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Abstract: In this study, asthma-prone area modeling of Tehran, Iran was provided by employing
three ensemble machine learning algorithms (Bootstrap aggregating (Bagging), Adaptive Boosting
(AdaBoost), and Stacking). First, a spatial database was created with 872 locations of asthma patients
and affecting factors (particulate matter (PM10 and PM2.5), ozone (O3), sulfur dioxide (SO2), carbon
monoxide (CO), nitrogen dioxide (NO2), rainfall, wind speed, humidity, temperature, distance to
street, traffic volume, and a normalized difference vegetation index (NDVI)). We created four factors
using remote sensing (RS) imagery, including air pollution (O3, SO2, CO, and NO2), altitude, and
NDVI. All criteria were prepared using a geographic information system (GIS). For modeling and
validation, 70% and 30% of the data were used, respectively. The weight of evidence (WOE) model
was used to assess the spatial relationship between the dependent and independent data. Finally,
three ensemble algorithms were used to perform asthma-prone areas mapping. According to the
Gini index, the most influential factors on asthma occurrence were distance to the street, NDVI, and
traffic volume. The area under the curve (AUC) of receiver operating characteristic (ROC) values for
the AdaBoost, Bagging, and Stacking algorithms was 0.849, 0.82, and 0.785, respectively. According
to the findings, the AdaBoost algorithm outperforms the Bagging and Stacking algorithms in spatial
modeling of asthma-prone areas.

Keywords: asthma; spatial modeling; ensemble machine learning; remote sensing (RS); geographic
information system (GIS)

1. Introduction

Asthma is a chronic and inflammatory condition of the airways that affects more than
300 million people worldwide. According to a report by the Global Initiative for Asthma
(GINA), this number is expected to reach 400 million by 2025 [1,2]. The death rate from
asthma is so high that it kills 250,000 people annually worldwide [3]. Asthma prevalence
has been rising globally in recent decades. It also tends to haunt a patient for the rest of their
life [2,4]. There is no definitive cure for asthma, but it can be controlled and managed [5],
and in this case, the risk of asthma attacks and resulting mortality is reduced. Asthma
is a reversible airway obstruction and bronchospasm condition that affects the lungs [6].
Wheezing, coughing, and shortness of breath are common asthma symptoms caused by a
combination of genetic and environmental conditions. In other words, asthma is caused by
genetically susceptible individuals being exposed to environmental risk factors [7]. The
occurrence of asthma is influenced by genetic predisposition, environmental influences
such as climatic parameters, air pollution, allergens, and airborne chemical irritants [4,8].
While genetics play a significant role in asthma growth, the increase observed in the last
two decades cannot be explained merely by genetic changes [9]. Understanding the asthma
risk factors is crucial to avoiding or reducing the severity of the symptoms of the disease.
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Investigating environmental factors and their role in the growth of asthma is one of the
best approaches to control this disease [10].

The Geographical Information System (GIS) is a helpful tool for assessing the links be-
tween disease incidence and environmental quality [11]. GIS is used to process health data,
analyze spatial spread, and track disease variation. Furthermore, this technique allows
for the spatial localization of the tracked disease and layers combined with knowledge
about the environmental quality [11,12]. Asthma maps offer helpful knowledge to epidemi-
ologists and allow them consider asthma risk factors such as air pollution and identify
vulnerable areas. These maps provide a graphic representation of disease incidence, used
in public health [13]. A primary feature of an early warning system is a spatio-temporal
map that tracks the disease’s spread [14]. One of the main components of GIS and spatial
modeling is data. Remote Sensing (RS) is a convenient tool for monitoring environmental
variables anywhere, anytime. This tool can play an influential role in creating a spatial
database in GIS [15]. RS uses satellite imagery to monitor various parameters, including
pollution monitoring. Satellite data help provide spatial data owing to their accessibility,
high spatial resolution, and coverage of a wide range of study areas [16,17]. The aim of
GIS mapping distribution is to gather new knowledge about diseases or health issues [18].
Disease distribution may be predicted using environmental factors gathered from many
sources, such as geographic information and remote sensing data. This method has been
proven to be effective in the prevention of disease and in the prediction of epidemics,
which is critical for health systems’ preparedness to deal with such outbreaks [19,20]. So
far, various studies have used spatial analysis to study different diseases. BenBella and
Ghosh [21] examined the combination of spatial analysis with HIV care intervention to
identify different indicators of HIV/AIDS treatment in Uganda. Pham et al. [22] evaluated
and modeled dengue vulnerability in the Mekong Delta of Vietnam using spatial and
time-series approaches. Vincent et al. [23] conducted geospatial mapping, epidemiological
modeling, statistical correlation, and analysis of COVID-19 with forest cover and popu-
lation in Tamil Nadu, India. Abdullah et al. [24] investigated the environmental factors
associated with the distribution of visceral leishmaniasis in indigenous areas of Bangladesh.

However, few studies on asthma mapping have been conducted, and previous re-
search has been mainly limited to an exploratory visualization of existing asthma preva-
lence data. Gordian et al. [25] investigated the relationship between traffic exposure and
asthma diagnosis in children using GIS. In New York, the USA, Gorai et al. [26] analyzed
the spatial association between air pollution parameters and asthma. Samuels-Kalow
and Camargo [27] used geographic data to improve asthma care and population health.
Using a Bayesian approach, Ouédraogo et al. [28] investigated the spatial patterns and
determinants of asthma prevalence and healthcare use in Ontario. Zook et al. [29] in-
tegrated spatial analysis into policy formulation and traffic and asthma exposure. Pala
et al. [30] examined the spatial potential of major cities to enable the aggregation and
study of environmental, geographic, social, and health data related to asthma. Leynaert
et al. [31] investigated environmental risk factors for the development of asthma in chil-
dren. Kinghorn et al. [32] examined socioeconomic and environmental factors for pediatric
asthma in an Indian-American community. Ahmed Khan et al. [10] evaluated asthma
susceptible areas in Karachi, Pakistan using environmental factors and GIS. Krautenbacher
et al. [33] determined asthma in farm children by genetic polymorphism and in non-farm
children by environmental factors. Hauptman et al. [34] assessed proximity to major roads
and asthma symptoms in an inner-city school asthma study. Rodríguez-Orozco et al. [35]
performed a spatial analysis of asthma in Morelia, Mexico, from 2010–2010. Razavi-Termeh
et al. [36] investigated six air pollutants affecting Spatio-temporal modeling of asthma.

Numerous studies have been focused on the geographic distribution of asthma and
the association between asthma and environmental factors. However, spatial modeling
of asthma-prone areas using the integration of GIS, RS, and machine learning algorithms
has received less attention in previous research. In spatial modeling using GIS and RS,
we are constantly faced with a large amount of data. For spatial analysis and modeling
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of this volume of data, machine learning is a suitable tool for training, predicting, and
extracting spatial patterns [37]. As a result, this study aimed to use ensemble machine
learning algorithms to model asthma-prone areas in Tehran using GIS and RS. In modeling
with machine learning algorithms, there are always errors that affect the accuracy of
the output. Noise, bias, and variance are the three primary sources of learning errors
in machine learning algorithms. These errors can be reduced using ensemble machine
learning algorithms [38]. Therefore, to improve the modeling accuracy, in this research three
ensemble algorithms (Bootstrap aggregating (Bagging), Adaptive Boosting (AdaBoost),
and Stacking) were used. Therefore, the regression type of machine learning algorithms
was used in this study owing to the nature of the data and the continuous prediction of
asthma-prone areas. These three algorithms have been very accurate in different spatial
modeling so far [39,40]. This research has three innovations: (1) using RS factors (air
pollution factors, normalized difference vegetation index (NDVI), and altitude) in spatial
modeling of asthma, (2) spatial mapping of asthma with three ensemble machine learning
algorithms, and (3) integration of GIS, RS, and machine learning for asthma-prone area
modeling.

2. Materials and Methods

This research was conducted in five main steps (Figure 1). The materials (study area
and data) and methods (machine learning methods, statistical methods, and validation
methods) used in this research are described below.

Figure 1. Research methodologies.
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2.1. Study Area

Tehran is Iran’s largest city and capital, as well as the center of the Tehran Province. It
has a population of 8,244,535 and is the 25th most populous city in the world. The area
of this city is 730 km2. Tehran is located in northern Iran, in the southern foothills of the
Alborz Mountains, at a longitude of 51◦2′E to 51◦36′E, and a latitude of 35◦34′N to 35◦50′N.
The height of the city in the highest points of the north reaches about 2000 m. Tehran’s
climate is affected by mountains in the north and plains in the south. North of Tehran has
a temperate and humid climate, and in other parts of the city is hot and dry and slightly
cold in winter. The most important source of rainfall in Tehran is the humid Mediterranean
and Atlantic winds that blow from the West. July and January are the hottest and coldest
months of the year in Tehran, respectively. The maximum relative humidity is about 70%
in the cold months and drops to 32% in the warm months. In Tehran, the highest rainfall
occurs in winter with 43% of total rainfall and then in spring with 36%. The main land cover
of Tehran includes residential (28.8%), streets (18.6%), and green space (11.4%). Among the
problems of Tehran are heavy car traffic and air pollution, which affects respiratory disease
(Figure 2).

Figure 2. Study area with asthma patients’ locations.

2.2. Asthma Data

The location of asthma patients was used as dependent data in the modeling of asthma
disease. The locations of asthmatic patients in Tehran in 2019 were gathered using the
information system of Tehran hospital. A total of 872 asthmatic patient locations were
obtained, with 70% (611 locations) being used in modeling and 30% (261 locations) being
used in the assessment. The holdout method was used to divide the training and test data
(Figure 2).

2.3. Effective Criteria

In this study, altitude, meteorology factors (rainfall, temperature, humidity, and wind
speed), air pollutants (carbon monoxide (CO), Nitrogen dioxide (NO2), Ozone (O3), Sulfur
dioxide (SO2), and particle matter (PM2.5 and PM10)), distance to the street, traffic volume,
and NDVI were considered as factors affecting the occurrence of asthma (Figure 3). The
spatial resolution of all effective factors was considered to be 30 × 30 m. Each of these
factors is described below.
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• Altitude

Altitude can affect asthma by affecting oxygen levels, air pollutants, and climatic
parameters [41]. A digital elevation model (DEM) was used to prepare the altitude map in
2019. Advanced space-borne thermal emission and reflection radiometer (ASTER) images
with a pixel size of 30 m were used to create the DEM. Altitude layer processing and
preparation for modeling were performed in ArcGIS 10.3 software.

• Meteorology data

Owing to the high impact of pollutants on the distribution and density of meteo-
rological parameters, careful study of the relationship between air quality and weather
conditions can help improve air pollution models to predict pollution crises, including
its impact on human health such as lung diseases and asthma [42]. Therefore, in this
study, meteorological parameters of rainfall, wind speed, temperature, and humidity were
used from 2009 to 2019, and the annual average of these data were used to construct
meteorological parameter maps for 12 meteorological stations in the Tehran province. The
kriging interpolation technique in ArcGIS 10.3 software was used to prepare raster maps of
meteorological parameters. Interpolation validation was carried by using Equations (1)
and (2) (root mean square error (RMSE), and % RMSE). Because RMSE is sensitive to
outlier data, % RMSE can be used instead. The lower the value of this index, the higher the
accuracy of interpolation. The acceptable limit for % RMSE is <40, while values more than
70% indicate estimate point imprecision [43].

RMSE = (
1
n

n

∑
i = 1

(Ei −Ai)
2)

1
2

(1)

%RMSE =
RMSE

µ
(2)

where Ai is the average variable measured at each station, Ei is the estimated predictor via
kriging, and n is the total number of stations. Each measurement component average is
represented by µ. The accuracy of interpolation of environmental factors is summarized in
Table 1.

Table 1. Result of interpolation accuracy.

Factors RMSE % RMSE Functioning

Rainfall 95.86 30.64 Acceptable
Temperature 3.03 22.85 Acceptable

Humidity 2.9 6.47 Acceptable
Wind speed 2.63 17.13 Acceptable

CO 0.36 24.86 Acceptable
NO2 16.54 32.61 Acceptable
O3 3.78 18.83 Acceptable

SO2 5.45 34.95 Acceptable
PM2.5 5.8 18.14 Acceptable
PM10 13.23 16.6 Acceptable

The evaluation results of the kriging method showed acceptable accuracy for all
meteorology factors (% RMSE < 40).

• Air pollutants

Toxic particles from air pollution can enter the lungs through the nose and cause
variable damage to respiratory health. The prevalence of asthma and chronic pulmonary
obstruction is directly related to increased air pollution [44]. Therefore, air pollutants are
one of the factors affecting asthma. Sentinel 5P satellite imagery was used to prepare SO2,
NO2, O3, and CO pollutants. The measurements’ spatial resolution (3.5 × 7 km2 for NO2,
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SO2, and O3, and 7 × 7 km2 for CO) allows air pollution observations. The average maps
of these four pollutants were prepared for the time mentioned (July 2018 to December 2019)
in the Google Earth Engine (GEE) platform and transferred to ArcGIS 10.3 software for
further processing. Owing to the impossibility of direct monitoring of PM10 and PM2.5
pollutants by satellite images, station data were used to map these two pollutants. From
2009 to 2019, an average of air pollution data (PM10 and PM2.5) was collected from 23 air
pollution monitoring stations in Tehran. In ArcGIS 10.3, the Kriging interpolation technique
was employed to map these two pollutant parameters. The results of the interpolation
evaluation of air pollution factors (Table 1) revealed that these factors were prepared with
acceptable accuracy (% RMSE < 40).

• Distance to street

Streets are effective in creating traffic and air pollution. Street data were obtained from
the open street map (OSM) at a scale of 1:100, 1000 in 2019. This criterion was prepared in
ArcGIS 10.3 software using the Euclidean distance tool.

• Traffic volume

Vehicle fuel combustion gases are one of the most important air pollutants. Therefore,
traffic plays an essential role in air pollution. This research used traffic volume to analyze
the traffic impact on asthma [45]. Traffic volume is the number of vehicles that cross a
road in one or more lanes at a given time. The traffic volume layer was created using the
average annual traffic volume from 2015 to 2019. These data were collected from Tehran
Traffic Control Company and processed in ArcGIS 10.3 software.

• Normalized difference vegetation index (NDVI)

By absorbing lead, dust, and soot from the air, green space helps to clean it up [46].
Therefore, green space can play an influential role in reducing air pollutants. The NDVI is
a suitable method for calculating vegetation cover from satellite images and measuring
vegetation volume [47]. The NDVI map was created using Landsat 7 images and the
enhanced thematic mapper plus (ETM+) sensor. To create the NDVI map, the 2009–2019
annual average was used in the GEE platform. The scan line corrector (SLC) and the gap in
Landsat images were corrected using a focal median filter. The NDVI index is calculated
using Equation (3).

NDVI =
ρNIR − ρred
ρNIR + ρred

(3)

where ρNIR denotes near-infrared reflectance (band 4—Landsat 7), and ρred indicates red
reflectance (band 3—Landsat 7). NDVI map with 30 m pixel size was prepared and
transferred to ArcGIS 10.3 software for processing.
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Figure 3. Cont.
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Figure 3. Independent factor maps: (a) altitude, (b) rainfall, (c) temperature, (d) humidity, (e) wind
speed, (f) CO, (g) NO2, (h) O3, (i) SO2, (j) PM2.5, (k) PM10, (l) distance to street, (m) traffic volume,
and (n) NDVI.

2.4. Factors Importance Using Gini Index

Breiman presented the Gini index, a divergence-based attribute splitting approach
commonly used in the random forest (RF) algorithms [48]. When a variable is randomly
selected, the Gini index measures the probability of it being incorrectly labeled [49]. The
Gini index is calculated using Equation (4):

Gini index = 1−
n

∑
i = 1

(Pi)
2 (4)

where Pi denotes the probability of an element.

2.5. Multicollinearity Analysis

Multicollinearity occurs when two or more independent factors are highly interdepen-
dent. The inflation variance index (VIF) assesses that the parameters affecting asthma are
independent of each other and can participate in modeling. Multicollinearity analysis is
appropriate, according to previous studies, if the VIF value is less than 5 [50].

2.6. Weight of Evidence (WOE) Model

The weight of evidence is a data-driven method known as one of the methods of
Bayesian theory in the form of the linear logarithm. The WOE model is defined based on
the positive (W+) and negative (W−) weights [51]. The weight of each factor of asthma
occurrence (A) dependent on the presence or absence of asthma locations (B) in the study
area is as follows in this model (Equations (5) and (6)).

W+ = ln
P{B|A}
P
{

B
∣∣A} (5)

W− = ln
P
{

B
∣∣A}

P
{

B
∣∣A} (6)
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A positive weight (W+) indicates a positive relationship between the presence of an
influential factor, and a negative weight (W−) indicates that the level of the relationship is
negative. B and B show the presence and absence of asthma factors, respectively. A and A
indicate the presence and absence of asthma, respectively. The difference between positive
and negative weight is parameter C (Equation (7)) [52]. The standard deviation (S(C)) of
W is determined by Equation (8):

C = W+ −W– (7)

S(C) =
√

S2(W+) + S2(W–) (8)

where S2(W+) is the variance of W+ and S2(W–) is the variance of W−. Weight variances
are calculated as follows (Equations (9) and (10)):

S2(W+
)
=

1
N{B ∩ A} +

1
B ∩ A

(9)

S2(W−) =
1

N
{

B ∩ A
} +

1
B ∩ A

(10)

The final weight of each category is calculated using Equation (11):

W f inal =
C

S(C)
(11)

2.7. Bagging Algorithm

Breiman developed the bagging algorithm in 1996 to increase the classification and
generalization of data [53]. This algorithm consists of a group of tree-based classifiers. This
algorithm is a meta-algorithm based on the concepts of bootstrapping and combination to
improve machine learning. Ensemble machine learning algorithms combine several weak
learners to achieve a strong learner [54]. Bagging also helps to reduce variance and avoid
over fitting. Bagging can be applied to any model, but decision trees are the most common.
Bagging is a particular model of the average trend. In bagging, different training subsets
are randomly selected by replacing all the training data. These individual predictors are
combined using a method of averaging their decisions. For a test sample, the prediction
value will be equal to the value obtained by averaging all predictors [55].

2.8. AdaBoost Algorithm

Freund and Schapire [56] proposed AdaBoost, an iterative algorithm for building a
“powerful” classifier as a linear combination classification. Boosting is an ensemble meta-
algorithm in machine learning used to reduce imbalances and variances. This method is
based on combining the results of different categories to transform weak learning methods
into strong ones [57]. A series of decision trees are created using the boosting method, with
each tree attempting to reduce the error rate of incorrect classification. Then, each tree
makes a prediction, and from these predictions, a vote is derived. Finally, a prediction with
the highest number of options is selected as the final prediction [58].

2.9. Stacking Algorithm

The Stacking algorithm was developed in 1992 by Wolpert [59]. Stacking uses
heterogeneous-based learning algorithms to implement ensemble learning. The Stack-
ing algorithm structure consists of two levels: base-learners (level-0) and meta-learners
(level-1). Meta-learners generalize the predictions of several base-learners by using the
low-level output as the high-level input for relearning [60]. The three stages of the stacking
algorithm are as follows: (1) by K-fold cross-validation, train various base classifiers using
the training set; (2) to create a new reorganized training data set, gather the output predic-
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tions of these base classifiers; (3) train the meta-classifier with the new training data set.
The stacking algorithm uses meta-learning steps to reduce estimation residuals [61].

2.10. Validation Metrics

• Receiver operating characteristic (ROC) curve

The ROC curve is one of the most important criteria for evaluating the performance
of classified or multilayer models. This curve can measure models at different thresholds,
and this curve is based on probability [62]. The TPR (True Positive Rate) is on the Y-axis,
and the FPR (False Positive Rate) is on the X-axis in the ROC curve [63]. Based on a set
threshold value such as T, a sample is considered positive if X > T and negative if X ≤ T.
The random variable x here has a probability density function of f1(x) for the time it is
in the positive group; otherwise, its probability density function is specified by f0(x) [64].
Therefore, TPR and FPR are calculated using Equations (12) and (13), respectively.

TPR (T) =
∫ ∞

T
f1(x)dx (12)

FPR (T) =
∫ ∞

T
f0(x)dx (13)

The best model is one in which the area under the curve (AUC) is close to one. This
means that the closer to one, the more accurate and appropriate the measurement [65].

• Prediction error metrics

The performance of prediction models was assessed using the RMSE and mean
absolute error (MAE) indices [66]. The MAE index was calculated using Equation (14):

MAE =
∑n

i = 1|pi − oi|
n

(14)

where pi is the calculated value of the model, oi is the value of the observational variables,
and n is the number of observations.

3. Results
3.1. Result of Multicollinearity Analysis

Table 2 shows the results of the multicollinearity analysis. The VIF value for all
independent variables was less than five, according to the findings. It indicates that there
was no multicollinearity in the independent factors used. As a result, modeling should
include all independent variables.

Table 2. Result of multicollinearity analysis.

Independent Variables VIF

CO 1.438
Altitude 2.689

Humidity 1.427
NDVI 1.148
NO2 1.550
O3 1.977

PM10 1.212
PM2.5 1.388

Rainfall 1.301
Distance to road 1.143

SO2 1.304
Temperature 1.440

Traffic volume 1.103
Wind speed 1.939
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3.2. Result of Gini Index

Figure 4 shows the importance of effective factors in modeling with the Gini index.
According to the results, the distance to the street (0.45), NDVI (0.4), traffic volume (0.38),
SO2 (0.33), NO2 (0.3), CO (0.29), O3 (0.27), PM2.5 (0.26), PM10 (0.21), temperature (0.18),
wind speed (0.17), altitude (0.14), humidity (0.12), and rainfall (0.1) are the most important
in modeling, respectively.

Figure 4. Result of Gini index.

3.3. Result of WOE Model

Table 3 shows the results of the relationship between independent and dependent
variables using the WOE model. In the altitude criterion, the highest weight belongs to
class 1032–1185.72. According to the rainfall results, asthma occurrence rises initially with
rising rainfall, then declines with high rainfall. The results of the temperature criterion
show that the class 15.6–16.07 has the highest weight (WOE value = 6.7). In the humidity,
the highest incidence of asthma occurs at high humidity (40.48%–41.59%). Asthma is
more likely to arise at lower wind speeds. Class 14–15.04 m/s has the highest weight in
the wind speed factor (WOE value = 12.01). The results of the CO factor show that as
the levels of this pollutant increase, the probability of asthma increases. However, most
of the weight of this criterion is related to the middle classes (WOE value = 3.98). The
highest weight of the WOE model (WOE value = 4.08) for the NO2 factor occurs at high
values of this parameter. Factor O3 is inversely related to the occurrence of asthma in
the study area. As a result, asthma is more prone to be created in small concentrations
of this pollutant. The results of the SO2 factor show that the highest weight is related to
high levels of this pollutant (WOE value = 6.97). According to PM2.5, the highest weight
belongs to the class 31.76–34.1 (WOE value = 11.26). The highest weight of the PM10 factor
is in the 76.7–83.85 class (WOE value = 3.73). At distances close to the street, the highest
incidence of asthma occurs, so the highest weight (WOE value = 4.7) is related to the class
of 100–200 m. The spatial relationship between the occurrence of asthma and the volume
of traffic shows the probability of asthma occurring in high amounts of this factor (WOE
value = 8.13). The results of the NDVI factor reveal that asthma is more likely to occur with
lower values of this parameter (0.043–0.18).
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Table 3. Result of WOE model.

Factors Total Area (pixels) Asthma Patients W+ W− Wfinal

Altitude (m)
1032–1185.72 247,478 335 0.56 −0.42 12.13

1185.72–1311.21 236,755 159 −0.13 0.05 −2.05
1311.21–1449.25 141,573 43 −0.93 0.12 −6.66
1449.25–1609.25 115,491 45 −0.68 0.08 −4.91
1609.25–1828.86 52,535 29 −0.33 0.01 −1.85

Rainfall (mm)
229.1–265.45 272,915 129 −0.48 0.18 −6.77

265.45–303.98 198,666 137 −0.1 0.03 −1.48
303.98–338.15 133,321 180 0.56 −0.16 8.19
338.15–374.51 130,669 121 0.18 −0.04 2.22
374.51–414.49 58,263 44 −0.01 0.001 −0.13

Temperature (◦C)
14.45–15.16 30,509 17 −0.32 0.01 −1.35
15.16–15.6 44,501 21 −0.48 0.02 −2.3
15.6–16.07 165,866 196 0.42 −0.15 6.7

16.07–16.59 258,261 145 −0.31 0.12 −4.6
16.59–17.19 294,697 232 0.02 −0.01 0.43

Humidity (%)
36.58–38.11 187,149 157 0.08 −0.028 1.23
38.11–39.27 193,668 113 −0.27 0.075 −3.38
39.27–40.48 181,871 125 −0.11 0.031 −1.44
40.48–41.59 124,203 160 0.51 −0.13 7.05

41.59–43 106,943 56 −0.38 0.04 −3.09

Wind speed (m/s)
12.69–14 95,796 106 0.36 −0.06 3.97
14–15.04 267,619 352 0.53 −0.44 12.01

15.04–16.11 318,928 143 −0.54 0.24 −8.24
16.11–17.5 44,686 1 −3.53 0.05 −3.59
17.5–18.88 66,805 9 −1.74 0.07 −5.4

CO (mol/m2)
0.031–0.034 159,554 85 −0.51 0.11 −5.34
0.034–0.036 150,954 175 0.26 −0.08 3.98
0.036–0.038 120,295 101 −0.05 0.01 −0.61
0.038–0.04 140,418 140 0.11 −0.03 1.53
0.04–0.042 116,890 110 0.05 −0.01 0.66

NO2 (mol/m2)
0.0004–0.0005 120,420 52 −0.72 0.1 −5.68
0.0005–0.0006 146,419 144 0.1 −0.02 1.38
0.0006–0.0007 120,760 134 0.22 −0.05 2.83
0.0007–0.00079 153,663 109 −0.22 0.05 −2.65

0.00079–0.00089 146,849 172 0.27 −0.09 4.08

O3 (mol/m2)
0.1331–0.1332 80,632 90 0.22 −0.034 2.3
0.1332–0.1333 145,443 188 0.37 −0.13 5.77
0.1333–0.1338 180,368 153 −0.04 0.015 −0.65
0.1338–0.1344 169,154 117 −0.24 0.069 −3.1
0.1344–0.1355 112,514 63 −0.46 0.069 −3.99

SO2 (mol/m2)
0.0001–0.00016 57,938 17 −1.1 0.059 −4.74
0.00016–0.0002 124,441 64 −0.54 0.08 −4.8
0.0002–0.00023 196,937 193 0.098 −0.042 1.62

0.00023–0.00026 156,211 212 0.42 −0.16 6.97
0.00026–0.00031 152,584 125 −0.08 0.021 −1.02
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Table 3. Cont.

Factors Total Area (pixels) Asthma Patients W+ W− Wfinal

PM2.5 (µg/m3)
22.14–28.85 114,191 24 −1.29 0.11 −6.78
28.85–31.76 242,056 56 −1.2 0.26 −10.48
31.76–34.1 227,113 305 0.55 −0.35 11.26
34.1–36.7 141,277 185 0.53 −0.16 7.9

36.7–44.24 69,197 41 −0.26 0.02 −1.75

PM10 (µg/m3)
59.14–69.96 139,877 29 −1.31 0.14 −7.65
69.96–76.7 222,377 203 0.17 −0.07 2.86
76.7–83.85 262,926 246 0.19 −0.11 3.73

83.85–93.24 96,331 51 −0.37 0.04 −2.84
93.24–111.21 72,323 82 0.38 −0.048 3.67

Distance to street
(m)

0–100 306,513 265 0.11 −0.08 2.41
100–200 186,271 193 0.29 −0.11 4.7
200–300 98,020 55 −0.31 0.03 −2.5
300–400 67,266 41 −0.23 0.01 −1.56

>400 135,764 57 −0.6 0.08 −5.003

Traffic volume
0–1112 163,808 7 −0.82 0.01 −2.22

1112–2636 1,129,079 78 −0.34 0.06 −3.39
2636–4634 1,553,159 134 −0.12 0.03 −1.68
4634–7348 3,351,979 369 0.11 −0.15 3.3

7348–59258 43,025 23 1.69 −0.03 8.13

NDVI
0.043–0.18 279,652 304 0.2 −0.16 4.65
0.18–0.29 164,231 133 −0.08 0.02 −1.15
0.29–0.42 139,223 111 −0.1 0.02 −1.21
0.42–0.57 72,949 40 −0.47 0.04 −3.18
0.57–0.92 35,133 23 −0.3 0.01 −1.47

3.4. Result of Modeling and Mapping

For modeling, a spatial database containing asthma data and influencing factors were
built. In addition to occurrence data (value 1), we require nonoccurrence data (value 0)
for improved network training in machine learning models. Nonoccurrence data were
collected at random in the study area, much like the number of occurrence data. Therefore,
spatial databases including dependent data (872 asthma occurrence locations and 872 non-
asthma occurrence locations) and independent data (WOE model weight for factors) were
considered modeling input. Seventy percent of the database was used as training data
and 30% as validation data. The Waikato Environment for Knowledge Analysis (WEKA)
software was used to implement the three ensemble algorithms. The parameters used in
each algorithm are shown in Table 4.

Table 4. Parameters used by ensemble algorithms.

Algorithms Parameters

AdaBoost Number of iterations = 10; seed = 1; batch size = 100; weight threshold = 100;
use a base classifier (Random Forest)

Bagging Number of iterations = 10; seed = 1; number of execution slots = 1; batch
size = 100; percentage of bag size = 100; use a base classifier (Random Forest)

Stacking Seed = 1; number of execution slots = 1; batch size = 100; use a base classifier
(Random Forest)
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After training the three algorithms, RMSE and MAE indices were used to evaluate
the accuracy of the algorithms. The results of the RMSE and MAE indices are presented
in Table 5. Based on the results, the RMSE index values for training and validation data
are for AdaBoost (0.1678, 0.252), Bagging (0.2169, 0.3241), and Stacking (0.2353, 0.3488)
algorithms, respectively. According to the results, the AdaBoost (0.0572, 0.2049), Bagging
(0.1531, 0.2773), and Stacking (0.1555, 0.3073) algorithms have the highest accuracy based
on MAE index values for training and validation data, respectively. The graph of the error
rate between the predicted values and the actual data for each algorithm for training and
test data is shown in Figure 5. The results show that algorithms AdaBoost, Bagging, and
Stacking have the highest accuracy in modeling asthma-prone areas, respectively.

Figure 5. Results of prediction error by: (a) AdaBoost, (b) Bagging, and (c) Stacking.
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Table 5. Result of metrics indices.

Algorithm
Train Validation

RMSE MAE RMSE MAE

AdaBoost 0.1678 0.0572 0.252 0.2049
Bagging 0.2169 0.1531 0.3241 0.2773
Stacking 0.2353 0.1555 0.3488 0.3073

After training the three algorithms, the fitted model for each algorithm was gener-
alized to the whole study area. The output of the three algorithms were converted from
WEKA software to ArcGIS 10.3 and were used for asthma-prone area mapping. The spatial
mapping of the asthma was divided into five classes based on the natural breaks classi-
fication method: very low, low, moderate, high, and very high. The asthma-prone areas
mapping using AdaBoost algorithm is shown in Figure 6.

Figure 6. Asthma-prone areas map by the AdaBoost algorithm.

3.5. Result of Validation

Thirty percent of the data on asthma occurrence and nonoccurrence were used to test
the map of asthma-prone areas. The ROC curve and AUC in MedCalc software were used
for validation. The results of the validation with the ROC curve are shown in Figure 7. The
AUC values for AdaBoost, Bagging, and Stacking algorithms are 0.849, 0.82, and 0.785,
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respectively. The results show that the AdaBoost algorithm is more accurate than the other
two algorithms in modeling asthma-prone areas. The results showed good accuracy of
AdaBoost and Bagging algorithms and relatively good accuracy of the Stacking algorithm
in modeling asthma-prone areas.
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Figure 7. ROC curve results by three algorithms.

According to the AdaBoost algorithm, 16.83% of the area is situated in the very high
class, 19.1% in high, 18.5% in moderate, 13.82% in low, and 31.75% in the very low class.
The Bagging algorithm assigns 19.22, 21.12, 17.4, 23.99, and 18.27% to the very high, high,
moderate, low, and very low categories, respectively. For the Stacking algorithm, similar
classes are 17.81, 20.35, 18.43, 27.54, and 15.87%.

4. Discussion

As there is no cure for asthma, it might be helpful to analyze the environmental factors
that influence the incidence of this disease to prevent and manage it. Therefore, the aim of
this study was spatial modeling of asthma-prone areas with ensemble machine learning
algorithms. The WOE model was used to investigate the spatial relationship between
independent and dependent data and the input of machine learning algorithms. The WOE
model is a useful tool for dealing with nonlinearities between predictor and target [67].
According to the results of the WOE model, lower altitude values had a greater effect on
the occurrence of asthma. Low-level pollution, such as that generated by transportation,
generally decreases with altitude. This implies that areas will mostly hang suspended mid-
air or build up into dense clouds at lower altitudes [68]. Rainfall results showed that at low
and high levels of this factor, the probability of asthma is low. Rainfall can have a variety
of effects on people with asthma. Pollen may be washed away by light rain, which may
help with asthma symptoms. However, heavy rain can scatter pollen quickly into the air.
On the other hand, heavy rainfall reduces air pollutants [69]. Owing to the different effects
of rainfall, a moderate amount of rainfall can help reduce asthma [70]. Temperature factors,
such as rainfall factor, has a different effect on the occurrence of asthma. Cold air can dry
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out the tissues of the airways and cause them to become more sensitive and closed [71].
When the air temperature is cooler, exhaust pollutants may become trapped at the surface
under a layer of dense, cold air [72]. Warm air rises throughout the summer months,
dispersing contaminants from the Earth’s surface into the upper troposphere, while more
sunlight causes O3 to form [73]. In this study, moderate values of temperature (15 ◦C)
have a greater effect on the occurrence of asthma. The results of humidity analysis showed
that higher values of this factor increase the risk of asthma. High humidity increases
pollutants in the air. The O3 pollutant rises when humidity rises [74]. Asthma is more
likely to arise with lower amounts of wind speed, according to the results. Because winds
carry pollutants around, wind patterns influence air quality. High values of wind speed
play an effective role in reducing air pollutants [75]. According to the results of the WOE
model, increasing the CO factor reduces the incidence of asthma. In this study, CO did not
play its role well in modeling asthma-prone areas. The results of SO2 showed that higher
values of this factor are more likely to cause asthma. Sulfur oxides, in combination with
suspended particles and moisture, increases air pollution. The most common source of SO2
is fossil fuel combustion [76]. In this research, increasing the amount of NO2 pollutants
increases the risk of asthma. The consumption of fuels at higher temperatures in refineries,
petrochemicals, power plants, and household and commercial heating systems are all
sources of NO2 [77]. The results of the O3 factor showed that this factor has no positive
effect on the occurrence of asthma in the study area. O3 factor occurs more in summer and
has less effect on increasing air pollution in cold seasons. As a result, asthma appears to
be more common in Tehran during the cold seasons, while O3 pollution appears to have
minimal influence on the prevalence of asthma throughout these seasons [36]. The findings
of PM2.5 and PM10 revealed that as these factor values rise, the probability of asthma in the
study area rises. Combustion processes produce a major portion of the PM in urban air. The
size of airborne particles affects the respiratory system, and as the particle size decreases,
the symptoms increase more severely [78]. Based on the results of the Gini index in air
pollutants, SO2, NO2, CO, O3, PM2.5, and PM10 factors are the most important in modeling,
respectively. The results of this study are not consistent with Razavi-Termeh et al.’s [7]
research. In a study conducted by Razavi-Termeh et al. [7], all air pollutants were prepared
based on ground station data, and PM2.5 and PM10 factors were the most important in
modeling. However, in this research, because of the use of remote sensing images to
produce air pollutants (SO2, NO2, CO, and O3), the SO2 factor is the most important. This
method has the advantage of allowing for more accurate air quality measurements in urban
areas with few monitoring stations [79]. The distance to the street factor indicates that
shorter distances are more likely to induce asthma. Additionally, at higher levels of traffic
volume factor, asthma is more likely to occur. According to the Gini index, these two factors
were significantly relevant in the occurrence of asthma. In the distances close to the street,
due to the traffic of cars, the air pollution is higher and also the high traffic causes more
stopping of the cars and increasing the emission of air pollutants [80]. The results of the
NDVI factor showed that in smaller amounts of this factor, asthma is more likely to occur.
Additionally, according to the Gini index, this factor is of great importance in modeling
asthma-prone areas. The concentrations of air pollutants were comparatively low in areas
with high NDVI. Because vegetation has a dust-blocking effect, places with less vegetation
are more likely to create particulate matter [81]. In urban environments, high population
density causes more traffic, less green space and thus increases air pollution [43]. Therefore,
living in densely populated areas causes infectious rhinitis, respiratory infections, and
asthma [82].

AdaBoost, Bagging, and Stacking algorithms, respectively, had the highest accuracy
in predicting asthma-prone areas, according to the findings of assessment indicators. The
AdaBoost algorithm was more capable of modeling asthma-prone areas in the study area
than the other two algorithms. Advantages of the AdaBoost algorithm over two algorithms
is [83]: (1) the ability to merge different types of predictors; (2) decreases bias; (3) models are
weighed in Boosting according to their performance; (4) when dealing with bias or under
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fitting in a data set, the boosting approach comes in useful. The Bagging algorithm has
higher accuracy than the stacking algorithm owing to reducing the variance and solving
the over fitting problem [84]. Because the Stacking algorithm does not use sampling in the
training dataset and does not use a sequence of models to correct the predictions of prior
models, it is less accurate than the other two algorithms [85].

The innovations of the present study including, the use of remote sensing to prepare
criteria affecting the occurrence of asthma, the use of the WOE statistical method to
determine the spatial relationship between independent and dependent criteria, and the
use of ensemble machine learning algorithms to map asthma-prone areas. The limitations
of the present study included the lack of access to up-to-date population density data, and
the lack of direct access to PM2.5 and PM10 pollutant data using remote sensing images.
For future research, it is suggested that PM2.5 and PM10 pollutants and climatic parameters
be prepared using remote sensing images.

5. Conclusions

A combination of GIS, RS, and ensemble machine learning algorithms were employed
in this work to propose a strategy for the prevention and management of asthma in
urban areas. The results showed that the ensemble machine learning algorithms have
good accuracy in modeling asthma-prone areas, where the AdaBoost algorithm showed
higher accuracy than the other two algorithms. Low altitude, high rainfall and humidity,
moderate temperature, low wind speed, high levels of air pollutants (except O3), shorter
street distance, high traffic volume, and less vegetation all played a part in the prevalence
of asthma in Tehran, according to the results of the WOE model. Factors including distance
to the street, traffic volume, and NDVI were all important in modeling. Less distance from
the street, high traffic volume, and less vegetation increase the emission of pollutants. It
seems that air pollution is the primary cause of asthma attacks in Tehran. Remote sensing
factors such as NDVI and four air pollutants (SO2, NO2, CO, and O3) played an essential
role in modeling asthma-prone areas. Remote sensing factors such as NDVI and four air
pollutants played an essential role in modeling asthma-prone areas. Remote sensing images
have an excellent ability to integrate with GIS in spatial modeling of diseases owing to the
monitoring of environmental factors anywhere in the world at any time. The center and
southern parts of Tehran are more in danger, according to asthma risk maps. These regions
have a significant impact on increasing levels of air pollution due to their high population
density and transportation. Community planners and administrators will be aided using
maps of asthma-prone regions for the management and presentation of asthma.
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