Dynamic Cosine Method for Normalizing Incidence Angle Effect on C-band Radar Backscattering Coefficient for Maize Canopies Based on NDVI
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Site and Data Sets
2.1.1. Study Areas
2.1.2. Description of the Sentinel-1 and Sentinel-2 Data
2.2. Incidence Angle Normalization Method
2.2.1. Overview of Cosine Method
2.2.2. The N Value under Different Growth Stages of Maize
2.2.3. Dynamic Cosine Method Based on NDVI
2.3. Validation Metrics
3. Results
3.1. Relationship between N and NDVI
3.2. The Comparison of Sentinel-1 Images before and after Normalization
3.3. Performance Comparison of Three Normalization Methods
4. Discussion
4.1. Dynamic Cosine Method Evaluation Within Different Crop Growth Periods and Radar Incidence Angles
4.2. The Influence of Soil Surface Roughness and Soil Moisture on Radar Incidence Angle Effect
4.3. The Prospects of Dynamic Cosine Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Vreugdenhil, M.; Wagner, W.; Bauer-Marschallinger, B.; Pfeil, I.; Teubner, I.; Rüdiger, C.; Strauss, P. Sensitivity of Sentinel-1 backscatter to vegetation dynamics: An Austrian case study. Remote Sens. 2018, 10, 1396. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.; Zheng, L. Mapping radar glacier zones and dry snow line in the Antarctic Peninsula using Sentinel-1 images. Remote Sens. 2017, 9, 1171. [Google Scholar] [CrossRef] [Green Version]
- Zheng, X.; Feng, Z.; Xu, H.; Sun, Y.; Li, L.; Li, B.; Jiang, T.; Li, X.; Li, X. A New Soil Moisture Retrieval Algorithm from the L-Band Passive Microwave Brightness Temperature Based on the Change Detection Principle. Remote Sens. 2020, 12, 1303. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Day, J.L.; Davis, F.W.; Melack, J.M. Modeling L-band radar backscatter of Alaskan boreal forest. IEEE Trans. Geosci. Remote Sens. 1993, 31, 1146–1154. [Google Scholar] [CrossRef] [Green Version]
- Aldenhoff, W.; Eriksson, L.E.; Ye, Y.; Heuzé, C. First-Year and Multiyear Sea Ice Incidence Angle Normalization of Dual-Polarized Sentinel-1 SAR Images in the Beaufort Sea. IEEE JSTARS 2020, 13, 1540–1550. [Google Scholar] [CrossRef]
- Hallikainen, M.; Toikka, M. Classification of sea ice types with radar. In Proceedings of the 1992 22nd European Microwave Conference, Helsinki, Finland, 5–9 September 1992; Volume 2, pp. 957–962. [Google Scholar]
- Makynen, M.P.; Manninen, A.T.; Simila, M.H.; Karvonen, J.A.; Hallikainen, M.T. Incidence angle dependence of the statistical properties of C-band HH-polarization backscattering signatures of the Baltic Sea ice. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2593–2605. [Google Scholar] [CrossRef]
- Xu, S.; Qi, Z.; Li, X.; Yeh, A.G.O. Investigation of the effect of the incidence angle on land cover classification using fully polarimetric SAR images. Int. J. Remote Sens. 2019, 40, 1576–1593. [Google Scholar] [CrossRef]
- Zheng, X.; Feng, Z.; Xu, H.; Sun, Y.; Bai, Y.; Li, B.; Li, L.; Zhao, X.; Zhang, R.; Jiang, T.; et al. Performance of four passive microwave soil moisture products in maize cultivation areas of Northeast China. IEEE JSTARS 2020, 13, 2451–2460. [Google Scholar]
- Mladenova, I.E.; Jackson, T.J.; Bindlish, R.; Hensley, S. Incidence angle normalization of radar backscatter data. IEEE Trans. Geosci. Remote Sens. 2012, 51, 1791–1804. [Google Scholar] [CrossRef]
- Lang, W.; Zhang, P.; Wu, J.; Shen, Y.; Yang, X. Incidence angle correction of SAR sea ice data based on locally linear mapping. IEEE Trans. Geosci. Remote Sens. 2016, 54, 3188–3199. [Google Scholar] [CrossRef]
- Fore, A.G.; Chapman, B.D.; Hawkins, B.P.; Hensley, S.; Jones, C.E.; Michel, T.R.; Muellerschoen, R.J. UAVSAR polarimetric calibration. IEEE Trans. Geosci. Remote Sens. 2015, 53, 3481–3491. [Google Scholar] [CrossRef]
- Ye, N.; Walker, J.P.; Rüdiger, C. A cumulative distribution function method for normalizing variable-angle microwave observations. IEEE Trans. Geosci. Remote Sens. 2015, 53, 3906–3916. [Google Scholar] [CrossRef]
- Wu, X.; Walker, J.P.; Das, N.N.; Panciera, R.; Rüdiger, C. Evaluation of the SMAP brightness temperature downscaling algorithm using active–passive microwave observations. Remote Sens. Environ. 2014, 155, 210–221. [Google Scholar] [CrossRef]
- Ulaby, F.T.; Moore, R.K.; Fung, A.K. Radar remote sensing and surface scattering and emission theory. In Microwave Remote Sensing: Active and Passive; Addison-Wesley: Boston, MA, USA, 1982; Volume 2, pp. 194–246. [Google Scholar]
- Widhalm, B.; Bartsch, A.; Goler, R. Simplified normalization of C-band synthetic aperture radar data for terrestrial applications in high latitude environments. Remote Sens. 2018, 10, 551. [Google Scholar] [CrossRef] [Green Version]
- Clapp, R.E. A Theoretical and Experimental Study of Radar Ground Return; Radiation Laboratory, Massachusetts Institute of Technology: Cambridge, MA, USA, 1946. [Google Scholar]
- Ardila, J.P.; Tolpekin, V.; Bijker, W. Angular backscatter variation in L-band ALOS ScanSAR images of tropical forest areas. IEEE Geosci. Remote Sens. Lett. 2010, 7, 821–825. [Google Scholar] [CrossRef] [Green Version]
- Quiñones, M.J.; Hoekman, D.H. Exploration of factors limiting biomass estimation by polarimetric radar in tropical forests. IEEE Trans. Geosci. Remote Sens. 2004, 42, 86–104. [Google Scholar] [CrossRef]
- Guo, P.; Zhao, T.; Shi, J.; Xu, H.; Li, X.; Niu, S. Assessing the active-passive approach at variant incidence angles for microwave brightness temperature downscaling. Int. J. Digit. Earth 2021, 7, 1–21. [Google Scholar] [CrossRef]
- Zribi, M.; Chahbi, A.; Shabou, M.; Lili-Chabaane, Z.; Duchemin, B.; Baghdadi, N.; Amri, R.; Chehbouni, A. Soil surface moisture estimation over a semi-arid region using ENVISAT ASAR radar data for soil evaporation evaluation. Hydrol. Earth Syst. Sci. 2011, 15, 345–358. [Google Scholar] [CrossRef] [Green Version]
- Baghdadi, N.; Bernier, M.; Gauthier, R.; Neeson, I. Evaluation of C-band SAR data for wetlands mapping. Int. J. Remote Sens. 2001, 22, 71–88. [Google Scholar] [CrossRef]
- Huang, W.; Sun, G.; Ni, W.; Zhang, Z.; Dubayah, R. Sensitivity of multi-source SAR backscatter to changes in forest aboveground biomass. Remote Sens. 2015, 7, 9587–9609. [Google Scholar] [CrossRef] [Green Version]
- Menges, C.H.; Van Zyl, J.J.; Hill, G.J.; Ahmad, W. A procedure for the correction of the effect of variation in incidence angle on AIRSAR data. Int. J. Remote Sens. 2001, 22, 829–841. [Google Scholar] [CrossRef]
- Doninck, J.V.; Wagner, W.; Melzer, T.; De Baets, B.; Verhoest, N.E. Seasonality in the Angular Dependence of ASAR Wide Swath Backscatter. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1423–1427. [Google Scholar] [CrossRef]
- Cristea, A.; van Houtte, J.; Doulgeris, A.P. Integrating incidence angle dependencies into the clustering-based segmentation of SAR images. IEEE JSTARS 2020, 13, 2925–2939. [Google Scholar]
- Fieuzal, R.; Baup, F.; Marais-Sicre, C. Monitoring wheat and rapeseed by using synchronous optical and radar satellite data—From temporal signatures to crop parameters estimation. Adv. Remote Sens. 2013, 2, 162–180. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Li, H.; Yang, L.; Ren, Y. Assessment of soil quality of croplands in the Corn Belt of Northeast China. Sustainability 2018, 10, 248. [Google Scholar] [CrossRef] [Green Version]
- Gong, Z.J.; Liu, L.M.; Chen, J. Phenophase extraction of spring maize in Liaoning province based on MODIS NDVI data. J. Shenyang Agric. Univ. 2018, 49, 257–265. [Google Scholar]
- Li, Y.; Zhang, C.C.; Luo, W.R.; Gao, W.J. Summer maize phenology monitoring based on normalized difference vegetation index reconstructed with improved maximum value composite. Transact. CSAE 2019, 35, 159–165. [Google Scholar]
- Chen, J.; Jönsson, P.; Tamura, M.; Gu, Z.; Matsushita, B.; Eklundh, L. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky–Golay filter. Remote Sens. Environ. 2004, 91, 332–344. [Google Scholar] [CrossRef]
- Zhao, X.W. Soil Moisture Retrieval Using SAR Data in Agricultural Areas based on Change Detection Approach. Master’s Thesis, Jilin University, Jilin, China, 2019. [Google Scholar]
- O’Grady, D.; Leblanc, M.; Gillieson, D. Relationship of local incidence angle with satellite radar backscatter for different surface conditions. Int. J. Appl. Earth Obs. Geoinf. 2013, 24, 42–53. [Google Scholar] [CrossRef]
- Mo, L. Quantitative Research and Correction of Incident Angle Effect for Wide Swath SAR Image. Master’s Thesis, Hefei University of Technology, Anhui, China, 2013. [Google Scholar]
- Mandal, D.; Kumar, V.; Ratha, D.; Dey, S.; Bhattacharya, A.; Lopez-Sanchez, J.M.; McNairn, H.; Rao, Y.S. Dual polarimetric radar vegetation index for crop growth monitoring using sentinel-1 SAR data. Remote Sens. Environ. 2020, 247, 111954. [Google Scholar] [CrossRef]
- Wagner, W.; Noll, J.; Borgeaud, M.; Rott, H. Monitoring soil moisture over the Canadian Prairies with the ERS scatterometer. IEEE Trans. Geosci. Remote Sens. 1999, 37, 206–216. [Google Scholar] [CrossRef]
- Pittman, K.; Hansen, M.C.; Becker-Reshef, I.; Potapov, P.V.; Justice, C.O. Estimating global cropland extent with multi-year MODIS data. Remote Sens. 2010, 2, 1844–1863. [Google Scholar] [CrossRef] [Green Version]
- Topouzelis, K.; Singha, S.; Kitsiou, D. Incidence angle normalization of Wide Swath SAR data for oceanographic applications. Open Geosci. 2016, 8, 450–464. [Google Scholar] [CrossRef] [Green Version]
- Zheng, X.; Feng, Z.; Li, L.; Li, B.; Jiang, T.; Li, X.; Li, X.; Chen, S. Simultaneously estimating surface soil moisture and roughness of bare soils by combining optical and radar data. Int. J. Appl. Earth Obs. Geoinf. 2021, 100, 102345. [Google Scholar] [CrossRef]
- Baghdadi, N.; Zribi, M. Evaluation of radar backscatter models IEM, OH and Dubois using experimental observations. Int. J. Remote Sens. 2006, 27, 3831–3852. [Google Scholar] [CrossRef]
- Baghdadi, N.; Holah, N.; Zribi, M. Calibration of the integral equation model for SAR data in C-band and HH and VV polarizations. Int. J. Remote Sens. 2006, 27, 805–816. [Google Scholar] [CrossRef]
- Baghdadi, N.; Abou Chaaya, J.; Zribi, M. Semiempirical calibration of the integral equation model for SAR data in C-band and cross polarization using radar images and field measurements. IEEE Geosci. Remote Sens. Lett. 2010, 8, 14–18. [Google Scholar] [CrossRef] [Green Version]
- Veloso, A.; Mermoz, S.; Bouvet, A.; Le Toan, T.; Planells, M.; Dejoux, J.F.; Ceschia, E. Understanding the temporal behavior of crops using Sentinel-1 and Sentinel-2-like data for agricultural applications. Remote Sens. Environ. 2017, 199, 415–426. [Google Scholar] [CrossRef]
- Khabbazan, S.; Vermunt, P.; Steele-Dunne, S.; Ratering Arntz, L.; Marinetti, C.; van der Valk, D.; Iannini, L.; Molijn, R.; Westerdijk, K.; van der Sande, C. Crop monitoring using Sentinel-1 data: A case study from The Netherlands. Remote Sens. 2019, 11, 1887. [Google Scholar] [CrossRef] [Green Version]
Sentinel-1 Acquisition Date | DOY | (31°) | (46°) | (31°) | (46°) | ||
---|---|---|---|---|---|---|---|
2019-04-19 | 109 | −11.06 | −17.11 | 6.05 | −20.22 | −22.90 | 2.68 |
2019-05-13 | 133 | −9.23 | −17.02 | 7.79 | −18.47 | −22.83 | 4.35 |
2019-06-06 | 157 | −9.12 | −15.29 | 6.17 | −18.49 | −21.49 | 3.00 |
2019-06-18 | 169 | −9.44 | −13.26 | 3.82 | −17.56 | −20.58 | 3.02 |
2019-06-30 | 181 | −7.04 | −10.44 | 3.41 | −13.91 | −17.21 | 3.30 |
2019-07-12 | 193 | −7.97 | −10.28 | 2.31 | −14.22 | −16.93 | 2.71 |
2019-07-24 | 205 | −7.95 | −9.90 | 1.95 | −14.07 | −15.73 | 1.66 |
2019-08-17 | 229 | −8.04 | −9.29 | 1.25 | −14.10 | −15.05 | 0.94 |
2019-09-10 | 253 | −8.09 | −11.16 | 3.07 | −15.06 | −16.95 | 1.90 |
2019-09-22 | 265 | −8.42 | −11.59 | 3.17 | −15.16 | −17.75 | 2.59 |
2019-10-04 | 277 | −9.02 | −12.99 | 3.97 | −15.52 | −19.65 | 4.13 |
2019-10-16 | 289 | −9.92 | −14.95 | 5.03 | −18.07 | −21.53 | 3.46 |
VV | VH | |||||||
---|---|---|---|---|---|---|---|---|
Data | DOY | N | R2 | RMSE | N | R2 | RMSE | NDVI |
2019-04-19 | 109 | 7.02 | 0.95 | 0.191 | 4.69 | 0.69 | 0.327 | 0.15 |
2019-05-13 | 133 | 9.35 | 0.91 | 0.417 | 6.26 | 0.72 | 0.441 | 0.17 |
2019-06-06 | 157 | 7.47 | 0.89 | 0.319 | 4.82 | 0.74 | 0.296 | 0.23 |
2019-06-18 | 169 | 4.22 | 0.90 | 0.142 | 3.68 | 0.96 | 0.074 | 0.27 |
2019-06-30 | 181 | 4.30 | 0.94 | 0.108 | 4.06 | 0.97 | 0.068 | 0.48 |
2019-07-12 | 193 | 2.90 | 0.98 | 0.042 | 3.32 | 0.97 | 0.054 | 0.71 |
2019-07-24 | 205 | 1.83 | 0.88 | 0.066 | 1.61 | 0.96 | 0.031 | 0.75 |
2019-08-17 | 229 | 0.66 | 0.24 | 0.110 | 0.99 | 0.81 | 0.046 | 0.83 |
2019-09-10 | 253 | 3.06 | 0.96 | 0.064 | 2.10 | 0.89 | 0.072 | 0.78 |
2019-09-22 | 265 | 3.35 | 0.99 | 0.035 | 3.09 | 0.99 | 0.037 | 0.59 |
2019-10-04 | 277 | 4.63 | 0.98 | 0.070 | 4.83 | 0.98 | 0.064 | 0.40 |
2019-10-16 | 289 | 5.85 | 0.97 | 0.122 | 4.61 | 0.91 | 0.151 | 0.28 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, Z.; Zheng, X.; Li, L.; Li, B.; Chen, S.; Guo, T.; Wang, X.; Jiang, T.; Li, X.; Li, X. Dynamic Cosine Method for Normalizing Incidence Angle Effect on C-band Radar Backscattering Coefficient for Maize Canopies Based on NDVI. Remote Sens. 2021, 13, 2856. https://doi.org/10.3390/rs13152856
Feng Z, Zheng X, Li L, Li B, Chen S, Guo T, Wang X, Jiang T, Li X, Li X. Dynamic Cosine Method for Normalizing Incidence Angle Effect on C-band Radar Backscattering Coefficient for Maize Canopies Based on NDVI. Remote Sensing. 2021; 13(15):2856. https://doi.org/10.3390/rs13152856
Chicago/Turabian StyleFeng, Zhuangzhuang, Xingming Zheng, Lei Li, Bingze Li, Si Chen, Tianhao Guo, Xigang Wang, Tao Jiang, Xiaojie Li, and Xiaofeng Li. 2021. "Dynamic Cosine Method for Normalizing Incidence Angle Effect on C-band Radar Backscattering Coefficient for Maize Canopies Based on NDVI" Remote Sensing 13, no. 15: 2856. https://doi.org/10.3390/rs13152856
APA StyleFeng, Z., Zheng, X., Li, L., Li, B., Chen, S., Guo, T., Wang, X., Jiang, T., Li, X., & Li, X. (2021). Dynamic Cosine Method for Normalizing Incidence Angle Effect on C-band Radar Backscattering Coefficient for Maize Canopies Based on NDVI. Remote Sensing, 13(15), 2856. https://doi.org/10.3390/rs13152856