Improvements of ADAM3 by Incorporating New Dust Emission Reduction Formulations Based on Real-Time MODIS NDVI
Abstract
:1. Introduction
2. Materials and Methods
2.1. Asian Dust Aerosol Model 3 (ADAM3)
2.2. Method and Data
3. Results
3.1. Dust Emission Reduction Factor
3.2. ADAM3 PM10 Simulations
3.3. Assessments According to Surface Soil Type
4. Discussion
5. Conclusion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- UNEP; WMO; UNCCD. Global Assessment of Sand and Dust Storms; United Nations Environment Programme: Nairobi, Kenya, 2016; pp. 6–19. [Google Scholar]
- Chun, Y.; Boo, K.O.; Kim, J.; Park, S.-U.; Lee, M. Synopsis, transport, and physical characteristics of Asian dust in Korea. J. Geophys. Res. Atmos. 2001, 106, 18461–18469. [Google Scholar] [CrossRef] [Green Version]
- Kim, J. Transport routes and source regions of Asian dust observed in Korea during the past 40 years (1965~2004). Atmos. Environ. 2008, 42, 4778–4789. [Google Scholar] [CrossRef]
- Shao, Y.; Klose, M.; Wyrwoll, K.H. Recent global dust trend and connections to climate forcing. J. Geophys. Res. Atmos. 2013, 118, 11–107. [Google Scholar] [CrossRef]
- Lee, E.H.; Sohn, B.J. Recent increasing trend in dust frequency over Mongolia and Inner Mongolia regions and its association with climate and surface condition change. Atmos. Environ. 2011, 45, 4611–4616. [Google Scholar] [CrossRef]
- Giannadaki, D.; Pozzer, A.; Lelieveld, J. Modeled global effects of airborne desert dust on air quality and premature mortality. Atmos. Chem. Phys. 2014, 14, 957–968. [Google Scholar] [CrossRef] [Green Version]
- Kashima, S.; Yorifuji, T.; Bae, S.; Honda, Y.; Lim, Y.H.; Hong, Y.C. Asian dust effect on cause-specific mortality in five cities across South Korea and Japan. Atmos. Environ. 2016, 128, 20–27. [Google Scholar] [CrossRef]
- Kwon, H.J.; Cho, S.H.; Chun, Y.; Lagarde, F.; Pershagen, G. Effects of the Asian dust events on daily mortality in Seoul, Korea. Environ. Res. 2002, 90, 1–5. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, L.; Tong, D.; Wu, G.; Dan, M.; Teng, B. A systematic review of global desert dust and associated human health effects. Atmosphere 2016, 7, 158. [Google Scholar] [CrossRef] [Green Version]
- WMO. New International Coalition to Combat Sand and Dust Storms. 2019. Available online: http://public.wom.int/en/media/news/new-international-coalition-combat-sand-and-dust-storms (accessed on 24 June 2020).
- Lee, S.S.; Lee, E.H.; Sohn, B.J.; Lee, H.C.; Cho, J.H.; Ryoo, S.-B. Improved dust forecast by assimilating MODIS IR-based nighttime AOT in the ADAM2 model. SOLA 2017, 13, 192–198. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.S.; Lim, Y.-K.; Cho, J.H.; Lee, H.C.; Ryoo, S.-B. Improved dust emission reduction factor in the ADAM2 model using real-time MODIS NDVI. Atmosphere 2019, 10, 702. [Google Scholar] [CrossRef]
- Park, S.-U.; Choe, A.; Lee, E.H.; Park, M.S.; Song, X. The Asian Dust Aerosol Model 2 (ADAM2) with the use of Normalized Difference Vegetation Index (NDVI) obtained from the Spot4/vegetation data. Theor. Appl. Climatol. 2010, 101, 191–208. [Google Scholar] [CrossRef]
- Ryoo, S.-B.; Lim, Y.-K.; Park, Y.-S. Seasonal Asian dust forecasting using GloSea5-ADAM. Atmosphere 2020, 11, 526. [Google Scholar] [CrossRef]
- Ryoo, S.-B.; Kim, J.; Cho, J.H. Performance of KMA-ADAM3 in identifying Asia dust days over Northern China. Atmosphere 2020, 11, 593. [Google Scholar] [CrossRef]
- Park, S.-U.; In, H.-J. Parameterization of dust emission for the simulation of the yellow sand (Asian dust) event observed in March 2002 in Korea. J. Geophys. Res. 2003, 108, 4618. [Google Scholar] [CrossRef]
- Wang, Q.; Adiku, S.; Tenhunen, J.; Granier, A. On the relationship of NDVI with leaf area index in a deciduous forest site. Rem. Sens. Environ. 2005, 94, 244–255. [Google Scholar] [CrossRef]
- Byun, D.; Schere, K.L. Review of the governing equations, computational algorithms, and other components of the Models-3 Community Multiscale Air Quality (CMAQ) modeling system. Appl. Mech. Rev. 2006, 59, 51–77. [Google Scholar] [CrossRef]
- Houyoux, M.R.; Vukovich, J.M. Updates to the Sparse Matrix Operator Kernel Emissions (SMOKE) modeling system and integration with Models-3. Emiss. Inventory Reg. Strateg. Future 1999, 1461, 1–11. [Google Scholar]
- Guenther, A.; Karl, T.; Harley, P.; Wiedinmyer, C.; Palmer, P.I.; Geron, C. Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys. 2006, 6, 3181–3210. [Google Scholar] [CrossRef] [Green Version]
- Davies, T.; Cullen, M.J.; Malcolm, A.J.; Mawson, M.H.; Staniforth, A.; White, A.A.; Wood, N. A new dynamical core for the Met Office’s global and regional modelling of the atmosphere. Q. J. R. Meteorol. Soc. 2005, 131, 1759–1782. [Google Scholar] [CrossRef]
- Wilks, D.S. Statistical Methods in Atmospheric Sciences; Academic Press: Cambridge, MA, USA, 1995; pp. 276–277. [Google Scholar]
- Tan, M.; Li, X. Does the Green Great Wall effectively decrease dust storm intensity in China? A study based on NOAA NDVI and weather station data. Land Use Policy 2015, 43, 42–47. [Google Scholar] [CrossRef]
- Wang, X.M.; Zhang, C.X.; Hasi, E.; Dong, Z.B. Has the Three Norths Forest Shelterbelt Program solved the desertification and dust storm problems in arid and semiarid China? J. Arid Environ. 2010, 74, 13–22. [Google Scholar] [CrossRef]
- Kang, J.Y.; Tanaka, T.Y.; Mikami, M. Effect of dead leaves on early spring dust emission in East Asia. Atmos. Environ. 2014, 86, 35–46. [Google Scholar] [CrossRef]
- Grell, G.A.; Peckham, S.E.; Schmitz, R.; McKeen, S.A.; Frost, G.; Skamarock, W.C.; Eder, B. Full coupled “online” chemistry within the WRF model. Atmos. Environ. 2005, 39, 6957–6975. [Google Scholar] [CrossRef]
Soil Type | |||||
---|---|---|---|---|---|
Gobi | Sand | Loess | Mixed | Entire Area of Dust Sources | |
NEW_RF to OLD_RF | 0.0535 | 0.3193 | 0.2676 | 0.3240 | 0.2734 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, J.H.; Ryoo, S.-B.; Kim, J. Improvements of ADAM3 by Incorporating New Dust Emission Reduction Formulations Based on Real-Time MODIS NDVI. Remote Sens. 2021, 13, 3139. https://doi.org/10.3390/rs13163139
Cho JH, Ryoo S-B, Kim J. Improvements of ADAM3 by Incorporating New Dust Emission Reduction Formulations Based on Real-Time MODIS NDVI. Remote Sensing. 2021; 13(16):3139. https://doi.org/10.3390/rs13163139
Chicago/Turabian StyleCho, Jeong Hoon, Sang-Boom Ryoo, and Jinwon Kim. 2021. "Improvements of ADAM3 by Incorporating New Dust Emission Reduction Formulations Based on Real-Time MODIS NDVI" Remote Sensing 13, no. 16: 3139. https://doi.org/10.3390/rs13163139
APA StyleCho, J. H., Ryoo, S. -B., & Kim, J. (2021). Improvements of ADAM3 by Incorporating New Dust Emission Reduction Formulations Based on Real-Time MODIS NDVI. Remote Sensing, 13(16), 3139. https://doi.org/10.3390/rs13163139