Use of Multiplatform SAR Imagery in Mining Deformation Monitoring with Dense Vegetation Coverage: A Case Study in the Fengfeng Mining Area, China
Abstract
:1. Introduction
2. Study Area and SAR Datasets
2.1. Background of Fengfeng Mining Area
2.2. SAR Datasets
3. Methodology
3.1. Interferometric Processing
3.2. Retrieval of Time-Series Deformation
3.2.1. SBAS Technique
3.2.2. MSBAS Technique
4. Results
4.1. Deformation with Single SAR Platform
4.2. Deformation with Two SAR Platforms
4.3. Deformation with Three SAR Platforms
4.4. Deformation with All SAR Platforms
5. Discussion
5.1. Accuracy Validation
5.2. Advantages of Multiplatform SAR Data in Mining Deformation Monitoring
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
SAR Data | Temporal Baseline (Days) | Perpendicular Baseline (m) |
---|---|---|
TSX | 60 | 300 |
Sentinel-1A | 100 | 100 |
Radarsat-2 | 100 | 300 |
PALSAR-2 | 300 | 200 |
Regions | No. | No. of Deformed Areas | Ground Coverage [km2] | Maximum Displacement [cm] | ||
---|---|---|---|---|---|---|
−5 cm to −30 cm | −30 cm to −60 cm | −60 cm to −90 cm | ||||
A1 | 1 | 1 | 0.861 | 0.1436 | 0.000038 | −61.56 |
A2 | 2 | 1 | 0.6036 | 0.1074 | 0.0371 | −81.81 |
3 | 1 | 1.1483 | 0.0368 | 0 | −47.99 | |
A3 | 4 | 1 | 0.2919 | 0.0306 | 0 | −51.83 |
A4 | 5 | 1 | 0.1973 | 0.0187 | 0 | −46.68 |
6 | 1 | 0.1617 | 0 | 0 | −29.37 | |
A5 | 7 | 1 | 0.1415 | 0 | 0 | −13.58 |
8 | 1 | 0.1217 | 0 | 0 | −19.49 | |
A6 | 9 | 2 | 0.0874 | 0 | 0 | −24.56 |
B1 | 10 | 2 | 0.7195 | 0.0001 | 0 | −33.93 |
B2 | 11 | 1 | 0.2147 | 0 | 0 | −21.29 |
12 | 1 | 0.1072 | 0.0014 | 0 | −41.66 | |
B3 | 13 | 3 | 0.7566 | 0.0869 | 0 | −58.38 |
B4 | 14 | 1 | 0.0563 | 0 | 0 | −23.59 |
B5 | 15 | 3 | 0.5722 | 0.03 | 0 | −49.31 |
B6 | 16 | 2 | 0.6993 | 0.0581 | 0 | −56.46 |
17 | 1 | 0.1465 | 0 | 0 | −28.01 | |
C1 | 18 | 1 | 0.9503 | 0.0673 | 0 | −49.08 |
C2 | 19 | 1 | 0.0928 | 0 | 0 | −22.41 |
20 | 4 | 1.4109 | 0.0884 | 0 | −54.42 | |
21 | 2 | 0.2545 | 0.00068 | 0 | −35.59 | |
22 | 1 | 0.4426 | 0.0166 | 0 | −36.82 | |
C3 | 23 | 1 | 0.4461 | 0.0112 | 0 | −38.34 |
C4 | 24 | 1 | 1.0695 | 0.2351 | 0.00084 | −66.5 |
C5 | 25 | 2 | 0.3035 | 0.00003 | 0 | −30.35 |
C6 | 26 | 2 | 1.6334 | 0.0739 | 0 | −52.55 |
D1 | 27 | 3 | 0.3516 | 0.0012 | 0 | −36.45 |
28 | 4 | 2.0048 | 0.1332 | 0 | −55.03 | |
D2 | 29 | 1 | 1.4196 | 0.1339 | 0.0427 | −88.8 |
30 | 1 | 0.7794 | 0.112 | 0 | −51.34 | |
31 | 1 | 0.1956 | 0.0054 | 0 | −36.9 | |
32 | 2 | 1.9831 | 0 | 0 | −28.35 | |
E1 | 33 | 1 | 0.2088 | 0.0153 | 0 | −39.63 |
34 | 1 | 0.2129 | 0.0002 | 0 | −30.73 | |
E2 | 35 | 2 | 2.2508 | 0.1558 | 0.0001 | −60.84 |
E3 | 36 | 1 | 0.2996 | 0.0003 | 0 | −32.64 |
References
- Liu, G.; Guo, H.D.; Hanssen, R.; Perski, Z.; Li, X.W.; Yue, H.Y.; Fan, J.H. The application of InSAR technology to mining area subsidence monitoring. Remote Sens. Land Res. 2008, 20, 51–55. [Google Scholar]
- Samsonov, S.; D’Oreye, N.; Smets, B. Ground deformation associated with post-mining activity at the French-German border revealed by novel InSAR time series method. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 142–154. [Google Scholar] [CrossRef]
- Yang, Z.; Li, Z.; Zhu, J.; Wang, Y.; Wu, L. Use of SAR/InSAR in mining deformation monitoring, parameter inversion, and forward predictions: A review. IEEE Geosci. Remote Sens. Mag. 2020, 8, 71–90. [Google Scholar] [CrossRef]
- Wright, P.; Stow, R. Detecting mining subsidence from space. Int. J. Remote Sens. 1999, 20, 1183–1188. [Google Scholar] [CrossRef]
- Bamler, R.; Hartl, P. Synthetic aperture radar interferometry. Inverse Probl. 1998, 14, R1. [Google Scholar] [CrossRef]
- Rosen, P.A.; Hensley, S.; Joughin, I.R.; Li, F.K.; Madsen, S.N.; Rodriguez, E.; Goldstein, R.M. Synthetic aperture radar inter-ferometry. Proc. IEEE 2000, 88, 333–382. [Google Scholar] [CrossRef]
- Massonnet, D.; Feigl, K.L. Radar interferometry and its application to changes in the Earth’s surface. Rev. Geophys. 1998, 36, 441–500. [Google Scholar] [CrossRef] [Green Version]
- Eldhuset, K.; Andersen, P.H.; Hauge, S.; Isaksson, E.; Weydahl, D.J. ERS tandem InSAR processing for DEM generation, glacier motion estimation and coherence analysis on Svalbard. Int. J. Remote Sens. 2003, 24, 1415–1437. [Google Scholar] [CrossRef]
- Ding, X.L.; Liu, G.X.; Li, Z.W.; Li, Z.L.; Chen, Y.Q. Ground subsidence monitoring in Hong Kong with satellite SAR inter-ferometry. Photogramm. Eng. Remote Sens. 2004, 70, 1151–1156. [Google Scholar] [CrossRef]
- Burgmann, R.; Rosen, P.A.; Fielding, E.J. Synthetic aperture radar interferometry to measure earth’s surface topography and its deformation. Annu. Rev. Earth Planet. Sci. 2000, 28, 169–209. [Google Scholar] [CrossRef]
- Hanssen, R.F. Radar Interferometry: Data Interpretation and Error Analysis; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001. [Google Scholar]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Zhang, L.; Ding, X.; Perissin, D. Pixel-Wise MTInSAR Estimator for integration of coherent point selection and unwrapped phase vector recovery. IEEE Trans. Geosci. Remote Sens. 2018, 57, 2659–2668. [Google Scholar] [CrossRef]
- Xu, W.; Wu, S.; Materna, K.; Nadeau, R.; Floyd, M.; Funning, G.; Chaussard, E.; Johnson, C.W.; Murray, J.R.; Ding, X.; et al. Interseismic ground deformation and fault slip rates in the greater san francisco bay area from two decades of space geodetic data. J. Geophys. Res. Solid Earth 2018, 123, 8095–8109. [Google Scholar] [CrossRef]
- Wu, S.; Yang, Z.; Ding, X.; Zhang, B.; Zhang, L.; Lu, Z. Two decades of settlement of Hong Kong International Airport measured with multi-temporal InSAR. Remote Sens. Environ. 2020, 248, 111976. [Google Scholar] [CrossRef]
- Sun, Q.; Zhang, L.; Ding, X.L.; Hu, J.; Liang, H.Y. Investigation of slow-moving landslides from ALOS/PALSAR images with TCPInSAR: A case study of Oso, USA. Remote Sens. 2014, 7, 72–88. [Google Scholar] [CrossRef]
- Pepe, A.; Bonano, M.; Zhao, Q.; Yang, T.; Wang, H. The use of C-/X-band time-gapped sar data and geotechnical models for the study of shanghai’s ocean-reclaimed lands through the SBAS-DInSAR technique. Remote Sens. 2016, 8, 911. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Wang, C.; Ding, X.; Zhu, W.; Wu, S. Correction of ionospheric artifacts in SAR data: Application to fault slip inversion of 2009 southern Sumatra earthquake. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1327–1331. [Google Scholar] [CrossRef]
- Duan, M.; Xu, B.; Li, Z.W.; Wu, W.H.; Cao, Y.M.; Liu, J.H.; Wang, G.Y.; Hou, J.X. A new weighting method by considering the physical characteristics of atmospheric turbulence and decorrelation noise in SBAS-InSAR. Remote Sens. 2020, 12, 2557. [Google Scholar] [CrossRef]
- Xiong, S.T.; Wang, C.S.; Qin, X.Q.; Zhang, B.C.; Li, Q.Q. Time-series analysis on persistent scatter-interferometric synthetic aperture radar (PS-InSAR) derived displacements of the Hong Kong-Zhuhai-Macao bridge (HZMB) from sentinel-1A observations. Remote Sens. 2021, 13, 546. [Google Scholar] [CrossRef]
- Qin, X.Q.; Zhang, L.; Yang, M.S.; Luo, H.; Liao, M.S.; Ding, X.L. Mapping surface deformation and thermal dilation of arch bridges by structure-driven multi-temporal D-InSAR analysis. Remote Sens. Environ. 2018, 216, 71–90. [Google Scholar] [CrossRef]
- Carnec, C.; Massonnet, D.; King, C. Two examples of the use of SAR interferometry on displacement fields of small spatial extent. Geophys. Res. Lett. 1996, 23, 3579–3582. [Google Scholar] [CrossRef]
- Lazecký, M. InSAR used for subsidence monitoring of mining area OKR, Czech Republic. In Fringe 2009, Proceedings of the Workshop, Frascati, Italy, 30 November–4 December 2009; ESA Communications: Noordwijk, The Netherlands, 2010. [Google Scholar]
- Bechor, N.B.D.; Zebker, H.A. Measuring two-dimensional movements using a single InSAR pair. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef] [Green Version]
- Michel, R.; Avouac, J.-P.; Taboury, J. Measuring ground displacements from SAR amplitude images: Application to the landers earthquake. Geophys. Res. Lett. 1999, 26, 875–878. [Google Scholar] [CrossRef] [Green Version]
- Ng, A.H.-M.; Ge, L.; Zhang, K.; Chang, H.-C.; Li, X.; Rizos, C.; Omura, M. Deformation mapping in three dimensions for underground mining using InSAR—Southern highland coalfield in New South Wales, Australia. Int. J. Remote Sens. 2011, 32, 7227–7256. [Google Scholar] [CrossRef]
- Wegmuller, U.; Werner, C.; Strozzi, T.; Wiesmann, A. Monitoring mining induced surface deformation. IEEE Int. Geosci. Remote Sens. 2004, 3, 1933–1935. [Google Scholar]
- Diao, X.; Wu, K.; Hu, D.; Li, L.; Zhou, D. Combining differential SAR interferometry and the probability integral method for three-dimensional deformation monitoring of mining areas. Int. J. Remote Sens. 2016, 37, 5196–5212. [Google Scholar] [CrossRef]
- Xia, Y.; Wang, Y. InSAR- and PIM-based inclined goaf determination for illegal mining detection. Remote Sens. 2020, 12, 3884. [Google Scholar] [CrossRef]
- Werner, C.; Wegmüller, U.; Strozzi, T.; Wiesmann, A. Gamma SAR and interferometric processing software. Remote Sens. 2000, 1620, 1620. [Google Scholar]
- Zhang, L.; Ding, X.L.; Lu, Z.; Jung, H.S.; Hu, J.; Feng, G.C. A novel multitemporal InSAR model for joint estimation of de-formation rates and orbital errors. IEEE Int. Geosci. Remote Sens. 2014, 52, 3529–3540. [Google Scholar] [CrossRef] [Green Version]
- Baehr, H. Orbital Effects in Spaceborne Synthetic Aperture Radar Interferometry; KIT Scientific Publishing: Karlsruhe, Germany, 2013. [Google Scholar]
- Schmidt, D.A.; Bürgmann, R. Time-dependent land uplift and subsidence in the Santa Clara valley, California, from a large interferometric synthetic aperture radar data set. J. Geophys. Res. Space Phys. 2003, 108, 9. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Li, Z.-W.; Ding, X.; Zhu, J.; Zhang, L.; Sun, Q. Resolving three-dimensional surface displacements from InSAR measurements: A review. Earth-Sci. Rev. 2014, 133, 1–17. [Google Scholar] [CrossRef]
- Samsonov, S.; D’Oreye, N. Multidimensional time-series analysis of ground deformation from multiple InSAR data sets applied to Virunga Volcanic province. Geophys. J. Int. 2012, 191, 1095–1108. [Google Scholar] [CrossRef] [Green Version]
- General Office of the Municipal Government. Notice of the General Office of Handan Municipal People’s Government on Issuing Handan’s 2016 Geological Disaster Prevention Plan. Available online: https://www.hd.gov.cn/hdzfxxgk/gszbm/auto23692/201808/t20180802_799421.html?keywords=%E5%9C%B0%E8%B4%A8%E7%81%BE%E5%AE%B3.2016 (accessed on 15 May 2021).
- Raucoules, D.; Maisons, C.; Carnec, C.; Le Mouelic, S.; King, C.; Hosford, S. Monitoring of slow ground deformation by ERS radar interferometry on the Vauvert salt mine (France): Comparison with ground-based measurement. Remote Sens. Environ. 2003, 88, 468–478. [Google Scholar] [CrossRef]
Satellite | TerraSAR-X | Sentinel-1A | Radarsat-2 | PALSAR-2 |
---|---|---|---|---|
Orbital | descending | ascending | ascending | ascending |
Period | 29 July 2015–7 April 2016 | 2 December 2015–31 March 2016 | 30 November 2015–5 March 2016 | 19 July 2015–6 December 2015 |
No. of image | 14 | 7 | 4 | 3 |
No. of selected image | 8 | 7 | 4 | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, B.; Wu, S.; Ding, X.; Wang, C.; Zhu, J.; Li, Q. Use of Multiplatform SAR Imagery in Mining Deformation Monitoring with Dense Vegetation Coverage: A Case Study in the Fengfeng Mining Area, China. Remote Sens. 2021, 13, 3091. https://doi.org/10.3390/rs13163091
Zhang B, Wu S, Ding X, Wang C, Zhu J, Li Q. Use of Multiplatform SAR Imagery in Mining Deformation Monitoring with Dense Vegetation Coverage: A Case Study in the Fengfeng Mining Area, China. Remote Sensing. 2021; 13(16):3091. https://doi.org/10.3390/rs13163091
Chicago/Turabian StyleZhang, Bochen, Songbo Wu, Xiaoli Ding, Chisheng Wang, Jiasong Zhu, and Qingquan Li. 2021. "Use of Multiplatform SAR Imagery in Mining Deformation Monitoring with Dense Vegetation Coverage: A Case Study in the Fengfeng Mining Area, China" Remote Sensing 13, no. 16: 3091. https://doi.org/10.3390/rs13163091
APA StyleZhang, B., Wu, S., Ding, X., Wang, C., Zhu, J., & Li, Q. (2021). Use of Multiplatform SAR Imagery in Mining Deformation Monitoring with Dense Vegetation Coverage: A Case Study in the Fengfeng Mining Area, China. Remote Sensing, 13(16), 3091. https://doi.org/10.3390/rs13163091