A Building Roof Identification CNN Based on Interior-Edge-Adjacency Features Using Hyperspectral Imagery
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. Input of BRI-CNN
2.3. Main Structure of a Conventional CNN
2.4. Structure of BRI-CNN
2.5. Optimization Function
2.6. Evaluation Method
3. Results and Discussion
3.1. Size of Convolutional Kernels
3.2. Number of Convolutional Kernels
3.3. Number of Convolutional Layers
3.4. Number of Fully Connected Layers and Neurons
3.5. Performance on Public Data Sets
3.6. Comparisons with Other Models
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, R.; Nie, F.; Yu, W. Fast Spectral Clustering with Anchor Graph for Large Hyperspectral Images. IEEE Geosci. Remote Sens. Lett. 2017, 14, 2003–2007. [Google Scholar] [CrossRef]
- Wentz, E.A.; Anderson, S.; Fragkias, M.; Netzband, M.; Mesev, V.; Myint, S.W.; Quattrochi, D.; Rahman, A.; Seto, K.C. Supporting Global Environmental Change Research: A Review of Trends and Knowledge Gaps in Urban Remote Sensing. Remote Sens. 2014, 6, 3879–3905. [Google Scholar] [CrossRef] [Green Version]
- Ye, C.M.; Cui, P.; Pirasteh, S.; Li, J.; Li, Y. Experimental approach for identifying building surface materials based on hyperspectral remote sensing imagery. J. Zhejiang Univ. Sci. A 2017, 18, 984–990. [Google Scholar] [CrossRef]
- Lu, B.; Dao, P.D.; Liu, J.; He, Y.; Shang, J. Recent advances of hyperspectral imaging technology and applications in agriculture. Remote Sens. 2020, 12, 2659. [Google Scholar] [CrossRef]
- Pontius, J.; Martin, M.; Plourde, L.; Hallett, R. Ash decline assessment in emerald ash borer-infested regions: A test of tree-level, hyperspectral technologies. Remote Sens. Environ. 2008, 112, 2665–2676. [Google Scholar] [CrossRef]
- Prasad, S.; Bruce, L.M. Limitations of Principal Components Analysis for Hyperspectral Target Recognition. IEEE Geosci. Remote Sens. Lett. 2008, 5, 625–629. [Google Scholar] [CrossRef]
- Li, J.; Bioucas-Dias, J.M.; Plaza, A. Hyperspectral Image Segmentation Using a New Bayesian Approach With Active Learning. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3947–3960. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Prasad, S.; Fowler, J.E.; Bruce, L.M. Locality-Preserving Dimensionality Reduction and Classification for Hyperspectral Image Analysis. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1185–1198. [Google Scholar] [CrossRef] [Green Version]
- Melgani, F.; Bruzzone, L. Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1778–1790. [Google Scholar] [CrossRef] [Green Version]
- Merenyi, E.; Farrand, W.H.; Taranik, J.V.; Minor, T.B. Classification of hyperspectral imagery with neural networks: Comparison to conventional tools. Eurasip. J. Adv. Signal Process. 2014, 2014, 71. [Google Scholar] [CrossRef] [Green Version]
- Bioucas-Dias, J.M.; Plaza, A.; Dobigeon, N.; Parente, M.; Du, Q.; Gader, P.; Chanussot, J. Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 354–379. [Google Scholar] [CrossRef] [Green Version]
- Bo, D.; Zhang, L. A Discriminative Metric Learning Based Anomaly Detection Method. IEEE Trans. Geosci. Remote Sens. 2014, 52, 6844–6857. [Google Scholar]
- Gu, Y.; Chanussot, J.; Jia, X.; Benediktsson, J.A. Multiple Kernel Learning for Hyperspectral Image Classification: A Review. IEEE Trans. Geosci. Remote Sens. 2017, 55, 6547–6565. [Google Scholar] [CrossRef]
- Sigurdsson, J.; Úlfarsson, M.Ö.; Sveinsson, J.R. Semi-Supervised Hyperspectral Unmixing. In Proceedings of the 2014 IEEE International Geoscience and Remote Sensing Symposium, Quebec, QC, Canada, 13–18 July 2014. [Google Scholar]
- Wang, T.; Zhang, H.; Hui, L.; Jia, X. A Sparse Representation Method for a Priori Target Signature Optimization in Hyperspectral Target Detection. IEEE Access 2017, 6, 3408–3424. [Google Scholar] [CrossRef]
- Fan, Z.; Bo, D.; Zhang, L.; Zhang, L. Hierarchical feature learning with dropout k -means for hyperspectral image classification. Neurocomputing 2016, 187, 75–82. [Google Scholar]
- Haut, J.M.; Paoletti, M.; Plaza, J.; Plaza, A. Cloud implementation of the K-means algorithm for hyperspectral image analysis. J. Supercomput. 2017, 73, 1–16. [Google Scholar] [CrossRef]
- Lv, X.; Ming, D.; Chen, Y.Y.; Wang, M. Very high resolution remote sensing image classification with SEEDS-CNN and scale effect analysis for superpixel CNN classification. Int. J. Remote Sens. 2019, 40, 506–531. [Google Scholar] [CrossRef]
- Huang, G.; Liu, Z.; Weinberger, K. Densely Connected Convolutional Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Sabour, S.; Frosst, N.; Hinton, G. Dynamic Routing Between Capsules. arXiv 2017, arXiv:1710.09829. [Google Scholar]
- Cao, J.; Zhao, C.; Wang, B. Deep Convolutional networks with superpixel segmentation for hyperspectral image classification. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016. [Google Scholar]
- Yu, S.; Jia, S.; Xu, C. Convolutional neural networks for hyperspectral image classification. Neurocomputing 2016, 219, 88–98. [Google Scholar] [CrossRef]
- Zhao, W.; Du, S. Learning multiscale and deep representations for classifying remotely sensed imagery. ISPRS Photogra. Remote Sens. 2016, 113, 155–165. [Google Scholar] [CrossRef]
- Shi, C.; Pun, C.M. Superpixel-based 3D Deep Neural Networks for Hyperspectral Image Classification. Pattern Recogn. 2017, 74, S0031320317303515. [Google Scholar] [CrossRef]
- Nogueira, K.; Penatti, O.A.B.; Santos, J.A. Dos Towards Better Exploiting Convolutional Neural Networks for Remote Sensing Scene Classification. Pattern Recogn. 2016, 61, 539–556. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Zhao, X.; Jia, X. Spectral–Spatial Classification of Hyperspectral Data Based on Deep Belief Network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2381–2392. [Google Scholar] [CrossRef]
- Paoletti, M.; Haut, J.; Plaza, J.; Plaza, A. Deep\&Dense Convolutional Neural Network for Hyperspectral Image Classification. Remote Sens. 2018, 10, 1454. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Xiang, S.; Liu, C.-L.; Pan, C.-H. Vehicle Detection in Satellite Images by Hybrid Deep Convolutional Neural Networks. Geosci. Remote Sens. Lett. IEEE 2014, 11, 1797–1801. [Google Scholar] [CrossRef]
- Zhong, Z.; Li, J.; Luo, Z.; Chapman, M. Spectral-Spatial Residual Network for Hyperspectral Image Classification: A 3-D Deep Learning Framework. IEEE Trans. Geosci. Remote Sens. 2018, 56, 847–858. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; IEEE Computer Society: Los Alamitos, CA, USA, 2016; pp. 770–778. [Google Scholar]
- Gao, Q.; Lim, S.; Jia, X. Hyperspectral Image Classification Using Convolutional Neural Networks and Multiple Feature Learning. Remote Sens. 2018, 10, 299. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Xie, W.; Li, H. Hyperspectral image reconstruction by deep convolutional neural network for classification. Pattern Recogn. 2017, 63, 371–383. [Google Scholar] [CrossRef]
- Chen, Y.; Jiang, H.; Li, C.; Jia, X.; Ghamisi, P. Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6232–6251. [Google Scholar] [CrossRef] [Green Version]
- Paoletti, M.E.; Haut, J.M.; Fernandez-Beltran, R.; Plaza, J.; Plaza, A.; Li, J.; Pla, F. Capsule Networks for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2018, 57, 2145–2160. [Google Scholar] [CrossRef]
- Hotelling, H. Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 1933, 24, 417–441, 498–520. [Google Scholar] [CrossRef]
- Glorot, X.; Bordes, A.; Bengio, Y. Deep Sparse Rectifier Neural Networks. In Proceedings of the 14th International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, FL, USA, 11–13 April 2011; Volume 15, pp. 315–323. [Google Scholar]
- Kolen, J.F.; Kremer, S.C. Gradient Flow in Recurrent Nets: The Difficulty of Learning LongTerm Dependencies. In A Field Guide to Dynamical Recurrent Networks; IEEE; Wiley-IEEE Press: Piscataqay, NJ, USA, 2001; ISBN 9780470544037. [Google Scholar]
- Bishop, C.M. Pattern Recognition and Machine Learning (Information Science and Statistics); Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer Vision. In Proceedings of the CVPR, Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Lin, M.; Chen, Q.; Yan, S. Network In Network. arXiv 2013, arXiv:1312.4400. [Google Scholar]
- Cohen, J. A Coefficient of Agreement for Nominal Scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
No. | Class | Training | Testing | Total |
---|---|---|---|---|
1 | blue colour steel | 241 | 242 | 483 |
2 | red tile | 62 | 63 | 125 |
3 | white colour steel | 323 | 324 | 647 |
4 | red colour steel | 92 | 92 | 184 |
5 | polyethylene | 39 | 39 | 78 |
6 | cement concrete | 113 | 114 | 227 |
7 | Ceram | 105 | 105 | 210 |
8 | cement | 275 | 276 | 551 |
9 | reinforced concrete | 40 | 40 | 80 |
10 | others | 4749 | 4749 | 9498 |
total | 6039 | 6044 | 12,083 |
Input Layer with the Size of 9 × 9 Patches | |||||
---|---|---|---|---|---|
Convolutional layers | Number of kernels | Stride | Pooling | ||
5* | 3* | 1* | |||
22 22 | 128 | 64 | 1 | No | |
128 | |||||
128 | |||||
Number of neurons | Dropout | BatchNorm. | |||
Fully-connected layers | 4000 1000 | Yes | Yes | ||
Output layer activated by Softmax |
Kernel Size | Training Accuracy (%) | Testing Accuracy (%) | PA (%) | FNR (%) | FPR (%) | Training Loss | Testing Loss |
---|---|---|---|---|---|---|---|
5 × 5 | 99.49 ± 0.31 | 99.34 ± 0.35 | 97.53 | 1.91 | 0.55 | 0.0323 | 0.0327 |
3 × 3 | 99.31 ± 0.27 | 99.23 ± 0.32 | 88.55 | 1.39 | 10.04 | 0.0480 | 0.0461 |
2 × 2 | 99.42 ± 0.22 | 99.41 ± 0.22 | 82.22 | 1.67 | 16.10 | 0.0629 | 0.0632 |
Kernel Number | 32 | 128 |
---|---|---|
Training accuracy (%) | 99.40 ± 0.21 | 99.47 ± 0.27 |
Testing accuracy (%) | 99.41 ± 0.25 | 99.43 ± 0.32 |
Predicted accuracy (%) | 90.42 | 97.73 |
False negative rate (%) | 7.76 | 1.01 |
False positive rate (%) | 1.81 | 1.25 |
Training loss | 0.0295 | 0.0178 |
Testing loss | 0.0306 | 0.0191 |
FC Structures | PA (%) | FNR (%) | FPR (%) |
---|---|---|---|
8000, 4000, 1000 | 84.53 | 0.72 | 14.74 |
4000, 1000, 200 | 93.22 | 0.73 | 6.04 |
6000, 2000 | 95.91 | 0.86 | 3.22 |
4000, 1000 | 97.44 | 0.93 | 1.62 |
Kernel Size | 1 × 1 | 2 × 2 | 3 × 3 | 4 × 4 | 5 × 5 | 7 × 7 |
---|---|---|---|---|---|---|
AA (%) | 87.38 | 86.80 | 94.08 | 85.58 | 98.83 | 96.67 |
OA (%) | 96.02 | 95.85 | 96.83 | 97.56 | 98.84 | 99.01 |
0.9340 | 0.9295 | 0.9462 | 0.9597 | 0.9763 | 0.9840 |
Model | #32 3* | #64 3* | #256 3* | #16 1* | #32 1* | #128 1* | #256 1* |
---|---|---|---|---|---|---|---|
AA (%) | 97.01 | 98.91 | 99.21 | 98.07 | 97.59 | 99.26 | 99.23 |
OA (%) | 98.99 | 99.31 | 99.60 | 99.29 | 99.40 | 99.63 | 99.55 |
0.9834 | 0.9887 | 0.9930 | 0.9913 | 0.9916 | 0.9933 | 0.9922 |
Class | PA (%) of | |||||
---|---|---|---|---|---|---|
BRI-CNN | SSRN | [33] | [32] | [31] | [34] | |
1 | 97.83 | 97.82 | 89.58 | 100 | 97.83 | 96.96 |
2 | 99.51 | 99.17 | 85.68 | 94.94 | 94.82 | 99.15 |
3 | 99.88 | 99.53 | 87.36 | 96.65 | 97.23 | 99.16 |
4 | 100 | 97.79 | 93.33 | 99.06 | 99.58 | 99.92 |
5 | 99.17 | 99.24 | 96.88 | 98.15 | 99.59 | 99.75 |
6 | 99.73 | 99.51 | 98.99 | 98.93 | 99.59 | 99.86 |
7 | 100 | 98.70 | 91.67 | 96.00 | 100 | 98.57 |
8 | 100 | 99.85 | 99.49 | 100 | 100 | 100 |
9 | 95.00 | 98.50 | 100 | 100 | 100 | 100 |
10 | 98.97 | 98.74 | 90.35 | 97.37 | 93.93 | 98.85 |
11 | 99.67 | 99.30 | 77.90 | 98.91 | 97.23 | 99.69 |
12 | 99.16 | 98.43 | 95.82 | 97.93 | 98.99 | 98.45 |
13 | 100 | 100 | 98.59 | 98.91 | 100 | 100 |
14 | 99.92 | 99.31 | 98.55 | 100 | 99.76 | 99.70 |
15 | 100 | 99.20 | 87.41 | 96.84 | 97.93 | 99.64 |
16 | 96.77 | 97.82 | 98.06 | 90.36 | 98.92 | 98.78 |
AA | 99.11 | 98.93 | 93.12 | 97.75 | 98.46 | 99.45 |
OA | 99.58 | 99.19 | 87.81 | 97.97 | 97.57 | 99.34 |
0.9930 | 0.9907 | 0.8530 | 0.9768 | 0.9723 | 0.9937 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, C.; Li, H.; Li, C.; Liu, X.; Li, Y.; Li, J.; Gonçalves, W.N.; Junior, J.M. A Building Roof Identification CNN Based on Interior-Edge-Adjacency Features Using Hyperspectral Imagery. Remote Sens. 2021, 13, 2927. https://doi.org/10.3390/rs13152927
Ye C, Li H, Li C, Liu X, Li Y, Li J, Gonçalves WN, Junior JM. A Building Roof Identification CNN Based on Interior-Edge-Adjacency Features Using Hyperspectral Imagery. Remote Sensing. 2021; 13(15):2927. https://doi.org/10.3390/rs13152927
Chicago/Turabian StyleYe, Chengming, Hongfu Li, Chunming Li, Xin Liu, Yao Li, Jonathan Li, Wesley Nunes Gonçalves, and José Marcato Junior. 2021. "A Building Roof Identification CNN Based on Interior-Edge-Adjacency Features Using Hyperspectral Imagery" Remote Sensing 13, no. 15: 2927. https://doi.org/10.3390/rs13152927
APA StyleYe, C., Li, H., Li, C., Liu, X., Li, Y., Li, J., Gonçalves, W. N., & Junior, J. M. (2021). A Building Roof Identification CNN Based on Interior-Edge-Adjacency Features Using Hyperspectral Imagery. Remote Sensing, 13(15), 2927. https://doi.org/10.3390/rs13152927