Evaluation of an Air Pollution Forecasting System Based on Micro-Pulse Lidar Cruising Measurements in the South China Sea
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. FLEXPART-WRF Modeling
2.2.1. Model Description
2.2.2. WRF Modeling Configuration
2.2.3. FLEXPART-WRF Forward Simulations
2.2.4. Backward Trajectory Analysis for the Contribution of Anthropogenic PM2.5 to Non-Local Aerosols over the SCS
3. Results
3.1. WRF Performance Evaluation
3.2. FLEXPART-WRF Evaluation
3.3. Contribution of Anthropogenic PM2.5 to Non-Local Aerosols over the SCS
4. Discussions and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haywood, J.; Boucher, O. Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review. Rev. Geophys. 2000, 38, 513–543. [Google Scholar] [CrossRef]
- Jia, R.; Liu, Y.; Chen, B.; Zhang, Z.; Huang, J. Source and transportation of summer dust over the Tibetan Plateau. Atmos. Environ. 2015, 123, 210–219. [Google Scholar] [CrossRef]
- Levy, H.; Horowitz, L.W.; Schwarzkopf, M.D.; Ming, Y.; Golaz, J.C.; Naik, V.; Ramaswamy, V. The roles of aerosol direct and indirect effects in past and future climate change. J. Geophys. Res. Atmos. 2013, 118, 4521–4532. [Google Scholar] [CrossRef]
- Quaas, J.; Boucher, O.; Bellouin, N.; Kinne, S. Satellite-based estimate of the direct and indirect aerosol climate forcing. J. Geophys. Res. Atmos. 2008, 113, D5. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Tanré, D.; Gordon, H.R.; Nakajima, T.; Lenoble, J.; Frouin, R.; Grassl, H.; Herman, B.M.; King, M.D.; Teillet, P.M. Passive remote sensing of tropospheric aerosol and atmospheric correction for the aerosol effect. J. Geophys. Res. Atmos. 1997, 102, 16815–16830. [Google Scholar] [CrossRef] [Green Version]
- Bréon, F.M.; Tanré, D.; Generoso, S. Aerosol effect on cloud droplet size monitored from satellite. Science 2002, 295, 834–838. [Google Scholar] [CrossRef] [PubMed]
- Tseng, C.; Wong, G.T.; Lin, I.; Wu, C.; Liu, K. A unique seasonal pattern in phytoplankton biomass in low-latitude waters in the South China Sea. Geophys. Res. Lett. 2005, 32, L08608. [Google Scholar] [CrossRef] [Green Version]
- Sheu, G.R.; Lin, N.H.; Lee, C.T.; Wang, J.L.; Chuang, M.T.; Wang, S.H.; Kai, H.C.; Ou-Yang, C.F. Distribution of atmospheric mercury in northern Southeast Asia and South China Sea during Dongsha Experiment. Atmos. Environ. 2013, 78, 174–183. [Google Scholar] [CrossRef]
- Lin, I.I.; Chen, J.P.; Wong, G.T.F.; Huang, C.W.; Lien, C.C. Aerosol input to the South China Sea: Results from the MODerate Resolution Imaging Spectro-radiometer, the Quick Scatterometer, and the Measurements of Pollution in the Troposphere Sensor. Deep Sea Res. Top. Stud. Oceanogr. 2007, 54, 1589–1601. [Google Scholar] [CrossRef]
- Zhang, C.; Xu, H.; Li, Z.; Xie, Y.; Li, D. Maritime Aerosol Optical and Microphysical Properties in the South China Sea Under Multi-source Influence. Sci. Rep. 2019, 9, 17796. [Google Scholar] [CrossRef]
- Tan, H.; Wu, D.; Bi, X. Measurement and study of aerosol optical depth over northern South China Sea. J. Tropical. Oceanogr. 2006, 25, 21–25. [Google Scholar]
- Zhang, X.; Zhuang, G.; Guo, J.; Yin, K.; Zhang, P. Characterization of aerosol over the northern South China Sea during two cruises in 2003. Atmos. Environ. 2007, 41, 7821–7836. [Google Scholar] [CrossRef]
- Chester, R.; Bradshaw, G.F.; Corcoran, P.A. Trace metal chemistry of the North Sea particulate aerosol: Concentrations, source and sea water fates. Atmos. Environ. 1994, 28, 2873–2883. [Google Scholar] [CrossRef]
- Reid, J.S.; Hyer, E.J.; Johnson, R.S.; Holben, B.N.; Yokelson, R.J.; Zhang, J.; Campbell, J.R.; Christopher, S.A.; di Girolamo, L.; Giglio, L.; et al. Observing and understanding the Southeast Asian aerosol system by remote sensing: An initial review and analysis for the Seven Southeast Asian Studies (7SEAS) program. Atmos. Res. 2013, 122, 403–469. [Google Scholar] [CrossRef] [Green Version]
- Srinivas, C.V.; Rajagopal, V.; Baskaran, R.; Vinay, R.; Venkatraman, B. Regional scale atmospheric dispersion simulation of accidental releases of radionuclides from Fukushima Dai-ichi reactor. Atmos. Environ. 2012, 61, 66–84. [Google Scholar] [CrossRef]
- Madala, S.; Prasad, K.H.; Srinivas, C.V.; Satyanarayana, A.N.V. Air quality simulation of NOX over the tropical coastal city Chennai in southern India with FLEXPART-WRF. Atmos. Environ. 2016, 128, 65–81. [Google Scholar] [CrossRef]
- Palau, J.L.; Pérez-Landa, G.; Meliá, J.; Segarra, D.; Millán, M.M. A study of dispersion in complex terrain under winter conditions using high-resolution mesoscale and Lagrangian particle models. Atmos. Chem. Phys. 2005, 6, 1105–1134. [Google Scholar] [CrossRef] [Green Version]
- Cécé, R.; Bernard, D.; Brioude, J.; Zahibo, N. Microscale anthropogenic pollution modelling in a small tropical island during weak trade winds: Lagrangian particle dispersion simulations using real nested LES meteorological fields. Atmos. Environ. 2016, 139, 98–112. [Google Scholar] [CrossRef]
- Zhu, Q.; Liu, Y.; Jia, R.; Hua, S.; Shao, T.; Wang, B. A numerical simulation study on the impact of smoke aerosols from Russian forest fires on the air pollution over Asia. Atmos. Environ. 2018, 182, 263–274. [Google Scholar] [CrossRef]
- Solomos, S.; Amiridis, V.; Zanis, P.; Gerasopoulos, E.; Sofiou, F.I.; Herekakis, T.; Brioude, J.; Stohl, A.; Kahn, R.A.; Kontoes, C. Smoke dispersion modeling over complex terrain using high resolution meteorological data and satellite observations—The FireHub platform. Atmos. Environ. 2015, 119, 348–361. [Google Scholar] [CrossRef]
- Brioude, J.; Arnold, D.; Stohl, A.; Cassiani, M.; Morton, D.; Seibert, P. The Lagrangian particle dispersion model FLEXPART-WRF version 3.1. Geosci. Model Dev. 2013, 6, 1889–1904. [Google Scholar] [CrossRef] [Green Version]
- Arnold, D.; Maurer, C.; Wotawa, G.; Draxler, R.; Saito, K.; Seibert, P. Influence of the meteorological input on the atmospheric transport modelling with FLEXPART of radionuclides from the Fukushima Daiichi nuclear accident. J. Environ. Radioact. 2015, 139, 212–225. [Google Scholar] [CrossRef]
- Li, Y.; Wang, B.; Lee, S.-Y.; Zhang, Z.; Wang, Y.; Dong, W. Micro-Pulse Lidar Cruising Measurements in Northern South China Sea. Remote Sens. 2020, 12, 1695. [Google Scholar] [CrossRef]
- Li, M.; Zhang, Q.; Kurokawa, J.-I.; Woo, J.-H.; He, K.; Lu, Z.; Ohara, T.; Song, Y.; Streets, D.G.; Carmichael, G.R. MIX: A mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP. Atmos. Chem. Phys. 2017, 17, 935–963. [Google Scholar] [CrossRef] [Green Version]
- Stohl, A.; Forster, C.; Frank, A.; Seibert, P.; Wotawa, G. Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2. Atmos. Chem. Phys. 2005, 5, 2461–2474. [Google Scholar] [CrossRef] [Green Version]
- Pisso, I.; Sollum, E.; Grythe, H.; Kristiansen, N.I.; Cassiani, M.; Eckhardt, S.; Arnold, D.; Morton, D.; Thompson, R.L.; Groot Zwaaftink, C.D.; et al. The Lagrangian particle dispersion model FLEXPART version 10.4. Geosci. Model Dev. 2019, 12, 4955–4997. [Google Scholar] [CrossRef] [Green Version]
- Seibert, P.; Frank, A. Source-receptor matrix calculation with a Lagrangian particle dispersion model in backward mode. Atmos. Chem. Phys. 2004, 4, 51–63. [Google Scholar] [CrossRef] [Green Version]
- Fast, J.D.; Easter, R.C. A Lagrangian particle dispersion model compatible with WRF. In Proceedings of the 7th WRF Users Workshop, Boulder, CO, USA, 19–22 June 2006; pp. 19–22. [Google Scholar]
- Angevine, W.M.; Brioude, J.; McKeen, S.; Holloway, J.S. Uncertainty in Lagrangian pollutant transport simulations due to meteorological uncertainty from a mesoscale WRF ensemble. Geosci. Model Dev. 2014, 7, 2817–2829. [Google Scholar] [CrossRef] [Green Version]
- de Foy, B.; Varela, J.R.; Molina, L.T.; Molina, M.J. Rapid ventilation of the Mexico City basin and regional fate of the urban plume. Atmos. Chem. Phys. 2006, 6, 2321–2335. [Google Scholar] [CrossRef] [Green Version]
- Angevine, W.M.; Brioude, J.; Mckeen, S.; Holloway, J.S.; Lerner, B.M.; Goldstein, A.H.; Guha, A.; Andrews, A.; Nowak, J.B.; Evan, S. Pollutant transport among California regions. J. Geophys. Res. Atmos. 2013, 118, 6750–6763. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Duda, M.G.; Huang, X.-Y.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 3; NCAR Technical Report; NCAR: Boulder, CO, USA, 2008. [Google Scholar]
- Liu, Y.; Hong, Y.; Fan, Q.; Wang, X.; Chan, P.W.; Chen, X.; Lai, A.; Wang, M.; Chen, X. Source-receptor relationships for PM 2.5 during typical pollution episodes in the Pearl River Delta city cluster, China. Sci. Total Environ. 2017, 596, 194–206. [Google Scholar] [CrossRef]
- Glisan, J.; Gutowski, W.; Cassano, J.; Higgins, M. Effects of Spectral Nudging in WRF on Arctic Temperature and Precipitation Simulations. J. Clim. 2013, 26, 3985–3999. [Google Scholar] [CrossRef]
- Bullock, O.R.; Alapaty, K.; Herwehe, J.A.; Mallard, M.S.; Nolte, C.G. An observation-based investigation of nudging in WRF for downscaling surface climate information to 12-km grid spacing. J. Appl. Meteorol. Climatol. 2013, 53, 20–33. [Google Scholar] [CrossRef]
- Stohl, A.; Forster, C.; Eckhardt, S.; Huntrieser, H.; Heland, J.; Schlager, H.; Aufmhoff, H.; Arnold, F.; Cooper, O. A backward modeling study of intercontinental pollution transport using aircraft measurements. J. Geophys. Res. Atmos. 2003, 108, D12. [Google Scholar] [CrossRef]
- Ding, A.; Tao, W.; Xue, L.; Gao, J.; Stohl, A.; Lei, H.; Jin, D.; Ren, Y.; Wang, X.; Wei, X. Transport of north China air pollution by midlatitude cyclones: Case study of aircraft measurements in summer 2007. J. Geophys. Res. Atmos. 2009, 114, D08304. [Google Scholar] [CrossRef] [Green Version]
- Yu, C.; Zhao, T.; Bai, Y.; Zhang, L.; Kong, S.; Yu, X.; He, J.; Cui, C.; Yang, J.; You, Y. Heavy air pollution with a unique “non-stagnant” atmospheric boundary layer in the Yangtze River middle basin aggravated by regional transport of PM2.5 over China. Atmos. Chem. Phys. 2020, 20, 7217–7230. [Google Scholar] [CrossRef]
- Fan, Q.; Liu, Y.M.; Wang, X.M.; Fan, S.J.; Chan, P.W.; Lan, J.; Feng, Y.R. Effect of different meteorological fields on the regional air quality modelling over Pearl River Delta, China. Int. J. Environ. Pollut. 2013, 53, 3–23. [Google Scholar] [CrossRef]
- Schlünzen, K.H.; Katzfey, J.J. Relevance of sub-grid-scale land-use effects for mesoscale model. Tellus Dyn. Meteorol. Oceanogr. 2003, 55, 232–246. [Google Scholar] [CrossRef]
- Jiang, F.; Guo, H.; Wang, T.; Cheng, H.; Wang, X.; Simpson, I.; Ding, A.; Saunders, S.M.; Lam, S.; Blake, D.R. An ozone episode in the Pearl River Delta: Field observation and model simulation. J. Geophys. Res. Atmos. 2010, 115, 1–18. [Google Scholar] [CrossRef]
- Wang, X.M.; Liu, H.; Pang, J.M.; Carmichael, G.; He, K.B.; Fan, Q.; Zhong, L.J.; Wu, Z.Y.; Zhang, J.P. Reductions in sulfur pollution in the Pearl River Delta region, China: Assessing the effectiveness of emission controls. Atmos. Environ. 2013, 76, 113–124. [Google Scholar] [CrossRef]
- Wang, N.; Guo, H.; Jiang, F.; Ling, Z.H.; Wang, T. Simulation of ozone formation at different elevations in mountainous area of Hong Kong using WRF-CMAQ model. Sci. Total Environ. 2015, 505, 939–951. [Google Scholar] [CrossRef]
- An, X.; Yao, B.; Li, Y.; Li, N.; Zhou, L. Tracking source area of Shangdianzi station using Lagrangian particle dispersion model of FLEXPART. Meteorol. Appl. 2014, 21, 466–473. [Google Scholar] [CrossRef]
- Lo, J.C.F.; Yang, Z.L.; Pielke Sr, R.A. Assessment of three dynamical climate downscaling methods using the Weather Research and Forecasting (WRF) model. J. Geophys. Res. Atmos. 2008, 113, D09112. [Google Scholar] [CrossRef]
- Pohl, B.; Crétat, J. On the use of nudging techniques for regional climate modeling: Application for tropical convection. Clim. Dyn. 2014, 43, 1693–1714. [Google Scholar] [CrossRef]
- Yin, S.; Wang, X.; Zhang, X.; Guo, M.; Miura, M.; Xiao, Y. Influence of biomass burning on local air pollution in mainland Southeast Asia from 2001 to 2016. Environ. Pollut. 2019, 254, 112949. [Google Scholar] [CrossRef] [PubMed]
- Powell, D.M.; Reagan, J.A.; Rubio, M.A.; Erxleben, W.H.; Spinhirne, J.D. ACE-2 multiple angle micro-pulse lidar observations from Las Galletas, Tenerife, Canary Islands. Tellus Chem. Phys. Meteorol. 2000, 52, 652–661. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, X.; Zhao, C.; Zhang, M. Emission controls versus meteorological conditions in determining aerosol concentrations in Beijing during the 2008 Olympic Games. Atmos. Chem. Phys. 2011, 11, 12437–12451. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Li, Y.; Zhao, T.; Liu, J.; Hu, X.-M.; Liu, D.; Jiang, Y.; Xu, J.; Chang, L. An important mechanism of regional O3 transport for summer smog over the Yangtze River Delta in eastern China. Atmos. Chem. Phys. 2018, 18, 16239–16251. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.M.; Lin, W.S.; Yang, L.M.; Deng, R.R.; Lin, H. A numerical study of influences of urban land-use change on ozone distribution over the Pearl River Delta region, China. Tellus Chem. Phys. Meteorol. 2007, 59, 633–641. [Google Scholar] [CrossRef]
- Wang, H.; Wu, K.; Liu, Y.; Sheng, B.; Lu, X.; He, Y.; Xie, J.; Wang, H.; Fan, S. Role of heat wave-induced biogenic VOC enhancements in persistent ozone episodes formation in Pearl River Delta. J. Geophys. Res. Atmos. 2021, 126, e2020JD034317. [Google Scholar] [CrossRef]
- Min, M.; Li, J.; Wang, F.; Liu, Z.; Paul Menzel, W. Retrieval of cloud top properties from advanced geostationary meteorological satellite imager measurements based on machine learning algorithms. Remote Sens. Environ. 2020, 239, 111616. [Google Scholar] [CrossRef]
- Wang, X.; Min, M.; Fu Wang, F.; Guo, J.; Li, B.; Tang, S. Intercomparisons of cloud mask product among Fengyun-4A, Himawari-8 and MODIS. IEEE Trans. Geosci. Remote Sens. 2019, 57, 8827–8839. [Google Scholar] [CrossRef]
- Min, M.; Deng, J.; Liu, C.; Guo, J.; Lu, N.; Hu, X.; Chen, L.; Zhang, P.; Lu, Q.; Wang, L. An investigation of the implications of lunar illumination spectral changes for Day/Night Band based cloud property retrieval due to lunar phase transition. J. Geophys. Res. Atmos. 2017, 122, 9233–9244. [Google Scholar] [CrossRef]
- Min, M.; Wu, C.; Li, C.; Liu, H.; Xu, N.; Wu, X.; Chen, L.; Wang, F.; Sun, F.; Qin, D. Developing the science product algorithm testbed for Chinese next-generation geostationary meteorological satellites: Fengyun-4 series. J. Meteorol. Res. 2017, 31, 708–719. [Google Scholar] [CrossRef]
Model Configuration and Parameterization Schemes | Domain and Physical Options |
---|---|
Horizontal grids | 310 × 245 grids |
Horizonal resolution | 9 km |
Vertical levels | 42 eta levels |
Microphysics | Ferrier (new Eta) microphysics |
Cumulus parameterization | Kain-Fritsch (new Eta) scheme |
Short-wave radiation | Dudhia |
Long-wave radiation | RRTM |
Boundary layer | YSU |
Surface layer | Revised MM5 Monin-Obukhov |
Land-surface model | Noah |
Simulations | Simulation Period (mm/dd/yyyy) | Emission Source(s) | Release Time (mm/dd/yyyy) |
---|---|---|---|
Forward trajectory | 08/17/2016–08/20/2016 | F2 | 08/17/2016 05:00 |
F3 | 08/17/2016 08:00 | ||
F4 | 08/17/2016 10:00 | ||
F6 | 08/17/2016 23:00 | ||
09/02/2016–09/05/2016 | D9 | 09/02/2016 12:00 | |
Backward trajectory | 08/17/2016–08/20/2016 | F2 | 08/20/2016 05:00 |
F3 | 08/20/2016 08:00 | ||
F4 | 08/20/2016 10:00 | ||
F6 | 08/20/2016 23:00 |
Meteorological Factors | Quantity of Stations | Mean | ||||||
---|---|---|---|---|---|---|---|---|
Temperature (°C) | 20 | 28.2 | 28.3 | 0.10 | 1.07 | 1.44 | 0.84 | 0.87 |
Relative humidity (%) | 20 | 84.4 | 82.0 | −2.4 | 6.89 | 9.13 | 0.76 | 0.68 |
Wind direction (deg) | 18 | - | - | - | - | - | 0.31 | 0.42 |
Wind speed (m s−1) | 18 | 2.01 | 2.92 | 0.91 | 1.29 | 1.71 | 0.62 | 0.50 |
Monitoring Sites | Locations | Correlation Coefficient |
---|---|---|
F2 | 112.53°E, 21.16°N | 0.88 |
F3 | 113.02°E, 21.03°N | 0.90 |
F4 | 113.13°E, 20.49°N | 0.88 |
F6 | 113.46°E, 19.59°N | 0.70 |
D9 | 116.13°E, 20.10°N | 0.82 |
Potential Sources | Contribution Rates | Averages | |||
---|---|---|---|---|---|
F2 | F3 | F4 | F6 | ||
Vietnam | 36.2 | 35.7 | 35.5 | 50.9 | 39.6 |
Laos | 2.06 | 1.68 | 2.03 | 1.66 | 1.86 |
Cambodia | 11.5 | 8.40 | 12.7 | 8.58 | 10.3 |
Thailand | 25.7 | 21.8 | 30.5 | 22.3 | 25.1 |
Myanmar | 17.8 | 26.5 | 13.7 | 8.97 | 16.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Y.; Ji, Z.; Li, Y.; Hu, Z.; Zhu, X.; Dong, W. Evaluation of an Air Pollution Forecasting System Based on Micro-Pulse Lidar Cruising Measurements in the South China Sea. Remote Sens. 2021, 13, 2855. https://doi.org/10.3390/rs13152855
Tang Y, Ji Z, Li Y, Hu Z, Zhu X, Dong W. Evaluation of an Air Pollution Forecasting System Based on Micro-Pulse Lidar Cruising Measurements in the South China Sea. Remote Sensing. 2021; 13(15):2855. https://doi.org/10.3390/rs13152855
Chicago/Turabian StyleTang, Yuzhang, Zhenming Ji, Yuan Li, Zhiyuan Hu, Xian Zhu, and Wenjie Dong. 2021. "Evaluation of an Air Pollution Forecasting System Based on Micro-Pulse Lidar Cruising Measurements in the South China Sea" Remote Sensing 13, no. 15: 2855. https://doi.org/10.3390/rs13152855
APA StyleTang, Y., Ji, Z., Li, Y., Hu, Z., Zhu, X., & Dong, W. (2021). Evaluation of an Air Pollution Forecasting System Based on Micro-Pulse Lidar Cruising Measurements in the South China Sea. Remote Sensing, 13(15), 2855. https://doi.org/10.3390/rs13152855