Three- and Four-Dimensional Topographic Measurement and Validation
Abstract
:1. Introduction
- ○
- Validation of elevation and deformation maps produced by SAR Interferometry.
- ○
- Handling temporal effects on interferometric and tomographic analyses of natural scenarios.
- ○
- Near-real-time target motion estimation, considering efficient algorithms to allow for the digestion of new acquisitions and for a change in the parameterization of the estimation problem.
1.1. Subproject 1: Topographic Mapping—Validation (TMV)
1.2. Subproject 2: Multi-Baseline SAR Processing for 3D/4D Reconstruction (MBSAR)
1.3. Subproject 3: Towards Near-Real-Time InSAR Estimation
2. Project, Subprojects, EO, and Other Data Utilization
2.1. List of Subprojects, Teaming, and Academic Exchanges
2.1.1. Topographic Mapping—Validation (TMV)
2.1.2. Multi-Baseline SAR Processing for 3D/4D Reconstruction (MBSAR)
2.1.3. Towards Near-Real-Time InSAR Deformation Estimation
2.2. Description and Summary Table of EO and Other Data Utilized
- ○
- TropiSCAT: TropiSCAT was implemented in 2011 as a P-Band ground-based campaign at tropical forest in Paracou, in French Guiana, with the aim of continuously monitoring the vertical structure of a tropical forests for a time span of over one year [38].
- ○
- BioSAR 1: BioSAR 1 is an airborne campaign implemented in 2007 at the semi-boreal forest in Remningstorp, Southern Sweden. SAR P-Band data provide tomographic imaging capabilities and acquisitions collected over a time span of two months [32].
- ○
- AfriSAR: AfriSAR is an airborne campaign implemented in 2015 at different tropical forest sites in Gabon. The P-Band data used for this project are those acquired at the site of La Lopé, which provide tomographic imaging capabilities and acquisitions collected over a time span of 9 days. The data are complemented by Lidar-derived maps of terrain topography and forest height [33].
- ○
- AlpTomoSAR: AlpTomoSAR is an L-Band airborne campaign implemented in 2014 to provide 3D imaging of the interior of the Mittelbergferner glacier, in Austrian Alps [65].
3. Subprojects’ Research and Approach
3.1. Topographic Mapping—Validation (TMV)
3.1.1. Research Aims
- Improvements in DEM generation with amplitude-based methods.
- Improving the absolute positioning accuracy with SAR geodetic approaches.
- Using PSInSAR and similar methods and extending the usability of PSInSAR for bi-static and mono-static pursuit stacks.
3.1.2. Research Approach
StereoSAR with Semi-Global Matching
Absolute Positioning of Point-Targets with SAR Geodesy
PSInSAR for Mono-Static Pursuit Data
3.2. Multi-Baseline SAR Processing for 3D/4D Reconstruction (MBSAR)
3.2.1. Research Aims
- ○
- How to increase the number and spatial density of measurement points in natural environment by combining persistent scatterers (PSs) and DSs?
- ○
- How to design a robust algorithm to identify DSs from small data stacks?
- ○
- To what extent the improvement in deformation measurement can be achieved by using DSs when compared with PSI and SBAS in the context of landslide detection and monitoring?
- ○
- What information on geohazards can be derived from InSAR observations over various time scales?
- ○
- What will be the impact of changing weather conditions on AGB retrieval based on BIOMASS Tomographic data and Interferometric data?
- ○
- Can we confirm that it possible to compensate for temporal decorrelation effects by exploiting suitable signal processing algorithms based on Differential Tomography?
- ○
- What is the most accurate signal processing approach for forest-height retrieval based on tomographic data?
- ○
- What are the driving requirements for very high resolution tomographic imaging of natural scenarios?
3.2.2. Research Approach
Development of Algorithms for DS Identification and Preprocessing
Improved Landslide Investigation by Joint Exploitation of DS and PS Targets
Assessment of Temporal Effects on SAR Tomography
Differential SAR Tomography for Robustness to Decorrelation
Tomographic Forest-Height Retrieval
Very High Resolution Tomographic Processing of Natural Media
3.3. Towards Near-Real-Time InSAR Estimation
3.3.1. Research Aims
- Studying quality of daily DEM generated from geosynchronous SAR;
- Estimation of 3D surface displacement based on InSAR and deformation modeling;
- Better correction of tropospheric and ionospheric effects in InSAR measurements;
- Measurement of structural dynamics based on ground-based radar systems.
3.3.2. Research Approaches
Daily DEM Generation from Geosynchronous SAR Data
Modeling and Correcting for Tropospheric and Ionospheric Effects
Estimation of 3D Surface Displacement Based on InSAR and Deformation Modeling
Dynamic Behaviors of Structures from Ground-Based Radar
4. Research Results and Conclusions
4.1. Topographic Mapping—Validation (TMV)
4.1.1. SAR Geodesy Based on Dry-Atmosphere
4.1.2. PSInSAR with Mono-Static Pursuit Data
4.2. Multi-Baseline SAR Processing for 3D/4D Reconstruction (MBSAR)
4.2.1. Results
Improved Landslide Detection and Monitoring in Danba of Southwest China
InSAR-Measured Evolution Life Cycle of the Sunkoshi Landslide in North Nepal
Assessment of Temporal Effects on SAR Tomography
Differential SAR Tomography for Decorrelation-Robust Tomography
Tomographic Forest-Height Retrieval
Very High Resolution Tomographic Processing of Natural Media
4.3. Towards Near-Real-Time InSAR Estimation
Results
5. Overall Discussion and Main Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eineder, M.; Minet, C.; Steigenberger, P.; Cong, X.; Fritz, T. Imaging Geodesy—Toward Centimeter-Level Ranging Accuracy with TerraSAR-X. IEEE Trans. Geosci. Remote Sens. 2011, 49, 661–671. [Google Scholar] [CrossRef]
- Ao, M.; Zhang, L.; Dong, Y.; Su, L.; Shi, X.; Balz, T.; Liao, M. Characterizing the evolution life cycle of the Sunkoshi landslide in Nepal with multi-source SAR data. Sci. Rep. 2020, 10, 19788. [Google Scholar] [CrossRef]
- Di Lazzaro, M.; Piemontese, M.; Capuzi, A.; Leonardi, R. COSMO-SkyMed: The Dual-Use Component of a Geospatial System for Environment and Security. In Proceedings of the 2008 IEEE Aerospace Conference, Big Sky, MT, USA, 1–8 March 2008. [Google Scholar]
- Eineder, M.; Moreira, A.; Roth, A. Ten Years of TerraSAR-X—Scientific Results. Remote Sens. 2019, 11, 364. [Google Scholar] [CrossRef] [Green Version]
- Snoeij, P.; Attema, E.; Davidson, M.; Duesmann, B.; Floury, N.; Levrini, G.; Rommen, B.; Rosich, B. Sentinel-1 radar mission: Status and performance. IEEE Aerosp. Electron. Syst. Mag. 2010, 25, 32–39. [Google Scholar] [CrossRef]
- Quegan, S.; Le Toan, T.; Chave, J.; Dall, J.; Exbrayat, J.F.; Minh, D.H.T.; Lomas, M.; D’Alessandro, M.M.; Paillou, P.; Papathanassiou, K.; et al. The European Space Agency BIOMASS mission: Measuring forest above-ground biomass from space. Remote Sens. Environ. 2019, 227, 44–60. [Google Scholar] [CrossRef] [Green Version]
- Torres, R.; Davidson, M.; Geudtner, D. Copernicus Sentinel Mission at C- and L-Band: Current Status and Future Perspectives. In Proceedings of the IGARSS 2020—2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020; pp. 4055–4058. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Seal, D. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45, RG2004. [Google Scholar] [CrossRef] [Green Version]
- Rizzoli, P.; Martone, M.; Gonzalez, C.; Wecklich, C.; Tridon, D.B.; Bräutigam, B.; Bachmann, M.; Schulze, D.; Fritz, T.; Huber, M.; et al. Generation and performance assessment of the global TanDEM-X digital elevation model. ISPRS J. Photogramm. Remote Sens. 2017, 132, 119–139. [Google Scholar] [CrossRef] [Green Version]
- Domik, G.; Leberl, F.; Cimino, J. Multiple Incidence Angle SIR-B Experiment Over Argentina: Generation of Secondary Image Products. IEEE Trans. Geosci. Remote Sens. 1986, GE-24, 492–497. [Google Scholar] [CrossRef]
- Perko, R.; Gutjahr, K.; Kruger, M.; Raggam, H.; Schardt, M. DEM-based epipolar rectification for optimized radargrammetry. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 969–972. [Google Scholar] [CrossRef]
- Wang, J.; Balz, T.; Liao, M. Absolute geolocation accuracy of high-resolution spotlight TerraSAR-X imagery—Validation in Wuhan. Geo-Spat. Inf. Sci. 2016, 19, 267–272. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Balz, T.; Zhang, L.; Perissin, D.; Liao, M. Using TSX/TDX Pursuit Monostatic SAR Stacks for PS-InSAR Analysis in Urban Areas. Remote Sens. 2019, 11, 26. [Google Scholar] [CrossRef] [Green Version]
- Cong, X.; Balss, U.; Eineder, M.; Fritz, T. Imaging Geodesy—Centimeter-Level Ranging Accuracy with TerraSAR-X: An Update. IEEE Geosci. Remote Sens. Lett. 2012, 9, 948–952. [Google Scholar] [CrossRef] [Green Version]
- Dong, Y.; Zhang, L.; Jiang, H.; Balz, T.; Liao, M. Cascaded multi-baseline interferometry with bistatic TerraSAR-X/TanDEM-X observations for DEM generation. ISPRS J. Photogramm. Remote Sens. 2021, 171, 224–237. [Google Scholar] [CrossRef]
- Dong, Y.; Zhang, L.; Balz, T.; Luo, H.; Liao, M. Radargrammetric DSM generation in mountainous areas through adaptive-window least squares matching constrained by enhanced epipolar geometry. ISPRS J. Photogramm. Remote Sens. 2018, 137, 61–72. [Google Scholar] [CrossRef]
- Qin, X.; Ding, X.; Liao, M.; Zhang, L.; Wang, C. A bridge-tailored multi-temporal DInSAR approach for remote exploration of deformation characteristics and mechanisms of complexly structured bridges. ISPRS J. Photogramm. Remote Sens. 2019, 156, 27–50. [Google Scholar] [CrossRef]
- Qin, X.; Zhang, L.; Yang, M.; Luo, H.; Liao, M.; Ding, X. Mapping surface deformation and thermal dilation of arch bridges by structure-driven multi-temporal DInSAR analysis. Remote Sens. Environ. 2018, 216, 71–90. [Google Scholar] [CrossRef]
- Qin, X.; Zhang, L.; Ding, X.; Liao, M.; Yang, M. Mapping and Characterizing Thermal Dilation of Civil Infrastructures with Multi-Temporal X-Band Synthetic Aperture Radar Interferometry. Remote Sens. 2018, 10, 941. [Google Scholar] [CrossRef] [Green Version]
- Qin, X.; Liao, M.; Zhang, L.; Yang, M. Structural Health and Stability Assessment of High-Speed Railways via Thermal Dilation Mapping with Time-Series InSAR Analysis. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 2999–3010. [Google Scholar] [CrossRef] [Green Version]
- Dong, J.; Zhang, L.; Tang, M.; Liao, M.; Xu, Q.; Gong, J.; Ao, M. Mapping landslide surface displacements with time series SAR interferometry by combining persistent and distributed scatterers: A case study of Jiaju landslide in Danba, China. Remote Sens. Environ. 2018, 205, 180–198. [Google Scholar] [CrossRef]
- Dong, J.; Liao, M.; Xu, Q.; Zhang, L.; Tang, M.; Gong, J. Detection and displacement characterization of landslides using multi-temporal satellite SAR interferometry: A case study of Danba County in the Dadu River Basin. Eng. Geol. 2018, 240, 95–109. [Google Scholar] [CrossRef]
- Dong, J.; Zhang, L.; Liao, M.; Gong, J. Improved correction of seasonal tropospheric delay in InSAR observations for landslide deformation monitoring. Remote Sens. Environ. 2019, 233, 111370. [Google Scholar] [CrossRef]
- Li, M.; Zhang, L.; Shi, X.; Liao, M.; Yang, M. Monitoring active motion of the Guobu landslide near the Laxiwa Hydropower Station in China by time-series point-like targets offset tracking. Remote Sens. Environ. 2019, 221, 80–93. [Google Scholar] [CrossRef]
- Reigber, A.; Moreira, A. First demonstration of airborne SAR tomography using multibaseline L-band data. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2142–2152. [Google Scholar] [CrossRef]
- Gini, F.; Lombardini, F.; Montanari, M. Layover solution in multibaseline SAR interferometry, Aerospace and Electronic Systems. IEEE Trans. Geosci. Remote Sens. 2002, 38, 1344–1356. [Google Scholar]
- Lombardini, F.; Montanari, M.; Gini, F. Reflectivity estimation for multibaseline interferometric radar imaging of layover extended sources. IEEE Trans. Signal Process. 2003, 51, 1508–1519. [Google Scholar] [CrossRef]
- Lombardini, F.; Pardini, M. Superresolution Differential Tomography: Experiments on Identification of Multiple Scatterers in Spaceborne SAR Data. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1117–1129. [Google Scholar] [CrossRef]
- Lombardini, F.; Viviani, F. Single-Look Light-Burden Superresolution Differential SAR Tomography. IET Electron. Lett. 2016, 52, 557–558. [Google Scholar] [CrossRef]
- Reale, D.; Fornaro, G.; Pauciullo, A.; Zhu, X.X.; Bamler, R. Tomographic Imaging and Monitoring of Buildings with Very High Resolution SAR Data. IEEE Geosci. Remote Sens. Lett. 2011, 8, 661–665. [Google Scholar] [CrossRef] [Green Version]
- Blomberg, E.; Ferro-Famil, L.; Soja, M.J.; Ulander, L.M.H.; Tebaldini, S. Forest Biomass Retrieval from L-Band SAR Using Tomographic Ground Backscatter Removal. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1030–1034. [Google Scholar] [CrossRef]
- Blomberg, E.; Ulander, L.M.H.; Tebaldini, S.; Ferro-Famil, L. Evaluating P-Band TomoSAR for Biomass Retrieval in Boreal Forest. IEEE Trans. Geosci. Remote Sens. 2020, 59, 3793–3804. [Google Scholar] [CrossRef]
- Dubois-Fernandez, P.; Dupuis, X.; Capdessus, P.; Baque, R. Preliminary results of the AfriSAR campaign. In Proceedings of the EUSAR 2016: 11th European Conference on Synthetic Aperture Radar, Hamburg, Germany, 6–9 June 2016; pp. 1–3. [Google Scholar]
- Fornaro, G.; Lombardini, F.; Pauciullo, A.; Reale, D.; Viviani, F. Tomographic Processing of Interferometric SAR Data: Developments, applications, and future research perspectives. IEEE Signal Process. Mag. 2014, 31, 41–50. [Google Scholar] [CrossRef]
- Frey, O.; Meier, E. Analyzing Tomographic SAR Data of a Forest with Respect to Frequency, Polarization, and Focusing Technique. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3648–3659. [Google Scholar] [CrossRef] [Green Version]
- Frey, O.; Magnard, C.; Ruegg, M.; Meier, E. Focusing of Airborne Synthetic Aperture Radar Data from Highly Nonlinear Flight Tracks. IEEE Trans. Geosci. Remote Sens. 2009, 47, 1844–1858. [Google Scholar] [CrossRef] [Green Version]
- Gebert, N.; Carnicero Dominguez, B.; Davidson, M.W.J.; Diaz Martin, M.; Silvestrin, P. SAOCOM-CS—A passive companion to SAOCOM for single-pass L-band SAR interferometry. In Proceedings of the EUSAR 2014—10th European Conference on Synthetic Aperture Radar, Berlin, Germany, 3–5 June 2014; pp. 1–4. [Google Scholar]
- Dinh, H.T.M.; Tebaldini, S.; Rocca, F.; Koleck, T.; Borderies, P.; Albinet, C.; Villard, L.; Hamadi, A.; Le Toan, T. Ground-Based Array for Tomographic Imaging of the Tropical Forest in P-Band. IEEE Trans. Geosci. Remote Sens. 2013, 51, 4460–4472. [Google Scholar] [CrossRef]
- Minh, D.H.T.; Le Toan, T.; Rocca, F.; Tebaldini, S.; D’Alessandro, M.M.; Villard, L. Relating P-Band Synthetic Aperture Radar Tomography to Tropical Forest Biomass. IEEE Trans. Geosci. Remote Sens. 2014, 52, 967–979. [Google Scholar] [CrossRef]
- Minh, D.H.T.; Le Toan, T.; Rocca, F.; Tebaldini, S.; Villard, L.; Réjou-Méchain, M.; Phillips, O.; Feldpausch, T.R.; Dubois-Fernandez, P.; Scipal, K.; et al. SAR tomography for the retrieval of forest biomass and height: Cross-validation at two tropical forest sites in French Guiana. Remote Sens. Environ. 2016, 175, 138–147. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Levy-Vehel, J.; Ferro-Famil, L.; Reigber, A. Three-Dimensional Imaging of Objects Concealed Below a Forest Canopy Using SAR Tomography at L-Band and Wavelet-Based Sparse Estimation. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1454–1458. [Google Scholar] [CrossRef]
- LaValle, M.; Hawkins, B.; Hensley, S. Tomographic imaging with UAVSAR: Current status and new results from the 2016 AfriSAR campaign. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017. [Google Scholar]
- Lombardini, F. Differential tomography: A new framework for SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2005, 43, 37–44. [Google Scholar] [CrossRef]
- Lombardini, F.; Pardini, M. Experiments of Tomography-based SAR Techniques with P-band Polarimetric Data. In Proceedings of the ESA International Workshop on Polarimetry and Polarimetric Interferometry (PolInSAR 2009), Frascati, Italy, 26–30 January 2009. [Google Scholar]
- Lombardini, F.; Cai, F.; Viviani, F.; Pasculli, D. Multidimensional SAR Tomography for Complex Non-Stationary Scenes: COSMO-SkyMed Urban and P-Band Forest Results. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2012), Munich, Germany, 22–27 July 2012; pp. 5206–5209. [Google Scholar]
- Lombardini, F.; Cai, F. New differential SAR tomography functionalities for probing 3D forest structure and dynamic processes. In Proceedings of the 2011 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2011), Vancouver, BC, Canada, 24–29 July 2011; pp. 2413–2415. [Google Scholar] [CrossRef]
- Lombardini, F.; Cai, F. Temporal Decorrelation-Robust SAR Tomography. IEEE Trans. Geosci. Remote Sens. 2014, 52, 5412–5421. [Google Scholar] [CrossRef]
- Lombardini, F.; Vinciguerra, A.; Zoppetti, C. Radiometric Problems in Superresolution 3D Forest SAR Tomography. In Proceedings of the ESA-MOST China Dragon Cooperation 2018 Dragon 4 Symposium, Xian, China, June 2018. [Google Scholar]
- Lombardini, F.; Cai, F. Generalized-Capon Method for Diff-Tomo SAR Analyses of Decorrelating Scatterers. Remote Sens. 2019, 11, 412. [Google Scholar] [CrossRef] [Green Version]
- Lombardini, F.; Bordbari, R.; Vinciguerra, A. Information Extraction in Decorrelating Forest Layers: Generalized-Capon Diff-Tomo. In Proceedings of the ESA-MOST China Dragon Cooperation 2019 Dragon 4 Symposium, Ljubljana, Slovenia, 24–28 June 2019. [Google Scholar]
- D’Alessandro, M.M.; Tebaldini, S. Phenomenology of P-Band Scattering from a Tropical Forest Through Three-Dimensional SAR Tomography. IEEE Geosci. Remote Sens. Lett. 2012, 9, 442–446. [Google Scholar] [CrossRef]
- D’Alessandro, M.M.; Tebaldini, S.; Rocca, F. Phenomenology of ground scattering in a tropical forest through polarimetric synthetic aperture radar tomography. IEEE Trans. Geosci. Remote Sens. 2013, 51, 4430–4437. [Google Scholar] [CrossRef]
- D’Alessandro, M.M.; Tebaldini, S. Retrieval of Terrain Topography in Tropical Forests Using P-Band Sar Tomography. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018. [Google Scholar]
- D’Alessandro, M.M.; Tebaldini, S. Digital Terrain Model Retrieval in Tropical Forests through P-Band SAR Tomography. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6774–6781. [Google Scholar] [CrossRef]
- D’Alessandro, M.M.; Bai, Y.; Tebaldini, S. Temporal Stability of Ground Notched Images. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 2387–2390. [Google Scholar] [CrossRef]
- Moreira, A.; Krieger, G.; Hajnsek, I.; Papathanassiou, K.; Younis, M.; Lopez-Dekker, P.; Huber, S.; Villano, M.; Pardini, M.; Eineder, M.; et al. Tandem-L: A Highly Innovative Bistatic SAR Mission for Global Observation of Dynamic Processes on the Earth’s Surface. IEEE Geosci. Remote Sens. Mag. 2015, 3, 8–23. [Google Scholar] [CrossRef]
- Pardini, M.; Cantini, A.; Lombardini, F.; Papathanassiou, K. 3-D Structure of Forests: First Analysis of Tomogram Changes Due to Weather and Seasonal Effects at L-Band. In Proceedings of the EUSAR 2014—10th European Conference on Synthetic Aperture Radar, Berlin, Germany, 6 March–6 May 2014; pp. 1–4. [Google Scholar]
- Pardini, M.; Papathanassiou, K. On the Estimation of Ground and Volume Polarimetric Covariances in Forest Scenarios with SAR Tomography. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1860–1864. [Google Scholar] [CrossRef] [Green Version]
- Pardini, M.; Papathanassiou, K.P.; Lombardini, F. Impact of Dielectric Changes on L-Band 3-D SAR Reflectivity Profiles of Forest Volumes. IEEE Trans. Geosci. Remote Sens. 2018, 56, 7324–7337. [Google Scholar] [CrossRef]
- Pardini, M.; Tello, M.; Cazcarra-Bes, V.; Papathanassiou, K.P.; Hajnsek, I. L- and P-Band 3-D SAR Reflectivity Profiles Versus Lidar Waveforms: The AfriSAR Case. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 3386–3401. [Google Scholar] [CrossRef]
- Ponce, O.; Prats-Iraola, P.; Scheiber, R.; Reigber, A.; Moreira, A.; Aguilera, E. Polarimetric 3-D Reconstruction from Multicircular SAR at P-Band. IEEE Geosci. Remote Sens. Lett. 2014, 11, 803–807. [Google Scholar] [CrossRef]
- Rekioua, B.; Davy, M.; Ferro-Famil, L.; Tebaldini, S. Snowpack permittivity profile retrieval from tomographic SAR data. Comptes Rendus Phys. 2017, 18, 57–65. [Google Scholar] [CrossRef]
- Tebaldini, S.; Rocca, F. Multibaseline Polarimetric SAR Tomography of a Boreal Forest at P- and L-Bands. IEEE Trans. Geosci. Remote Sens. 2012, 50, 232–246. [Google Scholar] [CrossRef]
- Tebaldini, S.; Rocca, F.; D’Alessandro, M.M.; Ferro-Famil, L. Phase calibration of airborne tomographic SAR data via phase center double localization. IEEE Trans. Geosci. Remote Sens. 2016, 54, 1775–1792. [Google Scholar] [CrossRef]
- Tebaldini, S.; Nagler, T.; Rott, H.; Heilig, A. Imaging the Internal Structure of an Alpine Glacier via L-Band Airborne SAR Tomography. IEEE Trans. Geosci. Remote Sens. 2016, 54, 7197–7209. [Google Scholar] [CrossRef]
- Caicoya, A.T.; Pardini, M.; Hajnsek, I.; Papathanassiou, K. Forest Above-Ground Biomass Estimation from Vertical Reflectivity Profiles at L-Band. IEEE Geosci. Remote Sens. Lett. 2015, 12, 2379–2383. [Google Scholar] [CrossRef]
- Wasik, V.; Dubois-Fernandez, P.C.; Taillandier, C.; Saatchi, S.S. The AfriSAR Campaign: Tomographic Analysis with Phase-Screen Correction for P-Band Acquisitions. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 3492–3504. [Google Scholar] [CrossRef] [Green Version]
- Yitayew, T.G.; Ferro-Famil, L.; Eltoft, T.; Tebaldini, S. Lake and Fjord Ice Imaging Using a Multifrequency Ground-Based Tomographic SAR System. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 4457–4468. [Google Scholar] [CrossRef]
- Yang, X.; Tebaldini, S.; D’Alessandro, M.M.; Liao, M. Tropical Forest Height Retrieval Based on P-Band Multibaseline SAR Data. IEEE Geosci. Remote Sens. Lett. 2020, 17, 451–455. [Google Scholar] [CrossRef]
- Bai, Y.; Tebaldini, S.; Minh, D.H.T.; Yang, W. An Empirical Study on the Impact of Changing Weather Conditions on Repeat-Pass SAR Tomography. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 3505–3511. [Google Scholar] [CrossRef]
- Yu, Y.; D’Alessandro, M.M.; Tebaldini, S.; Liao, M. Signal Processing Options for High Resolution SAR Tomography of Natural Scenarios. Remote Sens. 2020, 12, 1638. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, Q.; Ding, X.; Chen, W. Analysis of the Quality of Daily DEM Generation with Geosynchronous InSAR. Engineering 2020, 6, 913–918. [Google Scholar] [CrossRef]
- Liang, H.; Zhang, L.; Ding, X.; Lu, Z.; Li, X. Toward Mitigating Stratified Tropospheric Delays in Multitemporal InSAR: A Quadtree Aided Joint Model. IEEE Trans. Geosci. Remote Sens. 2018, 57, 291–303. [Google Scholar] [CrossRef]
- Zhang, B.; Ding, X.; Zhu, W.; Wang, C.; Zhang, L.; Liu, Z. Mitigating Ionospheric Artifacts in Coseismic Interferogram Based on Offset Field Derived from ALOS-PALSAR Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016. [Google Scholar] [CrossRef]
- Hirschmüller, H. Stereo Vision in Structured Environments by Consistent Semi-Global Matching. In Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, New York, NY, USA, 17–22 June 2006. [Google Scholar]
- Hirschmüller, H. Stereo Processing by Semi-Global Matching and Mutual Information. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 30, 328–341. [Google Scholar] [CrossRef] [PubMed]
- Ferretti, A.; Fumagalli, A.; Novali, F.; Prati, C.; Rocca, F.; Rucci, A. A New Algorithm for Processing Interferometric Data-Stacks: SqueeSAR. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3460–3470. [Google Scholar] [CrossRef]
- Guccione, P.; Monti-Guarnieri, A.V.; Tebaldini, S. Stable Target Detection and Coherence Estimation in Interferometric SAR Stacks. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3171–3178. [Google Scholar] [CrossRef]
- Dong, J.; Liao, M.; Zhang, L.; Gong, J. A Unified Approach of Multitemporal SAR Data Filtering Through Adaptive Estimation of Complex Covariance Matrix. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5320–5333. [Google Scholar] [CrossRef]
- Monti-Guarnieri, A.V.; Tebaldini, S. On the Exploitation of Target Statistics for SAR Interferometry Applications. IEEE Trans. Geosci. Remote Sens. 2008, 46, 3436–3443. [Google Scholar] [CrossRef]
- D’Alessandro, M.M.; Tebaldini, S.; Quegan, S.; Soja, M.J.; Ulander, L.M.H.; Scipal, K. Interferometric Ground Cancellation for Above Ground Biomass Estimation. IEEE Trans. Geosci. Remote Sens. 2020, 58, 6410–6419. [Google Scholar] [CrossRef]
- Soja, M.; Quegan, S.; d’Alessandro, M.M.; Banda, F.; Scipal, K.; Tebaldini, S.; Ulander, L.M.H. Mapping above-ground biomass in tropical forests with ground-cancelled P-band SAR and limited reference data. Remote Sens. Environ. 2021, 253, 112153. [Google Scholar] [CrossRef]
- Hu, J.; Ding, X.-L.; Zhang, L.; Sun, Q.; Li, Z.-W.; Zhu, J.-J.; Lu, Z. Estimation of 3-D Surface Displacement Based on InSAR and Deformation Modeling. IEEE Trans. Geosci. Remote Sens. 2017, 55, 2007–2016. [Google Scholar] [CrossRef]
- Zhang, B.; Ding, X.; Werner, C.; Tan, K.; Zhang, B.; Jiang, M.; Zhao, J.; Xu, Y. Dynamic displacement monitoring of long-span bridges with a microwave radar interferometer. ISPRS J. Photogramm. Remote Sens. 2018, 138, 252–264. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rocca, F.; Li, D.; Tebaldini, S.; Liao, M.; Zhang, L.; Lombardini, F.; Balz, T.; Haala, N.; Ding, X.; Hanssen, R. Three- and Four-Dimensional Topographic Measurement and Validation. Remote Sens. 2021, 13, 2861. https://doi.org/10.3390/rs13152861
Rocca F, Li D, Tebaldini S, Liao M, Zhang L, Lombardini F, Balz T, Haala N, Ding X, Hanssen R. Three- and Four-Dimensional Topographic Measurement and Validation. Remote Sensing. 2021; 13(15):2861. https://doi.org/10.3390/rs13152861
Chicago/Turabian StyleRocca, Fabio, Deren Li, Stefano Tebaldini, Mingsheng Liao, Lu Zhang, Fabrizio Lombardini, Timo Balz, Norbert Haala, Xiaoli Ding, and Ramon Hanssen. 2021. "Three- and Four-Dimensional Topographic Measurement and Validation" Remote Sensing 13, no. 15: 2861. https://doi.org/10.3390/rs13152861
APA StyleRocca, F., Li, D., Tebaldini, S., Liao, M., Zhang, L., Lombardini, F., Balz, T., Haala, N., Ding, X., & Hanssen, R. (2021). Three- and Four-Dimensional Topographic Measurement and Validation. Remote Sensing, 13(15), 2861. https://doi.org/10.3390/rs13152861