Mapping Threats of Spring Frost Damage to Tea Plants Using Satellite-Based Minimum Temperature Estimation in China
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data
2.2.1. Ground-Based Meteorological Data
2.2.2. Remotely Sensed Products
3. Methodology
3.1. Satellite-Based Tmin Estimation
3.2. Spatiotemporal Characteristics of SFD
3.3. Multidimensional Risk of SFD
3.4. Mann-Kendall Test
4. Results
4.1. Temporal Dynamics of SFD for Tea Plants in 2003–2020
4.1.1. Annual Dynamics
4.1.2. Daily Dynamics
4.2. Spatial Characteristics of SFD Days for Tea Plants in 2003–2020
4.2.1. Average SFD Days
4.2.2. Annual SFD Days
4.3. Risk of SFD for Tea Plants
4.3.1. Temporal Risk
4.3.2. Spatial Risk
4.3.3. Terrain Risk
5. Discussion and Limitations
5.1. Advantage for Satellite-Based Tmin Estimation
5.2. Rationality of Risk Distribution
5.3. Impacts of Spring Frost Types
5.4. Potential Migration of Risk under Climate Warming
5.5. Uncertainties and Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jin, J.; Diao, X.G.; Feng, H.Q. The status and development trend forecast of Zhejiang tea industry in 2019. China Tea 2020, 3, 53–57. [Google Scholar]
- IPCC. Summary for policymakers. In Climate Change 2013. In The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; p. 1535. [Google Scholar]
- Shen, R.Q.; Chen, X.Z.; Chen, L.; He, B.; Yuan, W.P. Regional evaluation of satellite-based methods for identifying leaf unfolding date. ISPRS J. Photogramm. Remote Sens. 2021, 175, 88–98. [Google Scholar] [CrossRef]
- Fu, Y.H.; Piao, S.L.; de Beeck, M.O.; Cong, N.; Zhao, H.F.; Zhang, Y.; Menzel, A.; Janssens, I.A. Recent spring phenology shifts in western Central Europe based on multiscale observations. Glob. Ecol. Biogeogr. 2014, 23, 1255–1263. [Google Scholar] [CrossRef]
- Kodra, E.; Steinhaeuser, K.; Ganguly, A.R. Persisting cold extremes under 21st-century warming scenarios. Geophys. Res. Lett. 2011, 38, 99–106. [Google Scholar] [CrossRef] [Green Version]
- Augspurger, C.K. Reconstructing patterns of temperature, phenology, and frost damage over 124 years: Spring damage risk is increasing. Ecology 2013, 94, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Inouye, D.W. The ecological and evolutionary significance of frost in the context of climate change. Ecol. Lett. 2000, 3, 457–463. [Google Scholar] [CrossRef]
- Hufkens, K.; Friedl, M.A.; Keenan, T.F.; Sonnentag, O.; Bailey, A.; O’Keefe, J.; Richardson, A.D. Ecological impacts of a widespread frost event following early spring leafout. Glob. Chang. Biol. 2012, 18, 2365–2377. [Google Scholar] [CrossRef]
- Muffler, L.; Beierkuhnlein, C.; Aas, G.; Jentsch, A.; Schweiger, A.H.; Zohner, C.; Kreyling, J. Distribution ranges and spring phenology explain late frost sensitivity in 170 woody plants from the Northern Hemisphere. Glob. Ecol. Biogeogr. 2016, 25, 1061–1071. [Google Scholar] [CrossRef]
- Bascietto, M.; Bajocco, S.; Mazzenga, F.; Matteucci, G. Assessing spring frost effects on beech forests in Central Apennines from remotely-sensed data. Agric. For. Meteorol. 2018, 248, 240–250. [Google Scholar] [CrossRef]
- Vitasse, Y.; Schneider, L.; Rixen, C.; Christen, D.; Rebetez, M. Increase in the risk of exposure of forest and fruit trees to spring frosts at higher elevations in Switzerland over the last four decades. Agric. For. Meteorol. 2018, 248, 60–69. [Google Scholar] [CrossRef]
- Jin, Z.F.; Yao, Y.P. Research on Key Technique of Meteorological Support for the Tea Production in Regions South of the Yangtze River; China Meteorological Press: Beijing, China, 2017. (In Chinese) [Google Scholar]
- Snyder, R.; de Melo-Abreu, J.P.; Matulich, S. Frost Protection: Fundamentals, Practice and Economics volume 1 and 2; Environment and Natural Resources Service Publications: Roma, Italy, 2005. [Google Scholar]
- Kotikot, S.M.; Flores, A.; Griffin, R.E.; Sedah, A.; Nyaga, J.; Mugo, R.; Limaye, A.; Irwin, D.E. Mapping threats to agriculture in East Africa: Performance of MODIS derived LST for frost identification in Kenya’s tea plantations. Int. J. Appl. Earth Obs. Geoinf. 2018, 72, 131–139. [Google Scholar] [CrossRef]
- Ducrey, M. Aspects Écophysiologiques de la Réponse et de L’adaptation des Sapins Méditerranéens aux Extrêmes Climatiques: Gelées Printanières et Sécheresse Estivale. 1998. Available online: https://core.ac.uk/reader/15518378 (accessed on 9 July 2021).
- Jin, Z.F.; Ye, J.G.; Yang, Z.Q.; Sun, R.; Hu, B.; Li, R.Z. Climate suitability for tea growing in Zhejiang Province. Chin. J. Appl. Ecol. 2014, 25, 967–973. Available online: http://www.cjae.net/CN/Y2014/V25/I4/967 (accessed on 9 July 2021). (In Chinese with English Abstract).
- Jin, Z.F.; Yao, Y.P.; Gao, L.; Wang, Z.H.; Yu, L.Y.; Chen, H.; Li, R.Z. Grade of Frost Damage to Tea Plant; QX/T 410—2017; China Meteorological Administration: Beijing, China, 2017. (In Chinese) [Google Scholar]
- Hu, B.; Jin, Z.F.; Yan, J.Z.; Li, R.Z. Temporal and spatial distribution of early spring frost of Camellia Sinensic in Zhejiang Province based on FastICA. Chin. Agric. Sci. Bull. 2014, 30, 190–196, (In Chinese with English Abstract). [Google Scholar]
- Lou, W.P.; Wu, L.H.; Ji, Z.W. The contribution of climate change to economic output of Wuniuzao spring tea in Shaoxing. Chin. J. Ecol. 2014, 33, 3358–3367, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Jin, Z.F.; Hu, B.; Yan, J.Z.; Yang, Z.Q.; Li, R.Z.; Ye, J.G. Agro-meteorological disaster risk evaluation of tea planting in Zhejiang Province. Chin. J. Ecol. 2014, 33, 771–777, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Zhu, W.B.; Lv, A.F.; Jia, S.F. Estimation of daily maximum and minimum air temperature using MODIS land surface temperature products. Remote Sens. Environ. 2013, 130, 62–73. [Google Scholar] [CrossRef]
- Rosenfeld, A.; Dorman, M.; Schwartz, J.; Novack, V.; Just, A.C.; Kloog, T. Estimating daily minimum, maximum, and mean near surface air temperature using hybrid satellite models across Isreal. Environ. Res. 2017, 159, 297–312. [Google Scholar] [CrossRef]
- Rao, Y.H.; Liang, S.L.; Wang, S.D.; Yu, Y.Y.; Song, Z.; Zhou, Y.; Shen, M.G.; Xu, B.Q. Estimating daily average surface air temperature using satellite land surface temperature and top-of-atmosphere radiation products over the Tibetan Plateau. Remote Sens. Environ. 2019, 234, 111462. [Google Scholar] [CrossRef]
- Yang, J.S.; Wang, Y.Q.; August, P.V. Estimation of Land Surface Temperature Using Spatial Interpolation and Satellite-Derived Surface Emissivity. J. Environ. Inform. 2004, 4, 37–44. [Google Scholar] [CrossRef]
- Mahdian, M.H.; Bandarabady, S.R.; Sokouti, R.; Norouzi Banis, Y. Appraisal of the geostatistical methods to estimate monthly and annual Temperature. J. Appl. Sci. 2009, 9, 128–134. [Google Scholar] [CrossRef]
- Wu, T.T.; Li, Y.R. Spatial interpolation of temperature in the United States suing residual kriging. Appl. Geogr. 2013, 44, 112–120. [Google Scholar] [CrossRef]
- Jin, M.L.; Dickinson, R.E. Land surface skin temperature climatology: Benefitting from the strengths of satellite observations. Environ. Res. Lett. 2010, 5, 044004. [Google Scholar] [CrossRef] [Green Version]
- Vancutsem, C.; Ceccato, P.; Dunku, T.; Connor, S.J. Evaluation of MODIS land surface temperature data to estimate air temperature in different ecosystems over Africa. Remote Sens. Environ. 2010, 114, 449–465. [Google Scholar] [CrossRef]
- Benali, A.; Carvalho, A.C.; Nunes, J.P.; Carvalhais, N.; Santos, A. Estimating air surface temperature in Portugal using MODIS LST data. Remote Sens. Environ. 2012, 124, 108–121. [Google Scholar] [CrossRef]
- Lin, S.P.; Moore, N.J.; Messina, J.P.; DeVisser, M.H.; Wu, J.P. Evaluation of estimating daily maximum and minimum air temperature with MODIS data in east Africa. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 128–140. [Google Scholar] [CrossRef]
- Yoo, C.; Im, J.; Park, S.; Quakenhush, L.J. Estimation of daily maximum and minimum air temperatures in urban landscapes using MODIS time series satellite data. ISPRS J. Photogramm. Remote Sens. 2018, 137, 149–162. [Google Scholar] [CrossRef]
- Wang, P.J.; Ma, Y.P.; Tang, J.X.; Wu, D.R.; Chen, H.; Jin, Z.F.; Huo, Z.G. Spring frost damage to tea plants can be identified with daily minimum air temperatures estimated by MODIS land surface temperature products. Remote Sens. 2021, 13, 1177. [Google Scholar] [CrossRef]
- Sulla-Menashe, D.; Friedl, M.A. User Guide to Collection 6 MODIS Land Cover (MCD12Q1 and MCD12Q2) Product. 2018. Available online: https://lpdaac.usgs.gov/documents/101/MCD12_User_Guide_V6.pdf (accessed on 7 July 2021).
- Sun, L.; Chen, Z.X.; Gao, F.; Anderson, M.; Song, L.S.; Wang, L.M.; Hu, B.; Yang, Y. Reconstructing daily clear-sky land surface temperature for cloudy regions from MODIS data. Comput. Geosci. 2017, 105, 10–20. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Measures; Charles Griffin: London, UK, 1975; p. 202. [Google Scholar]
- Yue, S.; Wang, C.Y. The Mann-Kendall test modified by effective sample size to detect trend in serially correlated hydrological series. Water Resour. Manag. 2004, 18, 201–218. [Google Scholar] [CrossRef]
- Shadmani, M.; Marofi, S.; Roknian, M. Trend analysis in reference evapotranspiration using Mann-Kendall and Spearman’s Rho tests in arid regions of Iran. Water Resour. Manag. 2012, 26, 211–224. [Google Scholar] [CrossRef] [Green Version]
- Asfaw, A.; Simane, B.; Hassen, A.; Bantider, A. Variability and time series trend analysis of rainfall and temperature in northcentral Ethiopia: A case study in Woleka sub-basin. Weather Clim. Extrem. 2018, 19, 29–41. [Google Scholar] [CrossRef]
- Sneyers, R. Sur l’analyse Statistique des Series d’Observations; Tech Note; OMM: Geneva, Switzerland, 1975. [Google Scholar]
- Gerstengarbe, F.W.; Werner, P.C. Estimation of the beginning and end of recurrent events within a climate regime. Clim. Res. 1999, 11, 97–107. Available online: https://www.int-res.com/articles/cr/11/c011p097.pdf (accessed on 9 July 2021). [CrossRef] [Green Version]
- Zhao, J.; Huang, Q.; Chang, J.X.; Liu, D.F.; Huang, S.Z.; Shi, X.Y. Analysis of temporal and spatial trends of hydro-climatic variables in the Wei River Basin. Environ. Res. 2015, 139, 55–64. [Google Scholar] [CrossRef]
- Ullah, S.; You, Q.L.; Ali, A.; Ullah, W.; Jan, M.A.; Zhang, Y.Q.; Xie, W.X.; Xie, X.R. Observed changes in maximum and minimum temperatures over China-Pakistan economic corridor during 1980–2016. Atmos. Res. 2019, 216, 37–51. [Google Scholar] [CrossRef]
- Wu, C.G.; Ning, S.W.; Jin, J.L.; Zhou, Y.L.; Zhou, L.Y.; Bai, X.; Zhang, L.B.; Cui, Y. Construction and application of comprehensive drought index based on uncertainty cloud reasoning algorithm. Sci. Total Environ. 2021, 779, 146533. [Google Scholar] [CrossRef]
- Zhao, L.C.; Li, Q.Z.; Zhang, Y.; Wang, H.Y.; Du, X. Normalized NDVI valley area index (NNVAI)-based framework for quantitative and timely monitoring of winter wheat frost damage on the Huang-Huai-Hai Plain, China. Agric. Ecosyst. Environ. 2020, 292, 106793. [Google Scholar] [CrossRef]
- Reinsdorf, E.; Koch, H.J. Modeling crown temperature of winter sugar beet and its application in risk assessment for frost killing in Central Europe. Agric. For. Meteorol. 2013, 182–183, 21–30. [Google Scholar] [CrossRef]
- Pulatov, B.; Linderson, M.; Hall, K.; Jönsson, A.M. Modeling climate change impact on potato crop phenology, and risk of frost damage and heat stress in northern Europe. Agric. For. Meteorol. 2015, 214–215, 281–292. [Google Scholar] [CrossRef]
- Awaya, Y.; Tanaka, K.; Kodani, E.; Nishizono, T. Responses of a beech (Fagus crenata Blume) stand to late spring frost damage in Morioka, Japan. For. Ecol. Manag. 2009, 257, 2359–2369. [Google Scholar] [CrossRef]
- Allevato, E.; Saulino, L.; Cesarano, G.; Chirico, G.B.; D’Urso, G.; Bolognesi, S.F.; Rita, A.; Rossi, S.; Saracino, A.; Bonanomi, G. Canopy damage by spring frost in European beech along the Apennines: Effect of latitude, altitude and aspect. Remote Sens. Environ. 2019, 225, 431–440. [Google Scholar] [CrossRef]
- Hänninen, H. Climate warming and the risk of frost damage to boreal forest trees: Identification of critical ecophysiological traits. Tree Physiol. 2006, 26, 889–898. [Google Scholar] [CrossRef] [Green Version]
- Parker, L.; Pathak, T.; Ostoja, S. Climate change reduces frost exposure for high-value California orchard crops. Sci. Total Environ. 2021, 762, 143971. [Google Scholar] [CrossRef]
- Proietti, R.; Antonucci, S.; Monteverdi, M.C.; Garfi, V.; Marchetti, M.; Plutino, M.; Di Carlo, M.; Germani, A.; Santopuoli, G.; Castaldi, C.; et al. Monitoring spring phenology in Mediterranean beech populations through in situ observation and Synthetic Aperture Radar methods. Remote Sens. Environ. 2020, 248, 111978. [Google Scholar] [CrossRef]
- Laughlin, G.P. Minimum temperature and lapse rate in complex terrain: Influencing factors and prediction. Arch. Meteorol. Geophys. Bioclimatol. Ser. B 1982, 30, 141–152. [Google Scholar] [CrossRef]
- Kotikot, S.M.; Flores, A.; Griffin, R.E.; Nyaga, J.; Case, J.L.; Mugo, R.; Sedah, A.; Adams, E.; Limaye, A.; Irwin, D.E. Statistical characterization of frost zones: Case of tea freeze damage in the Kenyan highlands. Int. J. Appl. Earth Obs. Geoinf. 2020, 84, 101971. [Google Scholar] [CrossRef]
- Laughlin, G.P.; Kalma, J.D. Frost risk mapping for landscape planning: A methodology. Theor. Appl. Climatol. 1990, 42, 41–51. [Google Scholar] [CrossRef]
- Longstroth, M. Analyzing and Improving Your Farm’s Air Drainage. 2012. Available online: http://msue.anr.msu.edu/news/analyzing_and_improving_your_farms_air_drainage (accessed on 22 May 2021).
- Gurskaya, M.; Moiseev, P.; Wilmking, M. Does slope exposure affect frost ring formation in Picea obovata growing at treeline in the Southern Urals? Silva Fenn. 2016, 50, 1560. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.J.; Tang, J.X.; Jin, Z.F.; Ma, Y.P.; Chen, H. Review on spring frost disaster for tea plant in China. J. Appl. Meteorol. Sci. 2021, 32, 129–145, (In Chinese with English Abstract). [Google Scholar]
- Svystun, T.; Lundströmer, J.; Berlin, M.; Westin, J.; Jönsson, A.M. Model analysis of temperature impact on the Norway spruce provenance specific bud burst and associated risk of frost damage. For. Ecol. Manag. 2021, 493, 119252. [Google Scholar] [CrossRef]
- Diniz, É.S.; Lorenzon, A.S.; de Castro, N.L.M.; Marcatto, G.E.; dos Santos, O.P.; de Deus, J.C., Jr.; Cavalcante, R.B.L.; Fernandes-Filho, E.I.; Amaral, C.H. Forecasting frost risk in forest plantations by the combination of spatial data and machine learning algorithms. Agric. For. Meteorol. 2021, 306, 108450. [Google Scholar] [CrossRef]
- Hoffmann, A.A.; Sgrò, C.M. Climate change and evolutionary adaptation. Nature 2011, 470, 479–485. [Google Scholar] [CrossRef]
- Li, C.; Wang, R.H.; Cui, X.F.; Wu, F.; Yan, Y.; Pang, Q.; Qian, Z.H.; Xu, Y. Responses of vegetation spring phenology to climatic factors in Xinjiang, China. Ecol. Ind. 2021, 124, 107286. [Google Scholar] [CrossRef]
- Hänninen, H.; Kramer, K. A framework for modelling the annual cycle of trees in boreal and temperate regions. Silva Fenn. 2007, 41, 167–205. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Cao, R.Y.; Chen, J.; Rao, Y.H.; Tang, Y.H. Temperature sensitivity of spring vegetation phenology correlates to within-spring warming speed over the Northern Hemisphere. Ecol. Ind. 2015, 50, 62–68. [Google Scholar] [CrossRef]
- Guo, L.; Wang, J.H.; Li, M.J.; Liu, L.; Xu, J.C.; Cheng, J.M.; Gang, C.C.; Yu, Q.; Chen, J.; Peng, C.H.; et al. Distribution margins as natural laboratories to infer species’ flowering responses to climate warming and implications for frost risk. Agric. For. Meteorol. 2019, 268, 299–307. [Google Scholar] [CrossRef]
- Shi, P.J.; Chen, Z.H.; Reddy, G.V.P.; Hui, G.; Huang, J.G.; Xiao, M. Timing of cherry tree blooming: Contrasting effects of rising winter low temperatures and early spring temperatures. Agric. For. Meteorol. 2017, 240, 78–89. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.L. Risk Evaluation Technology Research of Spring frost Injury in Southern Yangtze Tea Areas. Master’s Thesis, Nanjing University of Information Science & Technology, Nanjing, China, 2015. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, P.; Tang, J.; Ma, Y.; Wu, D.; Yang, J.; Jin, Z.; Huo, Z. Mapping Threats of Spring Frost Damage to Tea Plants Using Satellite-Based Minimum Temperature Estimation in China. Remote Sens. 2021, 13, 2713. https://doi.org/10.3390/rs13142713
Wang P, Tang J, Ma Y, Wu D, Yang J, Jin Z, Huo Z. Mapping Threats of Spring Frost Damage to Tea Plants Using Satellite-Based Minimum Temperature Estimation in China. Remote Sensing. 2021; 13(14):2713. https://doi.org/10.3390/rs13142713
Chicago/Turabian StyleWang, Peijuan, Junxian Tang, Yuping Ma, Dingrong Wu, Jianying Yang, Zhifeng Jin, and Zhiguo Huo. 2021. "Mapping Threats of Spring Frost Damage to Tea Plants Using Satellite-Based Minimum Temperature Estimation in China" Remote Sensing 13, no. 14: 2713. https://doi.org/10.3390/rs13142713
APA StyleWang, P., Tang, J., Ma, Y., Wu, D., Yang, J., Jin, Z., & Huo, Z. (2021). Mapping Threats of Spring Frost Damage to Tea Plants Using Satellite-Based Minimum Temperature Estimation in China. Remote Sensing, 13(14), 2713. https://doi.org/10.3390/rs13142713