Dynamic Pluvial Flash Flooding Hazard Forecast Using Weather Radar Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Monitoring Precipitation
2.2. Data Sources
- Hydrological division, including low-level river basins;
- Stream network;
- Weather radar data;
- Saturation indicator
- Data from hydrometric stations;
- The database of the Fire Rescue Service of the Czech Republic.
2.3. Proposed Methodology of Flash Flooding Hazard Prediction
- Division of the monitored area into subareas—sub-watersheds, which are perceived as homogeneous spatial units;
- For each sub-watershed, a backbone watercourse is defined, discharging water entering the sub-watershed either in the form of precipitation or inflow from the upstream sub-watershed;
- The backbone watercourse of each sub-watershed represents the smallest spatial unit used to evaluate the flash flooding hazard—the watercourse segment;
- For each sub-watershed or segment of a watercourse, a simple routing response function is defined, allowing for the response of any segment of a watercourse to heavy rainfall to be derived in the form of a measure of the flash flooding hazard,
- Assumption of linear outflow behaviour;
- Assumption of a constant and same outflow velocity;
- Mutual independence of contributions from individual sub-watersheds;
- The direct proportion of the degree of flash flooding hazard to the volume of precipitation flowing through a segment of a watercourse;
- Replacement of precipitation measurements over the monitored area with raw weather radar data.
3. Data Processing
- The basic time step of evaluation for the summation of precipitation tb;
- The outflow velocity in the channel vw;
- The time interval for the outflow summation ts;
- The lower and upper flash flooding hazard limits.
4. Results
4.1. Case Studies: Reliability Testing on a Local Scale
4.1.1. The Novojičínsko Area
Comparing the Forecasted Hazard and Actual Flow Development
Validation of the Proposed Procedure in the Luha River Watershed
4.1.2. The Frýdlantský Spur Area
4.2. Sensitivity Testing
4.3. Reliability Testing on a National Scale
- During that period, the soils throughout the Czech Republic were saturated to extremely saturated;
- Most of the rainfall and the highest predicted hazard values occur in the south-eastern part of the Czech Republic, which has the lowest value of the saturation indicator; in this region, there is almost zero incidence of Fire Rescue Service interventions due to flooding (area 1), although the area is densely populated;
- There is a correlation between the occurrence of an increased flash flooding hazard, high values of the saturation indicator, and a higher incidence of Fire Rescue Service interventions due to floods (areas 2, 3, and 4);
- An increased incidence of Fire Rescue Service interventions occurs in an area not forecasted to be possibly endangered by an increased flash flooding hazard. Still, there are high values of the saturation indicator (area 5). A detailed examination reveals that the bulk of the interventions concentrate on brooks for which the suggested procedure is not intended.
- Soils throughout the Czech Republic were low saturated (in the lowlands and uplands) to high saturated (in mountain areas);
- Most of the rainfall and the highest predicted hazard values occur coincidentally in areas with the lowest values of the saturation indicator; there are almost zero incidence of Fire Rescue Service interventions due to flooding in these areas. Exceptions include area 1, located in the city of Prague—a heavily urbanised region—and areas 2 and 3, where the Fire Rescue Service interventions are mostly bound to the municipality not situated nearby watercourses (i.e., again events tied to urbanised areas); only part of the interventions was done near rivers;
- There is a correlation between an increased flash flooding hazard, higher values of the saturation indicator, and a higher incidence of Fire Rescue Service interventions due to flooding (areas 4, 5, and 6).
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Rainfall Episode I | ||||||
Shift [h] | 0 | 1 | 2 | 3 | 4 | 5 |
Cross-correlation [-] | 0.616 | 0.388 | 0.140 | 0.752 | 0.624 | −0.015 |
Rainfall Episode II | ||||||
Shift [h] | 0 | 1 | 2 | 3 | 4 | 5 |
Cross-correlation [-] | 0.432 | 0.840 | 0.906 | 0.376 | −0.555 | −0.587 |
Rainfall Episode I | ||||||||
Shift [h] | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
Cross-correlation [-] | 0.384 | 0.643 | 0.775 | 0.790 | 0.645 | 0.149 | 0.232 | 0.507 |
Rainfall Episode II | ||||||||
Shift [h] | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
Cross-correlation [-] | 0.801 | 0.884 | 0.829 | 0.783 | 0.849 | 0.924 | 0.989 | 0.785 |
Rainfall Episode I | |||||||
Shift [h] | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
Cross-correlation [-] | 0.599 | 0.480 | 0.441 | 0.719 | 0.975 | 0.946 | 0.061 |
Rainfall Episode II | |||||||
Shift [h] | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
Cross-correlation [-] | 0.392 | 0.012 | 0.606 | 0.889 | 0.962 | 0.472 | −0.474 |
References
- Gaume, E.; Bain, V.; Bernardara, P.; Newinger, O.; Barbuc, M.; Bateman, A.; Blaškovičová, L.; Blöschl, G.; Borga, M.; Dumitrescu, A.; et al. A compilation of data on European flash floods. J. Hydrol. 2009, 367, 70–78. [Google Scholar] [CrossRef] [Green Version]
- Marchi, L.; Borga, M.; Preciso, E.; Gaume, E. Characterisation of selected extreme flash floods in Europe and implications for flood risk management. J. Hydrol. 2010, 394, 118–133. [Google Scholar] [CrossRef]
- Norbiato, D.; Borga, M.; Degli Esposti, S.; Gaume, E.; Anquetin, S. Flash flood warning based on rainfall thresholds and soil moisture conditions: An assessment for gauged and ungauged basins. J. Hydrol. 2008, 362, 274–290. [Google Scholar] [CrossRef]
- Borga, M.; Gaume, E.; Creutin, J.; Marchi, L. Surveying flash floods: Gauging the ungauged extremes. Hydrol. Process. 2008, 22, 3883–3885. [Google Scholar] [CrossRef]
- Borga, M.; Boscolo, P.; Zanon, F.; Sangati, M. Hydrometeorological Analysis of the 29 August 2003 Flash Flood in the Eastern Italian Alps. J. Hydrometeorol. 2007, 8, 1049–1067. [Google Scholar] [CrossRef]
- Collier, C. Flash flood forecasting: What are the limits of predictability? Q. J. R. Meteorol. Soc. 2007, 133, 3–23. [Google Scholar] [CrossRef]
- Corral, C.; Berenguer, M.; Sempere-Torres, D.; Poletti, L.; Silvestro, F.; Rebora, N. Comparison of two early warning systems for regional flash flood hazard forecasting. J. Hydrol. 2019, 572, 603–619. [Google Scholar] [CrossRef] [Green Version]
- Jonkman, S. Global Perspectives on Loss of Human Life Caused by Floods. Nat. Hazards 2005, 34, 151–175. [Google Scholar] [CrossRef]
- World Meteorological Organization (WMO). Manual on Flood Forecasting and Warning; WMO-No. 1072; World Meteorological Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Borga, M.; Anagnostou, E.; Blöschl, G.; Creutin, J. Flash flood forecasting, warning and risk management: The HYDRATE project. Environ. Sci. Policy 2011, 14, 834–844. [Google Scholar] [CrossRef]
- Zanchetta, A.; Coulibaly, P. Recent Advances in Real-Time Pluvial Flash Flood Forecasting. Water 2020, 12, 570. [Google Scholar] [CrossRef] [Green Version]
- Solomatine, D.; Ostfeld, A. Data-driven modelling: Some past experiences and new approaches. J. Hydroinform. 2008, 10, 3–22. [Google Scholar] [CrossRef] [Green Version]
- Ticlavilca, A.; Torres, A. Data Driven Models and Machine Learning Approach in Water Resources Systems: Guest Lecture. In Proceedings of the Water Resources System Analysis; Utah State University: Logan, Utah, 2012; pp. 1–18. [Google Scholar]
- See, L.; Solomatine, D.; Abrahart, R.; Toth, E. Hydroinformatics: Computational intelligence and technological developments in water science applications—Editorial. Hydrol. Sci. J. 2007, 52, 391–396. [Google Scholar] [CrossRef] [Green Version]
- Jain, S.K.; Mani, P.; Jain, S.K.; Prakash, P.; Singh, V.P.; Tullos, D.; Kumar, S.; Agarwal, S.P.; Dimri, A.P. A Brief review of floodforecasting techniques and their applications. Int. J. River Basin Manag. 2018, 16, 329–344. [Google Scholar] [CrossRef]
- Janál, P. Flash Floods Forecasting—Fuzzy Model. In Proceedings of the Hospodaření s Vodou v Krajině, Třeboň, The Czech Republic, 21–22 June 2018; pp. 1–10. Available online: http://cbks.cz/SbornikTrebon18/Janal.pdf (accessed on 26 July 2021).
- Modrick, T.; Graham, R.; Shamir, E.; Jubach, R.; Spencer, C.; Sperfslage, J.; Georgakakos, K. Operational flash flood warning systems with global applicability. In Proceedings of the 7th International Congress on Environmental Modelling and Software, San Diego, CA, USA, 15–19 June 2014; pp. 1–8. [Google Scholar]
- Surface Water Management. An Action Plan. Department for Environment, Food & Rural Affairs. 2018; 41p. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/725664/surface-water-management-action-plan-july-2018.pdf (accessed on 2 July 2021).
- Ochoa-Rodríguez, S.; Wang, L.; Thraves, L.; Johnston, A.; Onof, C. Surface water flood warnings in England: Overview, assessmentand recommendations. J. Flood Risk Manag. 2015, S211. [Google Scholar] [CrossRef]
- Gaume, E. Post Flash-flood Investigations—Methodological Note; FLOODsite: Wallingford, UK, 2006. [Google Scholar]
- Koutroulis, A.; Tsanis, I. A method for estimating flash flood peak discharge in a poorly gauged basin: Case study for the 13–14 January 1994 flood, Giofiros basin, Crete, Greece. J. Hydrol. 2010, 385, 150–164. [Google Scholar] [CrossRef]
- Wharton, G. Flood estimation from channel size: Guidelines for using the channel-geometry method. Appl. Geogr. 1992, 12, 339–359. [Google Scholar] [CrossRef]
- Wharton, G.; Arnell, N.; Gregory, K.; Gurnell, A. River discharge estimated from channel dimensions. J. Hydrol. 1989, 106, 365–376. [Google Scholar] [CrossRef]
- Dorman, L. Automated Local Evaluation in Real Time (ALERT). In Encyclopedia of Natural Hazards; Bobrowsky, P., Ed.; Encyclopedia of Earth Sciences Series; Springer: Dordrecht, The Netherlands, 2013; p. 31. ISBN 978-90-481-8699-0. [Google Scholar]
- Georgakakos, K. On the design of national, real time warning systems with capability for se-specific flash flood forecasts. Bull. Am. Meteorol. Soc. 1986, 67, 1233–1239. [Google Scholar] [CrossRef]
- Grabs, W. Regional Flash Flood Guidance and Early Warning System. In Proceedings of the Training for Trainers. Workshop on Integrated Approach to Flash Flood and Flood Risk Management, Kathmandu, Nepal, 25 October–2 November 2010; pp. 24–28. [Google Scholar]
- Braud, I.; Vincendon, B.; Anquetin, S.; Ducrocq, V.; Creutin, J. The Challenges of Flash Flood Forecasting. In Mobilities Facing Hydrometeorological Extreme Events 1; Elsevier: Amsterdam, The Netherlands, 2018; pp. 63–88. ISBN 9781785482892. [Google Scholar]
- Alfieri, L.; Smith, P.; Thielen-del Pozo, J.; Beven, K. A staggered approach to flash flood forecasting—Case study in the Cévennes region. Adv. Geosci. 2011, 29, 13–20. [Google Scholar] [CrossRef] [Green Version]
- COSMO: Consortium for Small-Scale Modeling. Available online: http://www.cosmo-model.org/ (accessed on 19 July 2020).
- Panziera, L.; Gabella, M.; Zanini, S.; Hering, A.; Germann, U.; Berne, A. A radar-based regional extreme rainfall analysis to derive the thresholds for a novel automatic alert system in Switzerland. Hydrol. Earth Syst. Sci. 2016, 20, 2317–2332. [Google Scholar] [CrossRef] [Green Version]
- Liechti, K.; Panziera, L.; Germann, U.; Zappa, M. The potential of radar-based ensemble forecasts for flash-flood early warning in the southern Swiss Alps. Hydrol. Earth Syst. Sci. 2013, 17, 3853–3869. [Google Scholar] [CrossRef] [Green Version]
- Thielen, J.; Bartholmes, J.; Ramos, M.; de Roo, A. The European Flood Alert System—Part 1: Concept and development. Hydrol. Earth Syst. Sci. 2009, 13, 125–140. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Berenguer, M.; Sempere-Torres, D. Long-term analysis of gauge-adjusted radar rainfall accumulations at European scale. J. Hydrol. 2019, 573, 768–777. [Google Scholar] [CrossRef] [Green Version]
- Hofmann, J.; Schuttrumpf, H. Risk-Based Early Warning System for Pluvial Flash Floods: Approaches and Foundations. Geosciences 2019, 9, 127. [Google Scholar] [CrossRef] [Green Version]
- Speight, L.J.; Cranston, M.D.; White, C.J.; Kelly, L. Operational and emerging capabilities for surface water flood forecasting. WIREs Water 2021, 8, e1517. [Google Scholar] [CrossRef]
- Ogale, S.; Srivastava, S. Modelling and Short Term Forecasting of Flash Floods in an Urban Environment. In Proceedings of the 2019 National Conference on Communications (NCC), Bangalore, India, 20–23 February 2019; Available online: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8732193 (accessed on 2 July 2021).
- Bucherie, A.; Werner, M.; Homberg, M.; Tembo, S. Flash Flood warning in context: Combining local knowledge and large-scale hydro-meteorological patterns. Preprint. Nat. Hazards Earth Syst. Sci. 2021. [Google Scholar] [CrossRef]
- Javelle, P.; Saint-Martin, C.; Garandeau, L.; Janet, B. Flash Flood Warnings: Recent Achievements in France with the National Vigicrues Flash System. Contributing Paper to GAR 2019. Available online: https://www.undrr.org/publication/flash-flood-warnings-recent-achievements-france-national-vigicrues-flash-system (accessed on 2 July 2021).
- Flack, D.L.; Skinner, C.J.; Hawkness-Smith, L.; O’Donnell, G.; Thompson, R.J.; Waller, J.A.; Chen, A.S.; Moloney, J.; Largeron, C.; Xia, X.; et al. Recommendations for improving integration in National end-to-end Flood Forecasting Systems: An overview of the FFIR (flooding from intense rainfall) Programme. Water 2019, 11, 725. [Google Scholar] [CrossRef] [Green Version]
- Tucker, G.; Bras, R. Hillslope processes, drainage density, and landscape morphology. Water Resour. Res. 1998, 34, 2751–2764. [Google Scholar] [CrossRef] [Green Version]
- Seibert, J.; McDonnell, J. On the dialog between experimentalist and modeler in catchment hydrology: Use of soft data for multicriteria model calibration. Water Resour. Res. 2002, 38, 23-1–23-14. [Google Scholar] [CrossRef]
- Germann, U.; Galli, G.; Boscacci, M.; Bolliger, M. Radar precipitation measurement in a mountainous region. Q. J. R. Meteorol. Soc. 2006, 132, 1669–1692. [Google Scholar] [CrossRef]
- Use of Radio Spectrum for Meteorology: Weather, Water and Climate Monitoring and Prediction; WMO-ITU: Geneva, Switzerland, 2017; ISBN 978-92-61-24876-5.
- CHMI Úspěšná Realizace Projektu Upgrade Měřicích Systémů pro Předpovědní a Výstražnou Službu: Tisková Zpráva. Available online: https://www.chmi.cz/files/portal/docs/ruzne/Radary/radary.pdf (accessed on 26 July 2021).
- Creutin, J.; Borga, M. Radar hydrology modifies the monitoring of flash-flood hazard. Hydrol. Process. 2003, 17, 1453–1456. [Google Scholar] [CrossRef]
- Mishra, A.; Coulibaly, P. Developments in hydrometric network design: A review. Rev. Geophys. 2009, 47, RG2001. [Google Scholar] [CrossRef]
- Sieck, L.; Burges, S.; Steiner, M. Challenges in obtaining reliable measurements of point rainfall. Water Resour. Res. 2007, 43, W01420. [Google Scholar] [CrossRef]
- Villarini, G.; Mandapaka, P.; Krajewski, W.; Moore, R. Rainfall and sampling uncertainties: A rain gauge perspective. J. Geophys. Res. 2008, 113, D11102. [Google Scholar] [CrossRef]
- Daly, C.; Slater, M.; Roberti, J.; Laseter, S.; Swift, L. High-resolution precipitation mapping in a mountainous watershed: Ground truth for evaluating uncertainty in a national precipitation dataset. Int. J. Climatol. 2017, 37, 124–137. [Google Scholar] [CrossRef] [Green Version]
- Norbiato, D.; Borga, M.; Sangati, M.; Zanon, F. Regional frequency analysis of extreme precipitation in the eastern Italian Alps and the August 2929 August, 2003 flash flood. J. Hydrol. 2007, 345, 149–166. [Google Scholar] [CrossRef]
- Schilling, W. Rainfall data for urban hydrology: What do we need? Atmos. Res. 1991, 27, 5–21. [Google Scholar] [CrossRef]
- Liguori, S.; Rico-Ramirez, M.A.; Schellart, A.N.A.; Saul, A.J. Using probabilistic radar rainfall nowcasts and NWP forecasts for flow prediction in urban catchments. Atmos. Res. 2012, 103, 80–95. [Google Scholar] [CrossRef]
- Saltikoff, E.; Haase, G.; Delobbe, L.; Gaussiat, N.; Martet, M.; Idziorek, D.; Leijnse, H.; Novák, P.; Lukach, M.; Stephan, K. OPERA the Radar Project. Atmosphere 2019, 10, 320. [Google Scholar] [CrossRef] [Green Version]
- Hong, Y.; Gourley, J.J. Radar Hydrology; CRC Press: Boca Raton, FL, USA, 2014; ISBN 9781315216416. [Google Scholar]
- Chalkias, C.; Stathopoulos, N.; Kalogeropoulos, K.; Karymbalis, E. Applied Hydrological Modeling with the Use of Geoinformatics: Theory and Practice. In Empirical Modeling and Its Applications; Habib, M., Ed.; Northern University of Malaysia: Sintok, Malaysia, 2016; ISBN 978-953-51-2493-1. [Google Scholar]
- Novak, P.; Kráčmar, J. Vertical Reflectivity Profiles in the Czech Weather Radar Network; Czech Hydro-Meteorological Institute, Radar Department: Praha, Czech Republic, 2004; 20p, Available online: https://www.researchgate.net/publication/267771562_Vertical_Reflectivity_Profiles_in_the_Czech_Weather_Radar_Network (accessed on 2 July 2021).
- Uijlenhoet, R.; Pomeroy, J.H. Raindrop size distributions and radar reflectivity: Rain rate relationships for radar hydrology. Hydrol. Earth Syst. Sci. 2001, 5, 615–628. [Google Scholar] [CrossRef] [Green Version]
- Collier, C. Applications of Weather Radar Systems: A Guide to Uses of Radar Data in Meteorology and Hydrology, 2nd ed.; Wiley: Hoboken, NJ, USA, 1996; ISBN 9780745805108. [Google Scholar]
- Austin, P. Relation between Measured Radar Reflectivity and Surface Rainfall. Mon. Weather Rev. 1987, 115, 1053–1070. [Google Scholar] [CrossRef] [Green Version]
- Gabella, M.; Amitai, E. Radar rainfall estimates in an alpine environment using different gage-adjustment techniques. Phys. Chem. Earth Part B Hydrol. Ocean. Atmos. 2000, 25, 927–931. [Google Scholar] [CrossRef]
- Piccolo, F.; Chirico, G. Sampling errors in rainfall measurements by weather radar. Adv. Geosci. 2005, 2, 151–155. [Google Scholar] [CrossRef] [Green Version]
- Hapuarachchi, H.; Wang, Q.; Pagano, T. A review of advances in flash flood forecasting. Hydrol. Process. 2011, 25, 2771–2784. [Google Scholar] [CrossRef]
- Sebastianelli, S.; Russo, F.; Napolitano, F.; Baldini, L. On precipitation measurements collected by a weather radar and a rain gauge network. Nat. Hazards Earth Syst. Sci. 2013, 13, 605–623. [Google Scholar] [CrossRef] [Green Version]
- Mazzetti, C.; Todini, E. Combining Raingages and Radar Precipitation Measurements Using a Bayesian Approach. In geoENV IV—Geostatistics for Environmental Applications; Sanchez-Vila, X., Carrera, J., Gómez-Hernández, J., Eds.; Quantitative Geology and Geostatistics; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2004; pp. 401–412. ISBN 1-4020-2007-4. [Google Scholar]
- Mazzetti, C.; Todini, E. Combining weather radar and raingauge data for hydrologic applications. In Flood Risk Management: Research and Practice; Samuels, P., Huntington, S., Allsop, W., Harrop, J., Eds.; CRC Press: Boca Raton, FL, USA, 2008; pp. 1345–1348. ISBN 978-0-415-48507-4. [Google Scholar]
- Sinclair, S.; Pegram, G. Combining radar and rain gauge rainfall estimates using conditional merging. Atmos. Sci. Lett. 2005, 6, 19–22. [Google Scholar] [CrossRef]
- Tabary, P. The New French Operational Radar Rainfall Product. Part I: Methodology. Weather Forecast. 2007, 22, 393–408. [Google Scholar] [CrossRef]
- Tabary, P.; Desplats, J.; Do Khac, K.; Eideliman, F.; Gueguen, C.; Heinrich, J. The New French Operational Radar Rainfall Product. Part II: Validation. Weather Forecast. 2007, 22, 409–427. [Google Scholar] [CrossRef]
- Vignal, B.; Galli, G.; Joss, J.; Germann, U. Three Methods to Determine Profiles of Reflectivity from Volumetric Radar Data to Correct Precipitation Estimates. J. Appl. Meteorol. 2000, 39, 1715–1726. [Google Scholar] [CrossRef]
- Struktura DIBAVOD. DIBAVOD 2020. Available online: http://www.dibavod.cz/27/struktura-dibavod.html (accessed on 19 July 2020).
- Sherman, L. Streamflow from rainfall by the unit-graph method. Eng. News Rec. 1932, 108, 501–505. [Google Scholar]
- Sherman, L. The hydraulics of surface runoff. Civ. Eng. 1940, 10, 165–166. [Google Scholar]
- Chapter 16 Hydrographs. In National Engineering Handbook: Part 630 Hydrology; United States Department of Agriculture, Natural Resources Conservation Service: Washington, DC, USA, 2007; pp. 1–50.
- Pilgrim, D. Travel times and nonlinearity of flood runoff from tracer measurements on a small watershed. Water Resour. Res. 1976, 12, 487–496. [Google Scholar] [CrossRef]
- Olivera, F.; Maidment, D. Geographic Information Systems (GIS)-based spatially distributed model for runoff routing. Water Resour. Res. 1999, 35, 1155–1164. [Google Scholar] [CrossRef] [Green Version]
- Beven, K.; Kirby, M. A physically based, variable contributing area model of basin hydrology / Un modèle à base physique de zone d’appel variable de l’hydrologie du bassin versant. Hydrol. Sci. Bull. 1979, 24, 43–69. [Google Scholar] [CrossRef] [Green Version]
- Indikátor Přívalových Povodní (Flash Flood Guidance). Hlásná a Předpovědní Povodňová Služba. Available online: https://hydro.chmi.cz/hpps/main_rain.php?mt=ffg (accessed on 26 July 2021).
- Šercl, P.; Řehánek, T.; Kaleta, S.; Winkler, I.; Vlasák, T.; Lett, P.; Šreiber, J.; Elleder, L. Vyhodnocení Povodní v Červnu a Červenci 2009 na Území České Republiky: Hydrologický Průběh Povodní, 1st ed.; CHMI: Praha, Czech Republic, 2009; Available online: Voda.chmi.cz/pov09/doc/03.pdf (accessed on 19 July 2020).
- Šercl, P.; Janál, P.; Daňhelka, J. Možnosti Predikce Přívalových Povodní v Podmínkách České Republiky: Possibilities of Prediction of Flash Floods in the Conditions of the Czech Republic, 1st ed.; Český Hydrometeorologický Ústav: Praha, Czech Republic, 2015; ISBN 978-80-87577-27-1. [Google Scholar]
- Costa, J. Hydraulics and basin morphometry of the largest flash floods in the conterminous United States. J. Hydrol. 1987, 93, 313–338. [Google Scholar] [CrossRef]
- Benson, M. Factors Affecting the Occurrence of Floods in the Southwest: Flood Hydrology, 1st ed.; United Statec Government Printing Office: Washington, DC, USA, 1964.
- Rapant, P.; Inspektor, T.; Kolejka, J.; Batelkova, K.; Zapletalova, J.; Kirchner, K.; Krejci, T. Early warning of flash floods based on the weather radar. In Proceedings of the Proceedings of the 2015 16th International Carpathian Control Conference (ICCC), Szilvasvarad, Hungary, 27–30 May 2015; pp. 426–430. [Google Scholar]
- Rapant, P.; Lazecký, M.; Kolejka, J.; Orlíková, L. Nonparametric prediction of the onset of regional floods: Floods in north-western Bohemia, Czech Republic, 2010. WIT Trans. Ecol. Environ. 2015, 200, 111–122. [Google Scholar] [CrossRef]
- Rapant, P.; Kolejka, J. Dynamical Flash Flood Risk Forecast. In Dynamics in GIscience; Ivan, I., Horák, J., Inspektor, T., Eds.; Lecture Notes in Geoinformation and Cartography; Springer International Publishing: Cham, Switzerland, 2018; pp. 373–381. ISBN 978-3-319-61296-6. [Google Scholar]
- Rapant, P.; Kolejka, J.; Inspektor, T. Prediction of Flash Flood Risk using Weather Radar Data. Životné Prostredie 2016, 50, 162–166. [Google Scholar]
- Tsai, M.; Sung, E.; Kang, S. Data-driven Flood Analysis and Decision Support. Nat. Hazards Earth Syst. Sci. 2016, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Sene, K.; Tilford, K. Review of Transfer Function Modelling for Fluvial Flood Forecasting. R&D Technical Report W5C-013/6/TR; Defra/Environment Agency: Bristol, UK, 2004. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/290652/scho0205bioz-e-e.pdf (accessed on 2 July 2021).
- Smith, P.; Panziera, L.; Beven, K. Forecasting flash floods using data-based mechanistic models and NORA radar rainfall forecasts. Hydrol. Sci. J. 2014, 59, 1403–1417. [Google Scholar] [CrossRef] [Green Version]
- Javelle, P.; Demargne, J.; Defrance, D.; Pansu, J.; Arnaud, P. Evaluating flash-flood warnings at ungauged locations using post-eventsurveys: A case study with the AIGA warning system. Hydrol. Sci. J. 2014, 59, 1390–1402. [Google Scholar] [CrossRef] [Green Version]
- Lincoln, S. Analysis of the 15 June 2013 isolated extreme rainfall event in Springfield, Missouri. J. Oper. Meteorol. 2014, 2, 233–245. [Google Scholar] [CrossRef]
- Llort, X.; Sánchez-Diezma, R.; Rodríguez, A.; Sancho, D.; Berenguer, M.; Sempre-Torres, D. FloodAlert: A Simplified Radar-Based EWS for Urban Flood Warning; CUNY Academic Works: New York, NY, USA, 2014; pp. 1–10. [Google Scholar]
- Zhai, X.; Guo, L.; Liu, R.; Zhang, Y. Rainfall threshold determination for flash flood warning in mountainous catchments with consideration of antecedent soil moisture and rainfall pattern. Nat. Hazards 2018, 94, 605–625. [Google Scholar] [CrossRef]
- Beven, K.J. Rainfall-Runoff Modelling: The Primer, 2nd ed.; John Wiley & Sons, Ltd.: West Sussex, UK, 2012; 488p, ISBN 978-0-470-71459-1. [Google Scholar]
- Javelle, P.; Organde, D.; Demargne, J.; Saint-Martin, C.; De Saint-Aubin, C.; Garandeau, L.; Janet, B. Setting up a French national flash flood warning system for ungauged catchments based on the AIGA method. E3S Web Conf. 2016, 7, 18010. [Google Scholar] [CrossRef]
- Schleiss, M.; Olsson, J.; Berg, P.; Niemi, T.; Kokkonen, T.; Thorndahl, S.; Nielsen, R.; Ellerbæk Nielsen, J.; Bozhinova, D.; Pulkkinen, S. The accuracy of weather radar in heavy rain: A comparative study for Denmark, the Netherlands, Finland and Sweden. Hydrol. Earth Syst. Sci. 2020, 24, 3157–3188. [Google Scholar] [CrossRef]
Dataset | Spatial Resolution | Scale | Time Resolution | Publication Date | Advantages | Limitations |
---|---|---|---|---|---|---|
Hydrological division | - | 1:10,000 | - | 4 September 2007 | guaranteed, free of charge | - |
Stream network | --- | 1:10,000 | - | 5 June 2006 | guaranteed, free of charge | - |
Weather radar data | 1 × 1 km | - | 5 min | continuously | guaranteed, free of charge | - |
Saturation indicator | 1 × 1 km | - | 24 h (from April to October) | 8:00 of the respective day | guaranteed, free of charge | - |
Data from hydrometric stations | - | - | 0.5/1.0 h | continuously | guaranteed, free of charge | - |
Data of flood events from social media on the Internet | - | 1:10,000 | min/h | continuously | accessible, free of charge | not guaranteed |
Rainfall Episode | Hydrometric Station | Catchment Area [km2] | Range of Data | Provider |
---|---|---|---|---|
24 June 2009 | Bartošovice (Odra River) Petřvald (Lubina River) Brušperk (Ondřejnice River) Kozlovice (Ondřejnice River) | 913.2 165.2 (42.6) (21.1) | 24 June 2009 16:00 to 25 June 2009 02:00 step 0.5 h | Odra River Basin Management Company, state enterprise |
7 August 2010 | Mšeno (Mšenský Stream) Proseč n. Nisou (Lužická Nisa River) Harcov (Harcovský Stream) Rudolfov (Černá Nisa River) Fojtka (Fojtka River) Mníšek (Jeřice River) Mlýnice (Albrechtický Stream) | (4.1) 53.7 (15.2) (16.3) (2.5) (30.1) (6.3) | 7 August 2010 00:00 to 8 August 2010 00:00 step 1 h | Labe River Basin Management Company, state enterprise |
Stráž nad Nisou (Černá Nisa River) Hrádek nad Nisou (Lužická Nisa River) Chrastava (Jeřice River) Smědava I. (Bílá Smědá River) Bílý Potok (Smědá River) Višňová (Smědá River) Předlánce (Smědá River) Frýdlant v Čechách (Řásnice River) | (25.6) 355.3 (64.5) (4.5) 26.3 (228.1) 244.0 30.6 | 7 August 2010 00:00 to 8 August 2010 16:00 step 1 h | Czech Hydro-Meteorological Institute |
Shift [h] | 0 | 0.5 | 1.0 | 1.5 | 2.0 | 2.5 | 3.0 |
Cross-correlation [-] | 0.617 | 0.725 | 0.869 | 0.966 | 0.988 | 0.948 | 0.839 |
Shift [h] | 0 | 0.5 | 1.0 | 1.5 | 2.0 | 2.5 | 3.0 |
Cross-correlation [-] | 0.698 | 0.829 | 0.927 | 0.970 | 0.961 | 0.867 | 0.625 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rapant, P.; Kolejka, J. Dynamic Pluvial Flash Flooding Hazard Forecast Using Weather Radar Data. Remote Sens. 2021, 13, 2943. https://doi.org/10.3390/rs13152943
Rapant P, Kolejka J. Dynamic Pluvial Flash Flooding Hazard Forecast Using Weather Radar Data. Remote Sensing. 2021; 13(15):2943. https://doi.org/10.3390/rs13152943
Chicago/Turabian StyleRapant, Petr, and Jaromír Kolejka. 2021. "Dynamic Pluvial Flash Flooding Hazard Forecast Using Weather Radar Data" Remote Sensing 13, no. 15: 2943. https://doi.org/10.3390/rs13152943
APA StyleRapant, P., & Kolejka, J. (2021). Dynamic Pluvial Flash Flooding Hazard Forecast Using Weather Radar Data. Remote Sensing, 13(15), 2943. https://doi.org/10.3390/rs13152943