.42 | −0.15 | 6.7 |
16.07–16.59 | 258,261 | 145 | −0.31 | 0.12 | −4.6 |
16.59–17.19 | 294,697 | 232 | 0.02 | −0.01 | 0.43 |
Humidity (%) | |||||
36.58–38.11 | 187,149 | 157 | 0.08 | −0.028 | 1.23 |
38.11–39.27 | 193,668 | 113 | −0.27 | 0.075 | −3.38 |
39.27–40.48 | 181,871 | 125 | −0.11 | 0.031 | −1.44 |
40.48–41.59 | 124,203 | 160 | 0.51 | −0.13 | 7.05 |
41.59–43 | 106,943 | 56 | −0.38 | 0.04 | −3.09 |
Wind speed (m/s) | |||||
12.69–14 | 95,796 | 106 | 0.36 | −0.06 | 3.97 |
14–15.04 | 267,619 | 352 | 0.53 | −0.44 | 12.01 |
15.04–16.11 | 318,928 | 143 | −0.54 | 0.24 | −8.24 |
16.11–17.5 | 44,686 | 1 | −3.53 | 0.05 | −3.59 |
17.5–18.88 | 66,805 | 9 | −1.74 | 0.07 | −5.4 |
CO (mol/m2) | |||||
0.031–0.034 | 159,554 | 85 | −0.51 | 0.11 | −5.34 |
0.034–0.036 | 150,954 | 175 | 0.26 | −0.08 | 3.98 |
0.036–0.038 | 120,295 | 101 | −0.05 | 0.01 | −0.61 |
0.038–0.04 | 140,418 | 140 | 0.11 | −0.03 | 1.53 |
0.04–0.042 | 116,890 | 110 | 0.05 | −0.01 | 0.66 |
NO2 (mol/m2) | |||||
0.0004–0.0005 | 120,420 | 52 | −0.72 | 0.1 | −5.68 |
0.0005–0.0006 | 146,419 | 144 | 0.1 | −0.02 | 1.38 |
0.0006–0.0007 | 120,760 | 134 | 0.22 | −0.05 | 2.83 |
0.0007–0.00079 | 153,663 | 109 | −0.22 | 0.05 | −2.65 |
0.00079–0.00089 | 146,849 | 172 | 0.27 | −0.09 | 4.08 |
O3 (mol/m2) | |||||
0.1331–0.1332 | 80,632 | 90 | 0.22 | −0.034 | 2.3 |
0.1332–0.1333 | 145,443 | 188 | 0.37 | −0.13 | 5.77 |
0.1333–0.1338 | 180,368 | 153 | −0.04 | 0.015 | −0.65 |
0.1338–0.1344 | 169,154 | 117 | −0.24 | 0.069 | −3.1 |
0.1344–0.1355 | 112,514 | 63 | −0.46 | 0.069 | −3.99 |
SO2 (mol/m2) | |||||
0.0001–0.00016 | 57,938 | 17 | −1.1 | 0.059 | −4.74 |
0.00016–0.0002 | 124,441 | 64 | −0.54 | 0.08 | −4.8 |
0.0002–0.00023 | 196,937 | 193 | 0.098 | −0.042 | 1.62 |
0.00023–0.00026 | 156,211 | 212 | 0.42 | −0.16 | 6.97 |
0.00026–0.00031 | 152,584 | 125 | −0.08 | 0.021 | −1.02 |
PM2.5 (µg/m3) | |||||
22.14–28.85 | 114,191 | 24 | −1.29 | 0.11 | −6.78 |
28.85–31.76 | 242,056 | 56 | −1.2 | 0.26 | −10.48 |
31.76–34.1 | 227,113 | 305 | 0.55 | −0.35 | 11.26 |
34.1–36.7 | 141,277 | 185 | 0.53 | −0.16 | 7.9 |
36.7–44.24 | 69,197 | 41 | −0.26 | 0.02 | −1.75 |
PM10 (µg/m3) | |||||
59.14–69.96 | 139,877 | 29 | −1.31 | 0.14 | −7.65 |
69.96–76.7 | 222,377 | 203 | 0.17 | −0.07 | 2.86 |
76.7–83.85 | 262,926 | 246 | 0.19 | −0.11 | 3.73 |
83.85–93.24 | 96,331 | 51 | −0.37 | 0.04 | −2.84 |
93.24–111.21 | 72,323 | 82 | 0.38 | −0.048 | 3.67 |
Distance to street (m) | |||||
0–100 | 306,513 | 265 | 0.11 | −0.08 | 2.41 |
100–200 | 186,271 | 193 | 0.29 | −0.11 | 4.7 |
200–300 | 98,020 | 55 | −0.31 | 0.03 | −2.5 |
300–400 | 67,266 | 41 | −0.23 | 0.01 | −1.56 |
>400 | 135,764 | 57 | −0.6 | 0.08 | −5.003 |
Traffic volume | |||||
0–1112 | 163,808 | 7 | −0.82 | 0.01 | −2.22 |
1112–2636 | 1,129,079 | 78 | −0.34 | 0.06 | −3.39 |
2636–4634 | 1,553,159 | 134 | −0.12 | 0.03 | −1.68 |
4634–7348 | 3,351,979 | 369 | 0.11 | −0.15 | 3.3 |
7348–59258 | 43,025 | 23 | 1.69 | −0.03 | 8.13 |
NDVI | |||||
0.043–0.18 | 279,652 | 304 | 0.2 | −0.16 | 4.65 |
0.18–0.29 | 164,231 | 133 | −0.08 | 0.02 | −1.15 |
0.29–0.42 | 139,223 | 111 | −0.1 | 0.02 | −1.21 |
0.42–0.57 | 72,949 | 40 | −0.47 | 0.04 | −3.18 |
0.57–0.92 | 35,133 | 23 | −0.3 | 0.01 | −1.47 |
Algorithms | Parameters |
---|---|
AdaBoost | Number of iterations = 10; seed = 1; batch size = 100; weight threshold = 100; use a base classifier (Random Forest) |
Bagging | Number of iterations = 10; seed = 1; number of execution slots = 1; batch size = 100; percentage of bag size = 100; use a base classifier (Random Forest) |
Stacking | Seed = 1; number of execution slots = 1; batch size = 100; use a base classifier (Random Forest) |
Algorithm | Train | Validation | ||
---|---|---|---|---|
RMSE | MAE | RMSE | MAE | |
AdaBoost | 0.1678 | 0.0572 | 0.252 | 0.2049 |
Bagging | 0.2169 | 0.1531 | 0.3241 | 0.2773 |
Stacking | 0.2353 | 0.1555 | 0.3488 | 0.3073 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Razavi-Termeh, S.V.; Sadeghi-Niaraki, A.; Choi, S.-M. Spatial Modeling of Asthma-Prone Areas Using Remote Sensing and Ensemble Machine Learning Algorithms. Remote Sens. 2021, 13, 3222. https://doi.org/10.3390/rs13163222
Razavi-Termeh SV, Sadeghi-Niaraki A, Choi S-M. Spatial Modeling of Asthma-Prone Areas Using Remote Sensing and Ensemble Machine Learning Algorithms. Remote Sensing. 2021; 13(16):3222. https://doi.org/10.3390/rs13163222
Chicago/Turabian StyleRazavi-Termeh, Seyed Vahid, Abolghasem Sadeghi-Niaraki, and Soo-Mi Choi. 2021. "Spatial Modeling of Asthma-Prone Areas Using Remote Sensing and Ensemble Machine Learning Algorithms" Remote Sensing 13, no. 16: 3222. https://doi.org/10.3390/rs13163222
APA StyleRazavi-Termeh, S. V., Sadeghi-Niaraki, A., & Choi, S. -M. (2021). Spatial Modeling of Asthma-Prone Areas Using Remote Sensing and Ensemble Machine Learning Algorithms. Remote Sensing, 13(16), 3222. https://doi.org/10.3390/rs13163222