Application of a Novel Hybrid Method for Flood Susceptibility Mapping with Satellite Images: A Case Study of Seoul, Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Satellite Images
2.3. Delineation of Thematic Layers
2.3.1. DEM
2.3.2. Slope
2.3.3. Distance from River
2.3.4. Mean Rainfall
2.3.5. Flow Accumulation
2.3.6. TWI
2.3.7. Plan Curvature
2.3.8. Drainage Density
2.3.9. Land Use
2.4. AHP
2.5. Nine Controlling Factors with Their Relative Weights
3. Results and Discussion
3.1. Reclassification for Each Thematic Layer
3.2. Flood Susceptibility Map
3.3. Further Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Padli, J.; Habibullah, M.S.; Baharom, A.H. Determinants of Flood Fatalities: Evidence from a Panel Data of 79 Countries. Soc. Sci. Humanit. 2013, 21, 81–98. [Google Scholar]
- Pourghasemi, H.R.; Jirandeh, A.G.; Pradhan, B.; Xu, C.; Gokceoglu, C. Landslide Susceptibility Mapping Using Support Vector Machine and GIS at the Golestan Province, Iran. J. Earth Syst. Sci. 2013, 122, 349–369. [Google Scholar] [CrossRef] [Green Version]
- Mishra, K.; Sinha, R. Flood Risk Assessment in the Kosi Megafan Using Multi-Criteria Decision Analysis: A Hydro-Geomorphic Approach. Geomorphology 2020, 350, 106861. [Google Scholar] [CrossRef]
- Das, S. Flood Susceptibility Mapping of the Western Ghat Coastal Belt Using Multi-Source Geospatial Data and Analytical Hierarchy Process (AHP). Remote Sens. Appl. Soc. Environ. 2020, 20, 100379. [Google Scholar] [CrossRef]
- Sampson, C.C.; Smith, A.M.; Bates, P.D.; Neal, J.C.; Alfieri, L.; Freer, J.E. A High-Resolution Global Flood Hazard Model. Water Resour. Res. 2015, 51, 7358–7381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MohanRajan, S.N.; Loganathan, A.; Manoharan, P. Survey on Land Use/Land Cover (LU/LC) Change Analysis in Remote Sensing and GIS Environment: Techniques and Challenges. Environ. Sci. Pollut. Res. Int. 2020, 27, 29900–29926. [Google Scholar] [CrossRef] [PubMed]
- De Brito, M.M.; Evers, M.; Almoradie, A.D.S. Participatory Flood Vulnerability Assessment: A Multi-Criteria Approach. Hydrol. Earth Syst. Sci. 2018, 22, 373–390. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.J.; Kang, J.E.; Kim, G. Application of Fuzzy Combination Operators to Flood Vulnerability Assessments in Seoul, Korea. Geocarto Int. 2015, 30, 1–24. [Google Scholar] [CrossRef]
- Nourani, V.; Tahershamsi, A.; Abbaszadeh, P.; Shahrabi, J.; Hadavandi, E. A New Hybrid Algorithm for Rainfall-Runoff Process Modeling Based on the Wavelet Transform and Genetic Fuzzy System. J. Hydroinf. 2014, 16, 1004–1024. [Google Scholar] [CrossRef] [Green Version]
- Danandeh Mehr, A.; Kahya, E.; Olyaie, E. Streamflow Prediction Using Linear Genetic Programming in Comparison with a Neurowavelet Technique. J. Hydrol. 2013, 505, 240–249. [Google Scholar] [CrossRef]
- Guo, E.; Zhang, J.; Ren, X.; Zhang, Q.; Sun, Z. Integrated Risk Assessment of Flood Disaster Based on Improved Set Pair Analysis and the Variable Fuzzy Set Theory in Central Liaoning Province China. Nat. Hazards 2014, 74, 947–965. [Google Scholar] [CrossRef]
- Tehrany, M.S.; Pradhan, B.; Jebur, M.N. Spatial Prediction of Flood Susceptible Areas Using Rule-Based Decision Tree (DT) and a Novel Ensemble Bivariate and Multivariate Statistical Models in GIS. J. Hydrol. 2013, 504, 69–79. [Google Scholar] [CrossRef]
- Darabi, H.; Choubin, B.; Rahmati, O.; Torabi Haghighi, A.T.; Pradhan, B.; Kløve, B. Urban Flood Risk Mapping Using the GARP and QUEST Models: A Comparative Study of Machine Learning Techniques. J. Hydrol. 2019, 569, 142–154. [Google Scholar] [CrossRef]
- Souissi, D.; Msaddek, M.H.; Zouhri, L.; Chenini, I.; El May, M.; Dlala, M. Mapping Groundwater Recharge Potential Zones in Arid Region Using GIS and Landsat Approaches, Southeast Tunisia. Hydrol. Sci. J. 2018, 63, 251–268. [Google Scholar] [CrossRef]
- Hwang, C.L.; Yoon, K. Methods for Multiple Attribute Decision Making. In Lecture Notes in Economics and Mathematical Systems; Springer: Berlin/Heidelberg, Germany, 1981; pp. 58–191. [Google Scholar] [CrossRef]
- Al-Harbi, K.M.A. Application of the AHP in Project Management. Int. J. Proj. Manag. 2001, 19, 19–27. [Google Scholar] [CrossRef]
- Allafta, H.; Opp, C.; Patra, S. Identification of Groundwater Potential Zones Using Remote Sensing and GIS Techniques: A Case Study of the Shatt Al-Arab Basin. Remote Sens. 2021, 13, 112. [Google Scholar] [CrossRef]
- Wang, H.B.; Wu, S.R.; Shi, J.S.; Li, B. Qualitative Hazard and Risk Assessment of Landslides: A Practical Framework for a Case Study in China. Nat. Hazards 2013, 69, 1281–1294. [Google Scholar] [CrossRef]
- Ajay Kumar, V.A.; Mondal, N.C.; Ahmed, S. Identification of Groundwater Potential Zones Using RS, GIS and AHP Techniques: A Case Study in a Part of Deccan Volcanic Province (DVP), Maharashtra, India. J. Indian Soc. Remote Sens. 2020, 48, 497–511. [Google Scholar] [CrossRef]
- Shao, Z.; Huq, M.E.; Cai, B.; Altan, O.; Li, Y. Integrated Remote Sensing and GIS Approach Using Fuzzy-AHP to Delineate and Identify Groundwater Potential Zones in Semi-Arid Shanxi Province, China. Environ. Modell. Softw. 2020, 134, 104868. [Google Scholar] [CrossRef]
- Chen, Y.R.; Yeh, C.H.; Yu, B. Integrated Application of the Analytic Hierarchy Process and the Geographic Information System for Flood Risk Assessment and Flood Plain Management in Taiwan. Nat. Hazards 2011, 59, 1261–1276. [Google Scholar] [CrossRef] [Green Version]
- Sinha, R.; Bapalu, G.V.; Singh, L.K.; Rath, B. Flood Risk Analysis in the Kosi River Basin, North Bihar Using Multi-Parametric Approach of Analytical Hierarchy Process (AHP). J. Indian Soc. Remote Sens. 2008, 36, 335–349. [Google Scholar] [CrossRef]
- Zangemeister, C. Nutzwertanalyse in der Systemtechnik; Wittemannsche Buchhandlung: Winnemark, Germany, 1971; Available online: www.zangemeister.de (accessed on 20 April 2021).
- Kazibudzki, P.T. The Quality of Ranking During Simulated Pairwise Judgments for Examined Approximation Procedures. Model. Simul. Eng. 2019, 2019, 13. [Google Scholar] [CrossRef] [Green Version]
- Stefanidis, S.; Stathis, D. Assessment of Flood Hazard Based on Natural and Anthropogenic Factors Using Analytic Hierarchy Process (AHP). Nat. Hazards 2013, 68, 569–585. [Google Scholar] [CrossRef]
- Grozavu, A.; Pleşcan, S.; Mărgărint, C. Comparative Methods for the Evaluation of the Natural Risk Factors Importance. Present Environ. Sustain. Dev. 2011, 5, 33–40. [Google Scholar]
- Statistical of Seoul, Seoul Metropolitan Government. 2016. Available online: http://data.seoul.go.kr/ (accessed on 20 April 2021).
- Lee, S.; Kim, J.C.; Jung, H.S.; Lee, M.J.; Lee, S. Spatial Prediction of Flood Susceptibility Using Random-Forest and Boosted-Tree Models in Seoul Metropolitan City, Korea. Geom. Nat. Hazards Risk 2017, 8, 1185–1203. [Google Scholar] [CrossRef] [Green Version]
- Shin, J.I. Historic River Flowing Through the Korean Peninsula. Koreana 2004, 6, 4–11. [Google Scholar]
- Date, I. Britannica, the Editors of Encyclopaedia. Han River. Encyclopedia Britannica. Available online: https://www.britannica.com/place/Han-River-South-Korea (accessed on 20 April 2021).
- Lee, Y.; Brody, S.D. Examining the Impact of Land Use on Flood Losses in Seoul, Korea. Land Use Policy 2018, 70, 500–509. [Google Scholar] [CrossRef]
- Zhou, Q.; Pilesjö, P.; Chen, Y. Estimating Surface Flow Paths on a Digital Elevation Model Using a Triangular Facet Network. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef]
- Grabs, T.; Seibert, J.; Bishop, K.; Laudon, H. Modeling Spatial Patterns of Saturated Areas: A Comparison of the Topographic Wetness Index and a Dynamic Distributed Model. J. Hydrol. 2009, 373, 15–23. [Google Scholar] [CrossRef] [Green Version]
- Tehrany, M.S.; Pradhan, B.; Jebur, M.N. Flood Susceptibility Mapping Using a Novel Ensemble Weights-of-Evidence and Support Vector Machine Models in GIS. J. Hydrol. 2014, 512, 332–343. [Google Scholar] [CrossRef]
- Harini, P.; Sahadevan, D.K.; Das, I.C.; Manikyamba, C.; Durgaprasad, M.; Nandan, M.J. Regional Groundwater Assessment of Krishna River Basin Using Integrated GIS Approach. J. Indian Soc. Remote Sens. 2018, 46, 1365–1377. [Google Scholar] [CrossRef]
- Das, S.; Pardeshi, S.D. Integration of Different Influencing Factors in GIS to Delineate Groundwater Potential Areas Using IF and FR Techniques: A Study of Pravara Basin, Maharashtra, India. Appl. Water Sci. 2018, 8, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Yalcin, A.; Reis, S.; Aydinoglu, A.C.; Yomralioglu, T. A GIS-Based Comparative Study of Frequency Ratio, Analytical Hierarchy Process, Bivariate Statistics and Logistics Regression Methods for Landslide Susceptibility Mapping in Trabzon, NE Turkey. CATENA 2011, 85, 274–287. [Google Scholar] [CrossRef]
- Saaty, T.L. The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation; McGraw-Hill Inc.: New York, NY, USA, 1980. [Google Scholar]
- Saaty, T.L. Decision Making for Leaders: The Analytic Hierarchy Process for Decisions in a Complex World; RWS Publications: Pittsburgh, PA, USA, 1990. [Google Scholar]
- Botzen, W.J.W.; Aerts, J.C.J.H.; Van den Bergh, J.C.J.M. Individual Preferences for Reducing Flood Risk to near Zero Through Elevation. Mitig. Adapt. Strateg. Glob. Chang. 2013, 18, 229–244. [Google Scholar] [CrossRef] [Green Version]
- Mojaddadi, H.; Pradhan, B.; Nampak, H.; Ahmad, N.; Ghazali, A.H. Ensemble Machine-Learning-Based Geospatial Approach for Flood Risk Assessment Using Multi-Sensor Remote-Sensing Data and GIS. Geom. Nat. Hazards Risk. 2017, 8, 1080–1102. [Google Scholar] [CrossRef] [Green Version]
- Tehrany, M.S.; Pradhan, B.; Mansor, S.; Ahmad, N. Flood Susceptibility Assessment Using GIS-Based Support Vector Machine Model with Different Kernel Types. CATENA 2015, 125, 91–101. [Google Scholar] [CrossRef]
- Zaharia, L.; Costache, R.; Prăvălie, R.; Ioana-Toroimac, G. Mapping Flood and Flooding Potential Indices: A Methodological Approach to Identifying Areas Susceptible to Flood and Flooding Risk. Case Study: The Prahova Catchment (Romania). Front. Earth Sci. 2017, 11, 229–247. [Google Scholar] [CrossRef]
- Mohammadi, M.; Darabi, H.; Mirchooli, F.; Bakhshaee, A.; Haghighi, A.T. Flood Risk Mapping and Crop-Water Loss Modeling Using Water Footprint Analysis in Agricultural Watershed, Northern Iran. Nat. Hazards 2020, 105, 2007–2025. [Google Scholar] [CrossRef]
- Rahmati, O.; Zeinivand, H.; Besharat, M. Flood Hazard Zoning in Yasooj Region, Iran, Using GIS and Multi-Criteria Decision Analysis. Geom. Nat. Hazards Risk 2016, 7, 1000–1017. [Google Scholar] [CrossRef] [Green Version]
- Chung, C.F.; Fabbri, A.G. Validation of Spatial Prediction Models for Landslide Hazard Mapping. Nat. Hazards 2003, 30, 451–472. [Google Scholar] [CrossRef]
- USDA. Urban Hydrology for Small Watersheds. Tech. Release 1986, 55, 164. [Google Scholar]
- Miller, J.R.; Ritter, D.F.; Kochel, R.C. Morphometric Assessment of Lithologic Controls on Drainage Basin Evolution in the Crawford Upland, South-Central Indiana. Am. J. Sci. 1990, 290, 569–599. [Google Scholar] [CrossRef]
- Seoul Metropolitan Government. Study on Seoul’s Vision & Strategies for Flood Disaster; Seoul Metropolitan Government: Seoul, Korea, 2013.
Numerical Rating | Definition |
---|---|
1 | Equal importance in a pair |
3 | Moderate importance |
5 | Strong importance |
7 | Very strong importance |
9 | Extreme importance |
2, 4, 6, 8 | Intermediate values |
N | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RI | 0 | 0.0 | 0.58 | 0.90 | 1.12 | 1.24 | 1.32 | 1.41 | 1.45 | 1.49 | 1.51 | 1.54 | 1.56 | 1.57 | 1.59 |
Parameters | E | S | D | R | F | T | C | DR | L | W | CI | CR |
---|---|---|---|---|---|---|---|---|---|---|---|---|
E | 1 | 2 | 2 | 2 | 5 | 6 | 5 | 3 | 4 | 0.24 | 0.14 | 0.1 |
S | 0.5 | 1 | 2 | 3 | 4 | 4 | 4 | 2 | 5 | 0.2 | 0.14 | 0.1 |
D | 0.5 | 0.5 | 1 | 0.5 | 3 | 4 | 5 | 2 | 3 | 0.13 | 0.14 | 0.1 |
R | 0.5 | 0.33 | 2 | 1 | 2 | 3 | 5 | 2 | 4 | 0.14 | 0.14 | 0.1 |
F | 0.2 | 0.25 | 0.3 | 0.5 | 1 | 3 | 4 | 0.5 | 2 | 0.07 | 0.14 | 0.1 |
T | 0.17 | 0.25 | 0.3 | 0.33 | 0.33 | 1 | 3 | 3 | 0.3 | 0.06 | 0.14 | 0.1 |
C | 0.2 | 0.25 | 0.2 | 0.2 | 0.25 | 0.33 | 1 | 0.25 | 0.5 | 0.03 | 0.14 | 0.1 |
DR | 0.33 | 0.5 | 0.5 | 0.5 | 2 | 0.33 | 4 | 1 | 0.3 | 0.07 | 0.14 | 0.1 |
L | 0.25 | 0.2 | 0.3 | 0.25 | 0.5 | 3 | 2 | 3 | 1 | 0.07 | 0.14 | 0.1 |
Sb. No. | Elements | Pairwise Comparison Matrix | CR | Weight | ||||
---|---|---|---|---|---|---|---|---|
1 | DEM | |||||||
<75 | 1 | 3 | 5 | 7 | 8 | 0.588 | 0.499 | |
75–145 | 0.33 | 1 | 3 | 5 | 6 | 0.255 | ||
145–249 | 0.2 | 0.33 | 1 | 3 | 5 | 0.137 | ||
249–395 | 0.14 | 0.2 | 0.33 | 1 | 3 | 0.069 | ||
>395 | 0.12 | 0.16 | 0.2 | 0.33 | 1 | 0.037 | ||
2 | Slope | |||||||
>70 | 1 | 2 | 3 | 5 | 7 | 0.035 | 0.446 | |
17–26 | 0.5 | 1 | 3 | 5 | 7 | 0.297 | ||
10–17 | 0.25 | 0.33 | 1 | 3 | 5 | 0.146 | ||
4–10 | 0.16 | 0.2 | 0.33 | 1 | 3 | 0.072 | ||
<4 | 0.12 | 0.14 | 0.2 | 0.33 | 1 | 0.036 | ||
3 | Distance from River | |||||||
<50 | 1 | 2 | 4 | 6 | 8 | 0.018 | 0.464 | |
50–100 | 0.5 | 1 | 2 | 4 | 6 | 0.264 | ||
100–200 | 0.25 | 0.5 | 1 | 2 | 5 | 0149 | ||
200–400 | 0.16 | 025 | 0.5 | 1 | 3 | 0.082 | ||
>500 | 0.12 | 0.16 | 0.2 | 0.33 | 1 | 0.038 | ||
4 | Mean Rainfall | |||||||
>22 | 1 | 3 | 5 | 7 | 9 | 0.056 | 0.491 | |
15–18 | 0.33 | 1 | 3 | 7 | 9 | 0.286 | ||
9–15 | 0.2 | 0.33 | 1 | 3 | 5 | 0.127 | ||
4–9 | 0.14 | 0.14 | 0.33 | 1 | 3 | 0.061 | ||
<4 | 0.11 | 0.11 | 0.2 | 0.33 | 1 | 0.032 | ||
5 | Flow Accumulation | |||||||
>1,074,483 | 1 | 2 | 4 | 6 | 8 | 0.028 | 0.461 | |
720,132–1,074,483 | 0.5 | 1 | 2 | 4 | 6 | 0.262 | ||
285,766–720,132 | 0.25 | 0.5 | 1 | 2 | 5 | 0.148 | ||
57,153–285,766 | 0.16 | 0.25 | 0.5 | 1 | 4 | 0.089 | ||
<57,153 | 0.12 | 0.16 | 0.2 | 0.25 | 1 | 0.037 | ||
6 | TWI | |||||||
>24 | 1 | 3 | 5 | 7 | 9 | 0.050 | 0.503 | |
10–13 | 0.33 | 1 | 3 | 5 | 7 | 0.260 | ||
8–10 | 0.2 | 0.33 | 1 | 3 | 5 | 0.134 | ||
6–8 | 0.14 | 0.2 | 0.33 | 1 | 3 | 0.067 | ||
<6 | 0.11 | 0.14 | 0.2 | 0.33 | 1 | 0.034 | ||
7 | Plan Curvature | |||||||
<−1.10 | 1 | 3 | 5 | 7 | 9 | 0.050 | 0.503 | |
−1.10 to −0.38 | 0.33 | 1 | 3 | 5 | 7 | 0.260 | ||
−0.38 to 0.24 | 0.2 | 0.33 | 1 | 3 | 5 | 0.134 | ||
0.2–0.8 | 0.14 | 0.2 | 0.33 | 1 | 3 | 0.067 | ||
>17 | 0.11 | 0.14 | 0.2 | 0.33 | 1 | 0.034 | ||
8 | Drainage Density | |||||||
<0.30 | 1 | 3 | 5 | 7 | 9 | 0.018 | 0.518 | |
0.30–0.69 | 0.33 | 1 | 3 | 5 | 6 | 0.262 | ||
0.69–1.09 | 0.2 | 0.33 | 1 | 2 | 3 | 0.111 | ||
1.09–1.58 | 014 | 0.2 | 0.5 | 1 | 2 | 0.066 | ||
>3.14 | 011 | 0.16 | 0.33 | 0.5 | 1 | 0.041 | ||
9 | Land Use | |||||||
Water Bodies | 1 | 2 | 3 | 5 | 6 | 0.016 | 0.419 | |
Bare Land | 0.5 | 1 | 2 | 6 | 5 | 0.292 | ||
Urban Area | 0.33 | 0.5 | 1 | 3 | 4 | 0.170 | ||
Forest | 0.2 | 0.16 | 0.33 | 1 | 1 | 0.060 | ||
Vegetation | 0.16 | 0.2 | 0.25 | 1 | 1 | 0.056 |
Regions | Number of Pixel | Percentage |
---|---|---|
Very High Risk | 63,613 | 9.94% |
High Risk | 344,668 | 53.87% |
Medium Risk | 197,236 | 30.83% |
Low Risk | 31,982 | 5% |
Very Low Risk | 2289 | 0.36% |
Out of Risk | 50 | 0.01% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Narimani, R.; Jun, C.; Shahzad, S.; Oh, J.; Park, K. Application of a Novel Hybrid Method for Flood Susceptibility Mapping with Satellite Images: A Case Study of Seoul, Korea. Remote Sens. 2021, 13, 2786. https://doi.org/10.3390/rs13142786
Narimani R, Jun C, Shahzad S, Oh J, Park K. Application of a Novel Hybrid Method for Flood Susceptibility Mapping with Satellite Images: A Case Study of Seoul, Korea. Remote Sensing. 2021; 13(14):2786. https://doi.org/10.3390/rs13142786
Chicago/Turabian StyleNarimani, Roya, Changhyun Jun, Saqib Shahzad, Jeill Oh, and Kyoohong Park. 2021. "Application of a Novel Hybrid Method for Flood Susceptibility Mapping with Satellite Images: A Case Study of Seoul, Korea" Remote Sensing 13, no. 14: 2786. https://doi.org/10.3390/rs13142786
APA StyleNarimani, R., Jun, C., Shahzad, S., Oh, J., & Park, K. (2021). Application of a Novel Hybrid Method for Flood Susceptibility Mapping with Satellite Images: A Case Study of Seoul, Korea. Remote Sensing, 13(14), 2786. https://doi.org/10.3390/rs13142786