Mapping and Evaluating Human Pressure Changes in the Qilian Mountains
Abstract
:1. Introduction
2. Study Area and Methods
2.1. Study Area
2.2. Data Sources
2.2.1. Human Pressure Data
2.2.2. Vegetation Data
2.3. Methods
2.3.1. Human Footprint
2.3.2. Data Analyses
2.4. Software
3. Results
3.1. Human Pressure Changes
3.2. NDVI Changes
3.3. Human Effects on Vegetation
4. Discussion
4.1. Human Positive Effects
4.2. Human Negative Effects
4.3. Data Uncertainties
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Malhi, Y.; Roberts, J.T.; Betts, R.A.; Killeen, T.J.; Li, W.; Nobre, C.A. Climate Change, Deforestation, and the Fate of the Amazon. Science 2008, 319, 169–172. [Google Scholar] [CrossRef] [Green Version]
- Crutzen, P.J. Geology of mankind. Nat. Cell Biol. 2002, 415, 23. [Google Scholar] [CrossRef]
- Fleskens, L.; Stringer, L.C. Land Management and Policy Responses to Mitigate Desertification and Land Degradation. Land Degrad. Dev. 2014, 25, 1–4. [Google Scholar] [CrossRef]
- Artmann, M. Institutional efficiency of urban soil sealing management–From raising awareness to better implementation of sustainable development in Germany. Landsc. Urban Plan. 2014, 131, 83–95. [Google Scholar] [CrossRef]
- Cózar, A.; Echevarría, F.; González-Gordillo, J.I.; Irigoien, X.; Úbeda, B.; Hernández-León, S.; Palma Álvaro, T.; Navarro, S.; García-De-Lomas, J.; Ruiz, A.; et al. Plastic debris in the open ocean. Proc. Natl. Acad. Sci. USA 2014, 111, 10239–10244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costelloe, B.; Collen, B.; Milner-Gulland, E.; Craigie, I.D.; McRae, L.; Rondinini, C.; Nicholson, E. Global Biodiversity Indicators Reflect the Modeled Impacts of Protected Area Policy Change. Conserv. Lett. 2015, 9, 14–20. [Google Scholar] [CrossRef]
- Sukhdev, P.; Kumar, P. The Economics of Ecosystems and Biodiversity (TEEB); European Communities: Wesseling, Germany, 2008. [Google Scholar]
- Sanderson, E.W.; Jaiteh, M.; Levy, M.A.; Redford, K.H.; Wannebo, A.V.; Woolmer, G. The Human Footprint and the Last of the Wild. BioScience 2002, 52, 891–904. [Google Scholar] [CrossRef]
- McCloskey, J.M.; Spalding, H. A Reconnaissance-Level Inventory of the Amount of Wilderness Remaining in the World. Ambio 1989, 18, 221–227. [Google Scholar]
- Alkemade, R.; Van Oorschot, M.; Miles, L.; Nellemann, C.; Bakkenes, M.; Brink, B.T. GLOBIO3: A Framework to Investigate Options for Reducing Global Terrestrial Biodiversity Loss. Ecosystem 2009, 12, 374–390. [Google Scholar] [CrossRef] [Green Version]
- Ellis, E.; Ramankutty, N. Putting people in the map: Anthropogenic biomes of the world. Front. Ecol. Environ. 2008, 6, 439–447. [Google Scholar] [CrossRef] [Green Version]
- Jacobson, A.P.; Riggio, J.; Tait, A.; Baillie, J.E.M. Global areas of low human impact (‘Low Impact Areas’) and fragmentation of the natural world. Sci. Rep. 2019, 9, 1–13. [Google Scholar] [CrossRef]
- Kennedy, C.M.; Oakleaf, J.R.; Theobald, D.M.; Baruch-Mordo, S.; Kiesecker, J. Managing the middle: A shift in conservation priorities based on the global human modification gradient. Glob. Chang. Biol. 2019, 25, 811–826. [Google Scholar] [CrossRef]
- Geldmann, J.; Manica, A.; Burgess, N.D.; Coad, L.; Balmford, A. A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures. Proc. Natl. Acad. Sci. USA 2019, 116, 23209–23215. [Google Scholar] [CrossRef]
- Venter, O.; Sanderson, E.W.; Magrach, A.; Allan, J.R.; Beher, J.; Jones, K.R.; Possingham, H.P.; Laurance, W.F.; Wood, P.; Fekete, B.M.; et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 2016, 7, 12558. [Google Scholar] [CrossRef] [Green Version]
- Karimi, A.; Jones, K. Assessing national human footprint and implications for biodiversity conservation in Iran. Ambio 2020, 49, 1506–1518. [Google Scholar] [CrossRef]
- Verma, M.; Symes, W.S.; Watson, J.E.M.; Jones, K.R.; Allan, J.R.; Venter, O.; Rheindt, F.E.; Edwards, D.P.; Carrasco, L.R. Severe human pressures in the Sundaland biodiversity hotspot. Conserv. Sci. Pract. 2020, 2, 169. [Google Scholar] [CrossRef] [Green Version]
- Jones, K.R.; Venter, O.; Fuller, R.A.; Allan, J.R.; Maxwell, S.L.; Negret, P.J.; Watson, J.E.M. One-third of global protected land is under intense human pressure. Science 2018, 360, 788–791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, L.; Duan, Q.; Wang, L.; Zhao, W.; Zhuang, Y. Increased human pressures on the alpine ecosystem along the Qinghai-Tibet Railway. Reg. Environ. Chang. 2020, 20, 1–13. [Google Scholar] [CrossRef]
- Li, S.; Zhang, Y.; Wang, Z.; Li, L. Mapping human influence intensity in the Tibetan Plateau for conservation of ecological service functions. Ecosyst. Serv. 2018, 30, 276–286. [Google Scholar] [CrossRef]
- Riggio, J.; Baillie, J.E.M.; Brumby, S.; Ellis, E.; Kennedy, C.M.; Oakleaf, J.R.; Tait, A.; Tepe, T.; Theobald, D.M.; Venter, O.; et al. Global human influence maps reveal clear opportunities in conserving Earth’s remaining intact terrestrial ecosystems. Glob. Chang. Biol. 2020, 26, 4344–4356. [Google Scholar] [CrossRef]
- Qian, D.; Cao, G.; Du, Y.; Li, Q.; Guo, X. Impacts of climate change and human factors on land cover change in inland mountain protected areas: A case study of the Qilian Mountain National Nature Reserve in China. Environ. Monit. Assess. 2019, 191, 486. [Google Scholar] [CrossRef]
- Jiao, L.; Zhao, C.Z. The analysis and evaluation on grassland ecosystem service function value of Shandan Horse Field in Qilian Mountain National Nature Reserve. J. Arid Land Resour. Environ. 2013, 27, 47–52. [Google Scholar] [CrossRef]
- Song, X.; Yan, C.; Xie, J.; Li, S. Assessment of changes in the area of the water conservation forest in the Qilian Mountains of China’s Gansu province, and the effects on water conservation. Environ. Earth Sci. 2011, 66, 2441–2448. [Google Scholar] [CrossRef]
- Li, X.; Gou, X.H.; Wang, N.L.; Sheng, Y.; Jin, H.J.; Qi, Y.; Song, X.Y.; Hou, F.J.; Li, Y.; Zhao, C.M.; et al. Tightening ecological management facilitates green development in the Qilian Mountains. Chin. Sci. Bull. 2019, 64, 2928–2937. [Google Scholar] [CrossRef] [Green Version]
- Yao, Z.; Zhao, C.; Yang, K.; Liu, W.; Li, Y.; You, J.; Xiao, J. Alpine grassland degradation in the Qilian Mountains, China–A case study in Damaying Grassland. Catena 2016, 137, 494–500. [Google Scholar] [CrossRef]
- Wang, T.; Gao, F.; Wang, B.; Wang, P.; Wang, Q.; Song, H.; Yin, C. Status and suggestions on ecological protec-tion and restoration of Qilian Mountains. J. Glaciol. Geocryol. 2017, 39, 229–234. [Google Scholar] [CrossRef]
- Gobattoni, F.; Pelorosso, R.; Lauro, G.; Leone, A.; Monaco, R. A procedure for mathematical analysis of landscape evolution and equilibrium scenarios assessment. Landsc. Urban Plan. 2011, 103, 289–302. [Google Scholar] [CrossRef]
- Fischer, J.; Lindenmayer, D.B. Landscape modification and habitat fragmentation: A synthesis. Glob. Ecol. Biogeogr. 2007, 16, 265–280. [Google Scholar] [CrossRef]
- Guo, W.; Liu, H.; Anenkhonov, O.; Shangguan, H.; Sandanov, D.; Korolyuk, A.Y.; Hu, G.; Wu, X. Vegetation can strongly regulate permafrost degradation at its southern edge through changing surface freeze-thaw processes. Agric. For. Meteorol. 2018, 252, 10–17. [Google Scholar] [CrossRef]
- Baranova, A.; Schickhoff, U.; Wang, S.; Jin, M. Mountain pastures of Qilian Shan: Plant communities, grazing impact and degradation status (Gansu province, NW China). Hacquetia 2016, 15, 21–35. [Google Scholar] [CrossRef] [Green Version]
- Geng, L.; Che, T.; Wang, X.; Wang, H. Detecting Spatiotemporal Changes in Vegetation with the BFAST Model in the Qilian Mountain Region during 2000–2017. Remote. Sens. 2019, 11, 103. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.; Xu, D.X.; Guo, N. Analysis on the Vegetation Change in the Qilian Mountains since Recent 22 Years. Arid Zone Res. 2008, 25, 772–777. [Google Scholar] [CrossRef]
- Deng, S.-F.; Yang, T.-B.; Zeng, B.; Zhu, X.-F.; Xu, H.-J. Vegetation cover variation in the Qilian Mountains and its response to climate change in 2000–2011. J. Mt. Sci. 2013, 10, 1050–1062. [Google Scholar] [CrossRef]
- Wang, L.; Song, W.; Zhang, J.; Ma, X.; Zhao, H.; Huang, X. Spatio-temporal evolution of vegetation net primary productivity in Qilian Mountain National Park and its driving factors. Pratacultural Sci. 2020, 37, 1458–1474. [Google Scholar] [CrossRef]
- Zhang, F.-G.; Zeng, B.; Yang, T.-B. Spatiotemporal distribution changes in alpine desert belt in Qilian Mountains under climate changes in past 30 years. Chin. J. Plant Ecol. 2019, 43, 305–319. [Google Scholar] [CrossRef]
- Gui, J.; Wang, X.F.; Li, Z.X.; Zou, H.M.; Li, A.J. Research on the response of vegetation change to human activi-ties in typical cryosphere areas: Taking the Qilian Mountains as an example. J. Glaciol. Geocryol. 2019, 41, 1235–1243. [Google Scholar]
- Wei, Y.; Lu, H.; Wang, J.; Sun, J.; Wang, X. Responses of vegetation zones, in the Qinghai-Tibetan Plateau, to climate change and anthropogenic influences over the last 35 years. Pratacultural Sci. 2019, 36, 1163–1176. [Google Scholar]
- Bao, C.; Fang, C.-L. Water resources constraint force on urbanization in water deficient regions: A case study of the Hexi Corridor, arid area of NW China. Ecol. Econ. 2007, 62, 508–517. [Google Scholar] [CrossRef]
- Chinese Academy of Sciences Resource and Environmental Science Data Center (http://www.resdc.cn/). Landuse dataset in China (1980–2015). National Tibetan Plateau Data Center. 2019. [Google Scholar]
- Coast, S. How OpenStreetMap is Changing the World[C]. In Proceedings of the 10th International Symposium on Web and Wireless Geographical Information Systems (W2GIS 2011), Kyoto University, Kyoto, Japan, 3–4 March 2011. [Google Scholar]
- Xu, X. The 1-km grid Chinese population density dataset. Res. Envi. Sci. Data Center 2017. [Google Scholar] [CrossRef]
- Cao, Z.; Wu, Z.; Kuang, Y.; Huang, N. Correction of DMSP/OLS Night-time Light Images and Its Application in China. J. Geo. Inf. Sci. 2015, 17, 1092–1102. [Google Scholar]
- Hui, C. Carrying capacity, population equilibrium, and environment’s maximal load. Ecol. Model. 2006, 192, 317–320. [Google Scholar] [CrossRef]
- Luo, L.; Zhang, Z.; Ma, W.; Yi, S.; Zhuang, Y. PIC v1.3: Comprehensive R package for computing permafrost indices with daily weather observations and atmospheric forcing over the Qinghai–Tibet Plateau. Geosci. Model Dev. 2018, 11, 2475–2491. [Google Scholar] [CrossRef] [Green Version]
- Peng, C.; Ouyang, H.; Gao, Q.; Jiang, Y.; Zhang, F.; Li, J.; Yu, Q. Environment: Building a “Green” Railway in China. Science 2007, 316, 546–547. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhou, L.; Yang, G.; Guo, R.; Xia, C.; Liu, Y. Performance and Obstacle Tracking to Natural Forest Resource Protection Project: A Rangers’ Case of Qilian Mountain, China. Int. J. Environ. Res. Public Health 2020, 17, 5672. [Google Scholar] [CrossRef]
- Li, Z.; Sun, X.; Huang, Z.; Zhang, X.; Wang, Z.; Li, S.; Zheng, W.; Zhai, B. Changes in nutrient balance, environmental effects, and green development after returning farmland to forests: A case study in Ningxia, China. Sci. Total Environ. 2020, 735, 139370. [Google Scholar] [CrossRef] [PubMed]
- Litman, T. Evaluating Transportation Economic Development Impacts. Victoria Transport Policy Institute. 2010. Available online: https://www.vtpi.org/documents/evaluation.php (accessed on 1 August 2018).
- Luo, L.; Ma, W.; Zhuang, Y.; Zhang, Y.; Yi, S.; Xu, J.; Long, Y.; Ma, D.; Zhang, Z. The impacts of climate change and human activities on alpine vegetation and permafrost in the Qinghai-Tibet Engineering Corridor. Ecol. Indic. 2018, 93, 24–35. [Google Scholar] [CrossRef]
- Zhang, K.-C.; Qu, J.-J.; Liao, K.-T.; Niu, Q.-H.; Han, Q.-J. Damage by wind-blown sand and its control along Qinghai-Tibet Railway in China. Aeolian Res. 2010, 1, 143–146. [Google Scholar] [CrossRef]
- Yin, F.; Deng, X.; Jin, Q.; Yuan, Y.; Zhao, C. The impacts of climate change and human activities on grassland productivity in Qinghai Province, China. Front. Earth Sci. 2014, 8, 93–103. [Google Scholar] [CrossRef]
- Liu, Y.; Zha, Y.; Gao, J.; Ni, S. Assessment of grassland degradation near Lake Qinghai, West China, using Landsat TM and in situ reflectance spectra data. Int. J. Remote Sens. 2004, 25, 4177–4189. [Google Scholar] [CrossRef]
- Wang, X.Y.; Yang, D.W.; Zhang, L.L.; Zhang, L.M.; Xie, F.; Guo, P. The Causes of Grassland Degradation and Restoration Strategies in Qilian Mountain National Park. J. Grassl. Forage Sci. 2020, 6, 81–86. [Google Scholar] [CrossRef]
- Zhang, X.W.; Li, G.; Dong, K.H.; Zhao, X. Effects of Grazing and Enclosure on Community Characteristics and Biodiversity in Leymus chinensis Grassland. J. Grassl. Forage Sci. 2019, 4, 22–27. [Google Scholar] [CrossRef]
- Fan, K.; Guo, S.; Yuan, H. Investigation and Protection of Grassland Resource in Qilianshan Nature Reserve of Gansu. J. Gansu For. Sci. Technol. 2015, 40, 42–45. [Google Scholar] [CrossRef]
- Qian, D.; Yan, C.; Xiu, L.; Feng, K. The impact of mining changes on surrounding lands and ecosystem service value in the Southern Slope of Qilian Mountains. Ecol. Complex. 2018, 36, 138–148. [Google Scholar] [CrossRef]
- Yeh, E. Green Governmentality and Pastoralism in Western China: Converting Pastures to Grasslands’. Nomadic Peoples 2005, 9, 9–30. [Google Scholar] [CrossRef]
- Newman, B.J.; Ladd, P.; Brundrett, M.; Dixon, K.W. Effects of habitat fragmentation on plant reproductive success and population viability at the landscape and habitat scale. Biol. Conserv. 2013, 159, 16–23. [Google Scholar] [CrossRef]
- Chu, L.; Sun, T.; Wang, T.; Li, Z.; Cai, C. Evolution and Prediction of Landscape Pattern and Habitat Quality Based on CA-Markov and InVEST Model in Hubei Section of Three Gorges Reservoir Area (TGRA). Sustainability 2018, 10, 3854. [Google Scholar] [CrossRef] [Green Version]
- Assumma, V.; Bottero, M.; Monaco, R.; Soares, A.J. An integrated evaluation methodology to measure ecological and economic landscape states for territorial transformation scenarios: An application in Piedmont (Italy). Ecol. Indic. 2019, 105, 156–165. [Google Scholar] [CrossRef]
Pressure | Scores | Details |
---|---|---|
Land use/cover | 0, 1, 2, 4, 5, 9, 10 | Built-up land, rural settlements, manmade reservoirs and plantations, cropland, grassland with coverage greater than 50%, 20–50%, and less than 20%, and other types were assigned scores of 10, 9, 5, 4, 2, 1, and 0, respectively |
Road distribution | 0–10 | Assigned scores based on the road type and distance |
Railway distribution | 0, 1, 2, 4, 8 | 0–0.5 km was assigned a score of 8; 0.5–1.5 km was assigned a score of 4; 1.5–2.5 km was assigned a score of 2; 2.5–3.5 km was assigned a score of 1 |
Population density | 0–10 Continuous | |
Night-time lights | 0–10 | Assigned scores based on the equal division threshold of 2000 data |
Grazing density | 0–10 Continuous |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, Q.; Luo, L.; Zhao, W.; Zhuang, Y.; Liu, F. Mapping and Evaluating Human Pressure Changes in the Qilian Mountains. Remote Sens. 2021, 13, 2400. https://doi.org/10.3390/rs13122400
Duan Q, Luo L, Zhao W, Zhuang Y, Liu F. Mapping and Evaluating Human Pressure Changes in the Qilian Mountains. Remote Sensing. 2021; 13(12):2400. https://doi.org/10.3390/rs13122400
Chicago/Turabian StyleDuan, Quntao, Lihui Luo, Wenzhi Zhao, Yanli Zhuang, and Fang Liu. 2021. "Mapping and Evaluating Human Pressure Changes in the Qilian Mountains" Remote Sensing 13, no. 12: 2400. https://doi.org/10.3390/rs13122400