Crop Classification Using MSCDN Classifier and Sparse Auto-Encoders with Non-Negativity Constraints for Multi-Temporal, Quad-Pol SAR Data
Abstract
:1. Introduction
- (1)
- (2)
- Algorithms based on the scattering mechanisms of polarization [28]. The points with the same physical meaning are classified using the polarization scattering parameters obtained by the coherent and incoherent decomposition algorithms (such as Pauli decomposition [29], Freeman decomposition [30], etc.) [31,32,33,34,35];
- (3)
2. Methodology
2.1. PolSAR Data Structure
2.2. Polarization Decomposition and Feature Extraction
2.3. Feature Compression
2.3.1. Auto-Encoder
2.3.2. Sparse Auto-Encoder with Non-Negativity Constraint
2.4. The Crop Discrimination Network with Multi-Scale Features (MSCDN)
3. Experiments and Result Analysis
3.1. PolSAR Data
3.2. Evaluation Criteria
3.3. Results and Analysis
3.3.1. Comparison of the Dimensionality Reduction Methods
3.3.2. Comparison of the Classifier with Different Classification Methods
3.3.3. The Performance for the Different Size of Input Sample
3.3.4. Comparison of Overall Processing Procedures
4. Discussion
4.1. The Effect of NC-SAE
4.2. The Effect of MSCDN Classifier
4.3. Future Work
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kolotii, A.; Kussul, N.; Shelestov, A.; Skakun, S.; Yailymov, B.; Basarab, R.; Lavreniuk, M.; Oliinyk, T.; Ostapenko, V. Comparison of biophysical and satellite predictors for wheat yield forecasting in Ukraine. In Proceedings of the 2015 36th International Symposium on Remote Sensing of Environment, Berlin, Germany, 11–15 May 2015. [Google Scholar] [CrossRef] [Green Version]
- Boryan, C.; Yang, Z.; Mueller, R.; Craig, M. Monitoring US agriculture: The US Department of Agriculture, National Agricultural Statistics Service, Cropland Data Layer Program. Geocarto Int. 2011, 26, 341–358. [Google Scholar] [CrossRef]
- Kavitha, A.; Srikrishna, A.; Satyanarayana, C. Crop image classification using spherical contact distributions from remote sensing images. J. King Saud Univ. Comput. Inf. Sci. 2019. [Google Scholar] [CrossRef]
- Tyczewska, A.; Woźniak, E.; Gracz, J.; Kuczyński, J.; Twardowski, T. Towards Food Security: Current State and Future Pro-spects of Agrobiotechnology. Trends Biotechnol. 2018, 36, 1219–1229. [Google Scholar] [CrossRef] [PubMed]
- Thenkabail, P.S.; Knox, J.W.; Ozdogan, M.; Gumma, M.K.; Congalton, R.G.; Wu, Z.T.; Milesi, C.; Finkral, A.; Marshall, M.; Mariotto, I.; et al. Assessing future risks to agricultural productivity, water resources and food security: How can remote sensing help? Photogramm. Eng. Remote Sens. 2016, 82, 773–782. [Google Scholar]
- Orynbaikyzy, A.; Gessner, U.; Conrad, C. Crop type classification using a combination of optical and radar remote sensing data: A review. Int. J. Remote. Sens. 2019, 40, 6553–6595. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, X.; Huang, L.; Yang, G.; Fan, L.; Wei, P.; Chen, G. An Improved CASA Model for Estimating Winter Wheat Yield from Remote Sensing Images. Remote Sens. 2019, 11, 1088. [Google Scholar] [CrossRef] [Green Version]
- Xiao, J.; Xu, L. Monitoring impact of heavy metal on wheat leaves from sewage irrigation by hyperspectral remote sensing. In Proceedings of the 2010 Second IITA International Conference on Geoscience and Remote Sensing, Qingdao, China, 28–31 August 2010; Volume 1, pp. 298–301. [Google Scholar]
- Kussul, N.; Lavreniuk, M.; Skakun, S.; Shelestov, A. Deep Learning Classification of Land Cover and Crop Types Using Remote Sensing Data. IEEE Geosci. Remote Sens. Lett. 2017, 14, 778–782. [Google Scholar] [CrossRef]
- Zhang, S.; Lei, Y.; Wang, L.; Li, H.; Zhao, H. Crop classification using MODIS NDVI data denoised by wavelet: A case study in Hebei Plain, China. Chin. Geogr. Sci. 2011, 21, 322–333. [Google Scholar] [CrossRef]
- Tatsumi, K.; Yamashiki, Y.; Torres, M.A.C.; Taipe, C.L.R. Crop classification of upland fields using Random forest of time-series Landsat 7 ETM + data. Comput. Electron. Agric. 2015, 115, 171–179. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Y.; Liu, G.; Jiao, L. A Novel Deep Fully Convolutional Network for PolSAR Image Classification. Remote Sens. 2018, 10, 1984. [Google Scholar] [CrossRef] [Green Version]
- Sabry, R. Terrain and Surface Modeling Using Polarimetric SAR Data Features. IEEE Trans. Geosci. Remote Sens. 2015, 54, 1170–1184. [Google Scholar] [CrossRef]
- Skriver, H.; Mattia, F.; Satalino, G.; Balenzano, A.; Pauwels, V.; Verhoest, N.E.C.; Davidson, M. Crop Classification Using Short-Revisit Multitemporal SAR Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2011, 4, 423–431. [Google Scholar] [CrossRef]
- Jafari, M.; Maghsoudi, Y.; Zoej, M.J.V. A New Method for Land Cover Characterization and Classification of Polarimetric SAR Data Using Polarimetric Signatures. IEEE J. Sel. Top. Appl. Earth Observe. Remote Sens. 2015, 8, 3595–3607. [Google Scholar] [CrossRef]
- Li, Z.; Chen, G.; Zhang, T. Temporal Attention Networks for Multitemporal Multisensor Crop Classification. IEEE Access 2019, 7, 134677–134690. [Google Scholar] [CrossRef]
- Guo, J.; Li, H.; Ning, J.; Han, W.; Zhang, W.-T.; Zhou, Z.S. Feature Dimension Reduction Using Stacked Sparse Au-to-Encoders for Crop Classification with Multi-Temporal, Quad-Pol SAR Data. Remote Sens. 2020, 12, 321. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Zhang, C.; Zhang, S.; Atkinson, P.M. Crop classification from full-year fully-polarimetric L-band UAVSAR time-series using the Random Forest algorithm. Int. J. Appl. Earth Obs. Geoinf. 2020, 87, 102032. [Google Scholar] [CrossRef]
- Whelen, T.; Siqueira, P. Time-series classification of Sentinel-1 agricultural data over North Dakota. Remote Sens. Lett. 2018, 9, 411–420. [Google Scholar] [CrossRef]
- Veloso, A.; Mermoz, S.; Bouvet, A.; Le Toan, T.; Planells, M.; Dejoux, J.-F.; Ceschia, E. Understanding the temporal behavior of crops using Sentinel-1 and Sentinel-2-like data for agricultural applications. Remote Sens. Environ. 2017, 199, 415–426. [Google Scholar] [CrossRef]
- White, L.; Millard, K.; Banks, S.; Richardson, M.; Pasher, J.; Duffe, J. Moving to the RADARSAT constellation mission: Com-paring synthesized compact polarimetry and dual polarimetry data with fully polarimetric RADARSAT-2 data for image classification of peatlands. Remote Sens. 2017, 9, 573. [Google Scholar] [CrossRef] [Green Version]
- Mattia, F.; Satalino, G.; Balenzano, A.; D’Urso, G.; Capodici, F.; Iacobellis, V.; Milella, P.; Gioia, A.; Rinaldi, M.; Ruggieri, S.; et al. Time series of COSMO-SkyMed data for landcover classification and surface parameter retrieval over agricultural sites. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Munich, Germany, 22–27 July 2012; pp. 6511–6514. [Google Scholar]
- Usman, M.; Liedl, R.; Shahid, M.A.; Abbas, A. Land use/land cover classification and its change detection using multi-temporal MODIS NDVI data. J. Geogr. Sci. 2015, 25, 1479–1506. [Google Scholar] [CrossRef]
- Zhang, X.-W.; Liu, J.-F.; Qin, Z.; Qin, F. Winter wheat identification by integrating spectral and temporal information derived from multi-resolution remote sensing data. J. Integr. Agric. 2019, 18, 2628–2643. [Google Scholar] [CrossRef]
- Zhong, L.H.; Hu, L.; Zhou, H. Deep learning based multi-temporal crop classification. Remote Sens. Environ. 2019, 221, 430–443. [Google Scholar] [CrossRef]
- Doualk, A. Application of Statistical Methods and GIS for Downscaling and Mapping Crop Statistics Using Hypertemporal Remote Sensing. J. Stat. Sci. Appl. 2014, 2, 93–101. [Google Scholar]
- Lee, J.S.; Grunes, M.R.; Kwok, R. Classification of multi-look polarimetric SAR imagery based on complex Wishart distribu-tion. Int. J. Remote Sens. 1994, 15, 2299–2311. [Google Scholar] [CrossRef]
- Maghsoudi, Y.; Collins, M.; Leckie, D.G. Polarimetric classification of Boreal forest using nonparametric feature selection and multiple classifiers. Int. J. Appl. Earth Obs. Geoinf. 2012, 19, 139–150. [Google Scholar] [CrossRef]
- Demirci, S.; Kirik, O.; Ozdemir, C. Interpretation and Analysis of Target Scattering From Fully-Polarized ISAR Images Using Pauli Decomposition Scheme for Target Recognition. IEEE Access 2020, 8, 155926–155938. [Google Scholar] [CrossRef]
- Nurtyawan, R.; Saepuloh, A.; Harto, A.B.; Wikantika, K.; Kondoh, A. Satellite Imagery for Classification of Rice Growth Phase Using Freeman Decomposition in Indramayu, West Java, Indonesia. HAYATI J. Biosci. 2018, 25, 126–137. [Google Scholar]
- Cloude, S.; Pottier, E. A review of target decomposition theorems in radar polarimetry. IEEE Trans. Geosci. Remote Sens. 1996, 34, 498–518. [Google Scholar] [CrossRef]
- Freeman, A.; Durden, S. A three-component scattering model for polarimetric SAR data. IEEE Trans. Geosci. Remote Sens. 1998, 36, 963–973. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, Y.; Moriyama, T.; Ishido, M.; Yamada, H. Four-component scattering model for polarimetric SAR image decom-position. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1699–1706. [Google Scholar] [CrossRef]
- Cloude, S.; Pottier, E. An entropy based classification scheme for land applications of polarimetric SAR. IEEE Trans. Geosci. Remote Sens. 1997, 35, 68–78. [Google Scholar] [CrossRef]
- Huynen, J.R. Phenomenological Theory of Radar Targets; Technical University: Delft, The Netherlands, 1978; pp. 653–712. [Google Scholar]
- Wen, Y.; Shang, S.; Rahman, K.U. Pre-Constrained Machine Learning Method for Multi-Year Mapping of Three Major Crops in a Large Irrigation District. Remote Sens. 2019, 11, 242. [Google Scholar] [CrossRef] [Green Version]
- Son, N.T.; Chen, C.F.; Chen, C.R.; Minh, V.Q. Assessment of Sentinel-1A data for rice crop classification using random for-ests and support vector machines. Geocarto Int. 2018, 33, 587–601. [Google Scholar]
- Picon, A.; Seitz, M.; Alvarez-Gila, A.; Mohnke, P.; Ortiz-Barredo, A.; Echazarra, J. Crop conditional Convolutional Neural Networks for massive multi-crop plant disease classification over cell phone acquired images taken on real field conditions. Comput. Electron. Agric. 2019, 167, 105093. [Google Scholar] [CrossRef]
- Zeyada, H.H.; Ezz, M.; Nasr, A.; Shokr, M.; Harb, H.M. Evaluation of the discrimination capability of full polarimetric SAR data for crop classification. Int. J. Remote Sens. 2016, 37, 2585–2603. [Google Scholar] [CrossRef]
- Zhou, Y.; Luo, J.; Feng, L.; Yang, Y.; Chen, Y.; Wu, W. Long-short-term-memory-based crop classification using high-resolution optical images and multi-temporal SAR data. GIScience Remote Sens. 2019, 56, 1170–1191. [Google Scholar] [CrossRef]
- Yang, C.; Hou, B.; Ren, B.; Hu, Y.; Jiao, L. CNN-Based Polarimetric Decomposition Feature Selection for PolSAR Image Clas-sification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 8796–8812. [Google Scholar] [CrossRef]
- Guo, J.; Wei, P.; Liu, J.; Jin, B.; Su, B.; Zhou, Z. Crop Classification Based on Differential Characteristics of H/α Scattering Pa-rameters for Multitemporal Quad- and Dual-Polarization SAR Images. IEEE Trans. Geosci. Remote Sens. 2018, 56, 6111–6123. [Google Scholar] [CrossRef]
- Ustuner, M.; Balik Sanli, F. Polarimetric Target Decompositions and Light Gradient Boosting Machine for Crop Classification: A Comparative Evaluation. ISPRS Int. J. Geo-Inf. 2019, 8, 97. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Peethambaran, J.; Zhang, Z. A supervoxel-based vegetation classification via decomposition and modelling of full-waveform airborne laser scanning data. Int. J. Remote Sens. 2018, 39, 2937–2968. [Google Scholar] [CrossRef]
- Jolliffe, I.T. Principal Component Analysis; Springer: Heidelberg/Berlin, Germany, 2002; pp. 1094–1096. [Google Scholar]
- Min, X.P.; Wang, H.; Yang, Z.W.; Ge, S.X.; Zhang, J.; Shao, N.X. Relevant Component Locally Linear Embedding Dimension-ality Reduction for Gene Expression Data Analysis. Metall. Min. Ind. 2015, 4, 186–194. [Google Scholar]
- Báscones, D.; González, C.; Mozos, D. Hyperspectral Image Compression Using Vector Quantization, PCA and JPEG2000. Remote Sens. 2018, 10, 907. [Google Scholar] [CrossRef] [Green Version]
- Bartlett, M.S.; Movellan, J.R.; Sejnowski, T.J. Face recognition by independent component analysis. IEEE Trans. Neural Netw. 2002, 13, 1450–1464. [Google Scholar] [CrossRef] [PubMed]
- Dehghanpoor, G.; Frachetti, M.; Juba, B. A Tensor Decomposition Method for Unsupervised Feature Learning on Satellite Imagery. In Proceedings of the IGARSS 2020—2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020; pp. 1679–1682. [Google Scholar] [CrossRef]
- Ren, J.; Yu, X.; Hao, B. Classification of landsat TM image based on non negative matrix factorization. In Proceedings of the 2007 IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 23–28 July 2007; pp. 405–408. [Google Scholar] [CrossRef]
- Roweis, S.T.; Saul, L.K. Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science 2000, 290, 2323–2326. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.-W.; Tao, C.-S. PolSAR Image Classification Using Polarimetric-Feature-Driven Deep Convolutional Neural Network. IEEE Geosci. Remote Sens. Lett. 2018, 15, 627–631. [Google Scholar] [CrossRef]
- Xie, G.-S.; Zhang, X.-Y.; Liu, C.-L. Efficient Feature Coding Based on Auto-encoder Network for Image Classification. In Proceedings of the Asian Conference on Computer Vision—ACCV 2014, Singapore, 16 April 2015; pp. 628–642. [Google Scholar]
- Kim, H.; Hirose, A. Unsupervised Fine Land Classification Using Quaternion Autoencoder-Based Polarization Feature Extraction and Self-Organizing Mapping. IEEE Trans. Geosci. Remote Sens. 2017, 56, 1839–1851. [Google Scholar] [CrossRef]
- Ren, K.; Ye, H.; Gu, G.; Chen, Q. Pulses Classification Based on Sparse Auto-Encoders Neural Networks. IEEE Access 2019, 7, 92651–92660. [Google Scholar] [CrossRef]
- Babajide, O.A.; Ayinde, E.H.; Jacek, M.Z. Visualizing and Understanding Nonnegativity Constrained Sparse Autoencoder in Deep Learning. In Proceedings of the International Conference on Artificial Intelligence and Soft Computing, Zakopane, Poland, 29 May 2016; pp. 3–14. [Google Scholar]
- Huang, L.; Xia, W.; Zhang, B.; Qiu, B.; Gao, X. MSFCN-multiple supervised fully convolutional networks for the osteosar-coma segmentation of CT images. Comput. Methods Progr. Biomed. 2017, 143, 67–74. [Google Scholar] [CrossRef]
- Caves, R.; Davidson, G.; Padda, J.; Ma, A. AgriSAR 2009 Final Report: Vol 1 Executive Summary, Data Acquisition, Data Simulation; Tech. Rep. 22689/09; ESA: Paris, France, 2011. [Google Scholar]
Feature Extraction Schemes | Features | Dimension |
---|---|---|
Features based on measured data | Polarization intensities , , | 3 |
Amplitude of HH-VV correlation | 1 | |
Phase difference of HH-VV | 1 | |
Co-polarized ratio | 1 | |
Cross-polarized ratio | 1 | |
Co-polarization ratio | 1 | |
Degrees of polarization | 2 | |
Incoherent decomposition | Freeman decomposition | 5 |
Yamaguchi decomposition | 7 | |
Cloude decomposition | 3 | |
Huynen decomposition | 9 | |
Other decomposition | Null angle parameters | 2 |
Sum | 36 |
Layer | Detailed Description | Output Size | |||
---|---|---|---|---|---|
Kernel Size | Number | Stride | Padding | ||
Input | -- | 35 × 35 × 9 | |||
Conv_1 | 5 × 5 × 9 | 64 | [2,2] | same | 18 × 18 × 64 |
Conv_2 | 3 × 3 × 64 | 128 | [1,1] | same | 18 × 18 × 128 |
Maxpool_1 | 2 × 2 × 128 | -- | [2,2] | [0,0,0,0] | 9 × 9 × 128 |
Conv_3 | 3 × 3 × 128 | 256 | [1,1] | same | 9 × 9 × 256 |
Conv_4 | 3 × 3 × 256 | 128 | [2,2] | same | 5 × 5 × 128 |
Conv_5 | 3 × 3 × 128 | 128 | [1,1] | same | 5 × 5 × 128 |
Conv_6 | 1 × 1 × 256 | 32 | [1,1] | same | 9 × 9 × 32 |
Conv_7 | 1 × 1 × 128 | 64 | [1,1] | same | 5 × 5 × 64 |
Maxpool_2 | 2 × 2 × 128 | -- | [2,2] | [0,0,0,0] | 2 × 2 × 128 |
Fc_1,2,3 | -- | 256 | -- | -- | 1 × 1 × 256 |
Fc_4 | -- | M | -- | -- | 1 × 1 × M |
Softmax | softmax | 1 × 1 × M |
Crop Type | Crop Code | Number of Pixels | Total Crop Area (%) |
---|---|---|---|
Unknown | Unk | 1,323,612 | 13,236 ha (39.12%) |
Lentil | Len | 217,186 | 2172 ha (6.42%) |
Durum Wheat | Duw | 101,299 | 1013 ha (2.99%) |
Spring Wheat | Spw | 577,109 | 5771 ha (17.05%) |
Field Pea | Fip | 255,108 | 2551 ha (7.54%) |
Oat | Oat | 70,643 | 706 ha (2.09%) |
Canola | Can | 459,096 | 4591 ha (13.57%) |
Grass | Gra | 23,452 | 235 ha (0.69%) |
Mixed Pasture | Mip | 15,799 | 158 ha (0.47%) |
Mixed Hay | Mih | 28,756 | 288 ha (0.85%) |
Barley | Bar | 108,133 | 1081 ha (3.20%) |
Summer fallow | Suf | 22,445 | 224 ha (0.66%) |
Flax | Fla | 131,296 | 1313 ha (3.88%) |
Canary seed | Cas | 47,202 | 472 ha (1.39%) |
Chemical fallow | Chf | 2682 | 27 ha (0.08%) |
Total | 3,383,818 | 33,838 ha (100%) |
Method | Classification Performance | |||
---|---|---|---|---|
VA (%) | OA (%) | Kappa (%) | CPU Time | |
PCA | 80.63 | 87.92 | 85.23 | 0.4521 s |
LLE | 81.18 | 88.03 | 85.41 | 16.8427 s |
S-SAE | 91.29 | 94.24 | 93.03 | 5.5383 s |
NC-SAE | 90.26 | 94.23 | 93.05 | 0.5193 s |
Method | Recall Rates for 14 Types of Crops and OA (%) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Len | Duw | Spw | Fip | Oat | Can | Gra | Mip | Mih | Bar | Suf | Fla | Cas | Chf | OA | |
SVM | 91.4 | 1.8 | 98.3 | 93.9 | 2.3 | 95.3 | 69.5 | 8.5 | 42.1 | 3.0 | 45.4 | 40.8 | 5.8 | 0 | 75.22 |
CNN | 97.8 | 69.2 | 96.5 | 99.7 | 80.5 | 99.8 | 89.4 | 69.0 | 76.3 | 84.6 | 92.2 | 93.3 | 90.2 | 42.9 | 94.23 |
MSCDN | 99.6 | 98.4 | 99.6 | 99.8 | 97.9 | 99.9 | 98.6 | 97.3 | 96.4 | 98.1 | 98.9 | 98.5 | 99.4 | 89.9 | 99.33 |
Ground Truth | |||||||||
---|---|---|---|---|---|---|---|---|---|
CNN | MSCDN | ||||||||
Duw | Mip | Mih | Chf | Duw | Mip | Mih | Chf | ||
Classified Image | Len | 0.58 | 1.93 | 0.79 | 55.9 | 0.09 | 0.04 | 0.26 | 8.98 |
Duw | 69.2 | 1.80 | 0.01 | 0 | 98.4 | 0.65 | 0 | 0 | |
Spw | 22.9 | 1.31 | 1.75 | 0 | 0.78 | 0.14 | 0.38 | 0 | |
Fip | 0.25 | 0.07 | 0.13 | 0.33 | 0.18 | 0.04 | 0.08 | 0.67 | |
Oat | 1.18 | 0.02 | 0.36 | 0 | 0 | 0.61 | 0.01 | 0 | |
Can | 0.59 | 0 | 0.53 | 0 | 0.22 | 0 | 0.46 | 0 | |
Gra | 0 | 9.03 | 11.7 | 0.07 | 0 | 0 | 2.10 | 0.26 | |
Mip | 0.01 | 69.0 | 4.84 | 0 | 0.01 | 97.3 | 0.05 | 0 | |
Mih | 0.07 | 3.25 | 76.3 | 0 | 0 | 0.73 | 96.3 | 0 | |
Bar | 3.98 | 0.06 | 0.21 | 0 | 0.21 | 0.07 | 0 | 0 | |
Suf | 0 | 9.54 | 0 | 0 | 0.04 | 0 | 0.23 | 0 | |
Fla | 0.92 | 3.99 | 3.30 | 0.70 | 0.01 | 0.33 | 0.01 | 0.11 | |
Cas | 0.21 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Chf | 0 | 0 | 0 | 42.9 | 0 | 0 | 0 | 89.9 |
Input Sample Size | Classification Accuracy (%) | ||
---|---|---|---|
VA | OA | Kappa | |
15 × 15 | 91.07 | 95.21 | 94.21 |
35 × 35 | 98.56 | 99.33 | 99.19 |
55 × 55 | 99.10 | 99.47 | 99.37 |
Input Sample Size | Classification Accuracy (%) | ||
---|---|---|---|
VA | OA | Kappa | |
15 × 15 | 90.26 | 94.23 | 93.05 |
35 × 35 | 96.53 | 97.91 | 97.48 |
55 × 55 | 97.07 | 98.29 | 97.94 |
Method | Input Sample Size | Classification Accuracy (%) | ||
---|---|---|---|---|
VA | OA | Kappa | ||
LSTM | -- | 73.10 | 76.43 | 70.15 |
LLE + SVM | -- | -- | 65.51 | 55.48 |
S-SAE + SVM | -- | -- | 78.48 | 72.92 |
PCA + CNN | 15 × 15 | 80.63 | 87.92 | 85.23 |
35 × 35 | 93.55 | 96.10 | 95.30 | |
S-SAE + CNN | 15 × 15 | 91.29 | 94.24 | 93.03 |
35 × 35 | 96.81 | 98.25 | 97.90 | |
S-SAE + MSCDN | 15 × 15 | 92.05 | 96.11 | 95.32 |
35 × 35 | 98.12 | 99.06 | 98.87 | |
NC-SAE + CNN | 15 × 15 | 90.26 | 94.23 | 93.05 |
35 × 35 | 96.53 | 97.91 | 97.48 | |
NC-SAE + MSCDN | 15 × 15 | 91.07 | 95.21 | 94.21 |
35 × 35 | 98.56 | 99.33 | 99.19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.-T.; Wang, M.; Guo, J.; Lou, S.-T. Crop Classification Using MSCDN Classifier and Sparse Auto-Encoders with Non-Negativity Constraints for Multi-Temporal, Quad-Pol SAR Data. Remote Sens. 2021, 13, 2749. https://doi.org/10.3390/rs13142749
Zhang W-T, Wang M, Guo J, Lou S-T. Crop Classification Using MSCDN Classifier and Sparse Auto-Encoders with Non-Negativity Constraints for Multi-Temporal, Quad-Pol SAR Data. Remote Sensing. 2021; 13(14):2749. https://doi.org/10.3390/rs13142749
Chicago/Turabian StyleZhang, Wei-Tao, Min Wang, Jiao Guo, and Shun-Tian Lou. 2021. "Crop Classification Using MSCDN Classifier and Sparse Auto-Encoders with Non-Negativity Constraints for Multi-Temporal, Quad-Pol SAR Data" Remote Sensing 13, no. 14: 2749. https://doi.org/10.3390/rs13142749
APA StyleZhang, W. -T., Wang, M., Guo, J., & Lou, S. -T. (2021). Crop Classification Using MSCDN Classifier and Sparse Auto-Encoders with Non-Negativity Constraints for Multi-Temporal, Quad-Pol SAR Data. Remote Sensing, 13(14), 2749. https://doi.org/10.3390/rs13142749