A Case for a New Satellite Mission for Remote Sensing of Night Lights
Abstract
:1. Introduction
2. Science Goals
- (E-1) What are the structure, function, and biodiversity of Earth’s ecosystems, and how and why are they changing in time and space?
- –
- (E-1a) Quantify the distribution of the functional traits, functional types, and composition of terrestrial and shallow aquatic vegetation and marine biomass, spatially and over time. (Very Important)
- –
- (E-1c) Quantify the physiological dynamics of terrestrial and aquatic primary producers. (Most Important)
- (C-2) How can we reduce the uncertainty in the amount of future warming of the Earth as a function of fossil fuel emissions, improve our ability to predict local and regional climate response to natural and anthropogenic forcings, and reduce the uncertainty in global climate sensitivity that drives uncertainty in future economic impacts and mitigation/adaptation strategies?
- (S-4) What processes and interactions determine the rates of landscape change?
- –
- (S-4a) Quantify global, decadal landscape change produced by abrupt events and by continuous reshaping of Earth’s surface from surface processes, tectonics, and societal activity. (Most Important)
- –
- (S4c) Quantify ecosystem response to and causes of landscape change. (Important)
2.1. ALAN Research Areas in Need of Expanded Remote Sensing Data
2.1.1. Ecology
- EL1
- How do “dark corridors” and “light barriers” affect the migration and roaming habits of nocturnal species in and around urban environments [50]?
- EL2
- How does the encroachment of light at night impact ecologically sensitive species and ecosystems?
- EL3
- To what degree does ALAN contribute to the decline in and diversity of insect and pollinator populations [51]?
- EL4
- How are the spectral and spatial distributions of ALAN correlated? Are there different spatial distributions of the effect of spectra on different species [52]?
- EL5
- How does the addition of strong “local” light sources affect surrounding fauna and flora populations?
- EL6
- What is the regional effect of urban light domes on the surrounding environment?
- EL7
- What are the effects of spectra on an ecosystem, for example, in the conversions from lower-frequency-dominant (HPS) to higher-frequency-rich (LED) lighting?
2.1.2. Environment
- EV1
- What is the relationship between municipal lighting policy and CO2 emission as a proxy for environmental impact?
- EV2
- What is the inefficiency of outdoor lighting as the fraction of total light that is emitted at upward angles?
- EV3
- To what degree do spatially and temporally variable sources of ALAN such as oil and gas flares, fishing lights, mega greenhouses, etc., have an effect on the environment?
- EV4
- Is there an environmental benefit of LED transitions beyond energy efficiency (e.g., is there a rebound effect)?
- EV5
- What is an accurate level of gained energy efficiency (and thus CO2 emissions) realized in LED transitions?
2.1.3. Economy
- EO1
- What is the economic impact of inefficiencies in light at night on communities and municipalities?
- EO2
- What is the economic cost of inefficient lighting in developing countries?
- EO3
- What are the best practices in the design of lighting policy to ensure a balance of results versus costs?
- EO4
- To what degree does socioeconomic status correlate to ALAN exposure/environment?
- EO5
- What are the broad impacts of rural electrification programs on local well-being and sustainability?
- EO6
- What is the best balance of economic gain versus community costs of the lighting practices of production-scale greenhouses?
- EO7
- What are the best practices for communities intending to adopt LED lighting infrastructures?
2.1.4. Policy and Society
- P1
- How do policies resulting in specific lighting interventions change the light output of municipalities/regions/countries?
- P2
- How does policy and implementation relate to changes in night sky quality as seen from the ground?
- P3
- Which policies or interventions most effectively address the issues caused by ALAN?
- P4
- Can remote sensing evaluations of city light emissions help direct resources or guide decisions by targeting the “worst offenders”?
- P5
- Are there broad cultural patterns in the use of ALAN?
- P6
- Are social or political influences at work in determining the spatiotemporal distribution of outdoor light at night that may be driving social inequality in cities?
2.1.5. Public Safety
- S1
- Does an increase in street lighting correlate to increase in traffic safety?
- S2
- Does an increase in outdoor lighting correlate to an improvement in public safety and incidences of crime?
- S3
- How does the design of the lit environment at night affect crime in urban environments?
- S4
- Is there a correlation between the level of environmental outdoor lighting and nighttime crime and at what level those are benefits optimized?
2.1.6. Human Health
- H1
- Does an increased use of higher-frequency (bluer) outdoor lighting in an environment correlate to negative health of subjects in that environment?
- H2
- Are levels of outdoor ALAN correlated with an increase in human pathologies or diseases?
- H3
- Does ALAN influence the territorial stability of animals known as vectors of novel human diseases?
- H4
- Does outdoor light pollution affect host–pathogen interactions/disease dynamics [95]?
- H5
- Does ALAN affect air pollutants through modification of photo-sensitive chemical pathways leading to creation or destruction of specific molecular species?
2.1.7. Characterization
- C1
- What is the quantity of the world lighting inventory that has transitioned to LED lighting, and to what extent is that transition dominated by blue-rich lighting?
- C2
- How well do current radiative transfer models describe and define the extent of the impact of light pollution?
- C3
- To what degree do seasonal changes (tree canopies, snow cover, etc.) affect the impact of ALAN?
- C4
- How fast is ALAN growing? How is this growth spatially and socially distributed? Is the apparent rate of growth greater as seen in particular optical passbands?
- C5
- Are there particular classes of light sources that contribute greater amounts of excessive light at night above the local norm?
- C6
- What is the impact of transition to LEDs on upward emission and atmospheric scatter?
- C7
- What is the relationship between satellite-sensed upward radiance and typical human ALAN exposures in cities?
3. Existing Orbital Data
4. Limitations of Currently Available Data
5. NITESat Mission Requirements
5.1. Ground Scale
5.2. Spectral Coverage
5.3. Sensitivity
5.4. Dynamic Range
5.5. Coverage
5.6. Temporal Sampling
5.7. Mission Duration
5.8. Overpass Times
5.9. Calibration
6. Science Traceability Matrix
7. Discussion
8. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ALAN | Artificial light at night |
DNB | Day-Night Band |
DMSP | Defense Meteorological Satellite Program |
HPS | High-pressure sodium |
LEO | Low-Earth Orbit |
NASA | National Aeronautics and Space Administration |
NASEM | National Academies of Sciences, Engineering and Medicine |
NPP | National Polar-orbiting Partnership |
NTL | Nighttime lights |
OLS | Operational Line-Scan System |
SMD | Science Mission Directorate |
SSL | Solid-state lighting |
VIIRS | Visible Infrared Imaging Radiometer Suite |
References
- Kyba, C.C.M.; Kuester, T.; de Miguel, A.S.; Baugh, K.; Jechow, A.; Hölker, F.; Bennie, J.; Elvidge, C.D.; Gaston, K.J.; Guanter, L. Artificially lit surface of Earth at night increasing in radiance and extent. Sci. Adv. 2017, 3, e1701528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rich, C.; Longcore, T. (Eds.) Ecological Consequences of Artificial Night Lighting; Island Press: Washington, DC, USA, 2006. [Google Scholar]
- Kumar, P.; Ashawat, M.S.; Pandit, V.; Sharma, D.K. Artificial Light Pollution at Night: A Risk for Normal Circadian Rhythm and Physiological Functions in Humans. Curr. Environ. Eng. 2019, 6, 111–125. [Google Scholar] [CrossRef]
- Kyba, C.C.M.; Tong, K.P.; Bennie, J.; Birriel, I.; Birriel, J.J.; Cool, A.; Danielsen, A.; Davies, T.W.; den Outer, P.N.; Edwards, W.; et al. Worldwide variations in artificial skyglow. Sci. Rep. 2015, 5, 8409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fotios, S.; Gibbons, R. Road lighting research for drivers and pedestrians: The basis of luminance and illuminance recommendations. Light. Res. Technol. 2018, 50, 154–186. [Google Scholar] [CrossRef]
- Barentine, J.; Kieda, D.; Goldsmith, S.; Foott, B.; Muir, J. The Consortium for Dark Sky Studies: A Transdisciplinary Institute for Understanding the Loss of the Night. In Proceedings of the American Astronomical Society Meeting, National Harbor, MD, USA, 8–12 January 2018; Abstract #231. Volume 231, p. 142.01. [Google Scholar]
- University of Utah Launches First-Ever Journal of Dark Sky Studies. Available online: https://unews.utah.edu/journal-of-dark-sky-studies/ (accessed on 27 August 2019).
- Acuto, M. We need a science of the night. Nature 2019, 576, 339. [Google Scholar] [CrossRef] [Green Version]
- Kyba, C.C.; Pritchard, S.B.; Ekirch, A.R.; Eldridge, A.; Jechow, A.; Preiser, C.; Kunz, D.; Henckel, D.; Hölker, F.; Barentine, J.; et al. Night Matters—Why the Interdisciplinary Field of “Night Studies” Is Needed. J. Multidiscip. Sci. J. 2020, 3, 1. [Google Scholar] [CrossRef] [Green Version]
- Cao, C.; Luccia, F.J.D.; Xiong, X.; Wolfe, R.; Weng, F. Early On-Orbit Performance of the Visible Infrared Imaging Radiometer Suite Onboard the Suomi National Polar-Orbiting Partnership (S-NPP) Satellite. IEEE Trans. Geosci. Remote Sens. 2014, 52, 1142–1156. [Google Scholar] [CrossRef] [Green Version]
- Kyba, C.; Garz, S.; Kuechly, H.; de Miguel, A.; Zamorano, J.; Fischer, J.; Hölker, F. High-Resolution Imagery of Earth at Night: New Sources, Opportunities and Challenges. Remote Sens. 2014, 7, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Grubisic, M.; Haim, A.; Bhusal, P.; Dominoni, D.M.; Gabriel, K.M.A.; Jechow, A.; Kupprat, F.; Lerner, A.; Marchant, P.; Riley, W.; et al. Light Pollution, Circadian Photoreception, and Melatonin in Vertebrates. Sustainability 2019, 11, 6400. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.J.; Lee, E.; Lee, H.S.; Kim, M.; Park, M.S. High prevalence of breast cancer in light polluted areas in urban and rural regions of South Korea: An ecologic study on the treatment prevalence of female cancers based on National Health Insurance data. Chronobiol. Int. 2015, 32, 657–667. [Google Scholar] [CrossRef]
- Portnov, B.A.; Stevens, R.G.; Samociuk, H.; Wakefield, D.; Gregorio, D.I. Light at night and breast cancer incidence in Connecticut: An ecological study of age group effects. Sci. Total Environ. 2016, 572, 1020–1024. [Google Scholar] [CrossRef]
- James, P.; Bertrand, K.A.; Hart, J.E.; Schernhammer, E.S.; Tamimi, R.M.; Laden, F. Outdoor Light at Night and Breast Cancer Incidence in the Nurses’ Health Study II. Environ. Health Perspect. 2017, 125, 087010. [Google Scholar] [CrossRef] [Green Version]
- Zhong, C.; Franklin, M.; Wiemels, J.; McKean-Cowdin, R.; Chung, N.T.; Benbow, J.; Wang, S.S.; Lacey, J.V.; Longcore, T. Outdoor artificial light at night and risk of non-Hodgkin lymphoma among women in the California Teachers Study cohort. Cancer Epidemiol. 2020, 69, 101811. [Google Scholar] [CrossRef]
- 5 Species Threatened by Light Pollution. Available online: https://www.darksky.org/5-species-threatened-by-light-pollution/ (accessed on 23 June 2016).
- Lewis, S.M.; Wong, C.H.; Owens, A.C.S.; Fallon, C.; Jepsen, S.; Thancharoen, A.; Wu, C.; Cock, R.D.; Novák, M.; López-Palafox, T.; et al. A Global Perspective on Firefly Extinction Threats. BioScience 2020, 70, 157–167. [Google Scholar] [CrossRef] [Green Version]
- Walczak, K.; Gyuk, G.; Kruger, A.; Byers, E.; Huerta, S. NITESat: A High Resolution, Full-Color, Light Pollution Imaging Satellite Mission. Int. J. Sustain. Light. 2017, 19, 48–55. [Google Scholar] [CrossRef] [Green Version]
- National Academies of Sciences, Engineering and Medicine. Thriving on Our Changing Planet: A Decadal Strategy for Earth Observation from Space; National Academies Press: Washington, DC, USA, 2018. [Google Scholar] [CrossRef]
- Stark, H.; Brown, S.S.; Wong, K.W.; Stutz, J.; Elvidge, C.D.; Pollack, I.B.; Ryerson, T.B.; Dube, W.P.; Wagner, N.L.; Parrish, D.D. City lights and urban air. Nat. Geosci. 2011, 4, 730–731. [Google Scholar] [CrossRef]
- Johnson, R.S.; Zhang, J.; Hyer, E.J.; Miller, S.D.; Reid, J.S. Preliminary investigations toward nighttime aerosol optical depth retrievals from the VIIRS Day/Night Band. Atmos. Meas. Tech. 2013, 6, 1245–1255. [Google Scholar] [CrossRef] [Green Version]
- Tong, K.P.; Kyba, C.C.; Heygster, G.; Kuechly, H.U.; Notholt, J.; Kolláth, Z. Angular distribution of upwelling artificial light in Europe as observed by Suomi–NPP satellite. J. Quant. Spectrosc. Radiat. Transf. 2020, 249, 107009. [Google Scholar] [CrossRef]
- De Miguel, A.S.; Kyba, C.C.M.; Zamorano, J.; Gallego, J.; Gaston, K.J. The nature of the diffuse light near cities detected in nighttime satellite imagery. Sci. Rep. 2020, 10, 7829. [Google Scholar] [CrossRef]
- Duriscoe, D.M.; Anderson, S.J.; Luginbuhl, C.B.; Baugh, K.E. A simplified model of all-sky artificial sky glow derived from VIIRS Day/Night band data. J. Quant. Spectrosc. Radiat. Transf. 2018, 214, 133–145. [Google Scholar] [CrossRef]
- Zurbuchen, T. Science 2020–2024: A Vision for Scientific Excellence; Technical Report; National Aeronautics and Space Administration: Washington, DC, USA, 2020. [Google Scholar]
- Sanders, D.; Frago, E.; Kehoe, R.; Patterson, C.; Gaston, K.J. A meta-analysis of biological impacts of artificial light at night. Nat. Ecol. Evol. 2020, 5, 74–81. [Google Scholar] [CrossRef]
- Dacke, M.; Baird, E.; Byrne, M.; Scholtz, C.H.; Warrant, E.J. Dung Beetles Use the Milky Way for Orientation. Curr. Biol. 2013, 23, 298–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polak, T.; Korine, C.; Yair, S.; Holderied, M.W. Differential effects of artificial lighting on flight and foraging behaviour of two sympatric bat species in a desert. J. Zool. 2011, 285, 21–27. [Google Scholar] [CrossRef]
- Rubolini, D.; Maggini, I.; Ambrosini, R.; Imperio, S.; Paiva, V.H.; Gaibani, G.; Saino, N.; Cecere, J.G. The Effect of Moonlight on Scopoli’s Shearwater Calonectris diomedea Colony Attendance Patterns and Nocturnal Foraging: A Test of the Foraging Efficiency Hypothesis. Ethology 2014, 121, 284–299. [Google Scholar] [CrossRef]
- Silva, A.D.; Diez-Méndez, D.; Kempenaers, B. Effects of experimental night lighting on the daily timing of winter foraging in common European songbirds. J. Avian Biol. 2017, 48, 862–871. [Google Scholar] [CrossRef] [Green Version]
- Farnworth, B.; Innes, J.; Waas, J.R. Converting Predation Cues into Conservation Tools: The Effect of Light on Mouse Foraging Behaviour. PLoS ONE 2016, 11, e0145432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Downs, N.; Beaton, V.; Guest, J.; Polanski, J.; Robinson, S.; Racey, P. The effects of illuminating the roost entrance on the emergence behaviour of Pipistrellus pygmaeus. Biol. Conserv. 2003, 111, 247–252. [Google Scholar] [CrossRef]
- Petrželková, K.J.; Downs, N.C.; Zukal, J.; Racey, P.A. A comparison between emergence and return activity in pipistrelle bats Pipistrellus pipistrellus and P. pygmaeus. Acta Chiropterol. 2006, 8, 381–390. [Google Scholar] [CrossRef]
- Stone, E.L.; Jones, G.; Harris, S. Street Lighting Disturbs Commuting Bats. Curr. Biol. 2009, 19, 1123–1127. [Google Scholar] [CrossRef] [Green Version]
- Kurvers, R.H.J.M.; Drägestein, J.; Hölker, F.; Jechow, A.; Krause, J.; Bierbach, D. Artificial Light at Night Affects Emergence from a Refuge and Space Use in Guppies. Sci. Rep. 2018, 8, 14131. [Google Scholar] [CrossRef] [Green Version]
- Vignoli, L.; Luiselli, L. Better in the dark: Two Mediterranean amphibians synchronize reproduction with moonlit nights. Web Ecol. 2013, 13, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, N.; Srivastava, S.; Malik, S.; Rani, S.; Kumar, V. Altered light conditions during spring: Effects on timing of migration and reproduction in migratory redheaded bunting (Emberiza bruniceps). Biol. Rhythm Res. 2015, 46, 647–657. [Google Scholar] [CrossRef]
- Robert, K.A.; Lesku, J.A.; Partecke, J.; Chambers, B. Artificial light at night desynchronizes strictly seasonal reproduction in a wild mammal. Proc. R. Soc. B Biol. Sci. 2015, 282, 20151745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tallec, T.L.; Théry, M.; Perret, M. Melatonin concentrations and timing of seasonal reproduction in male mouse lemurs (Microcebus murinus) exposed to light pollution. J. Mammal. 2016, 97, 753–760. [Google Scholar] [CrossRef] [Green Version]
- Miller, M.W. Apparent Effects of Light Pollution on Singing Behavior of American Robins. Condor 2006, 108, 130–139. [Google Scholar] [CrossRef]
- Geffen, K.G.V.; Groot, A.T.; van Grunsven, R.H.A.; Donners, M.; Berendse, F.; Veenendaal, E.M. Artificial night lighting disrupts sex pheromone in a noctuid moth. Ecol. Entomol. 2015, 40, 401–408. [Google Scholar] [CrossRef]
- Borges, R.M. Dark Matters: Challenges of Nocturnal Communication Between Plants and Animals in Delivery of Pollination Services. Yale J. Biol. Med. 2018, 9, 33–42. [Google Scholar]
- Doren, B.M.V.; Horton, K.G.; Dokter, A.M.; Klinck, H.; Elbin, S.B.; Farnsworth, A. High-intensity urban light installation dramatically alters nocturnal bird migration. Proc. Natl. Acad. Sci. USA 2017, 114, 11175–11180. [Google Scholar] [CrossRef] [Green Version]
- Ditmer, M.A.; Stoner, D.C.; Francis, C.D.; Barber, J.R.; Forester, J.D.; Choate, D.M.; Ironside, K.E.; Longshore, K.M.; Hersey, K.R.; Larsen, R.T.; et al. Artificial nightlight alters the predator–prey dynamics of an apex carnivore. Ecography 2020, 44, 149–161. [Google Scholar] [CrossRef]
- Simons, A.L.; Yin, X.; Longcore, T. High correlation but high scale-dependent variance between satellite measured night lights and terrestrial exposure. Environ. Res. Commun. 2020, 2, 021006. [Google Scholar] [CrossRef]
- Perry, G.; Fisher, R. Night lights and reptiles: Observed and potential effects. In Ecological Consequences of Artificial Night Lighting; Rich, C., Longcore, T., Eds.; Island Press: Washington, DC, USA, 2006; pp. 169–191. [Google Scholar]
- Vanderbilt, K.; Gaiser, E. The International Long Term Ecological Research Network: A platform for collaboration. Ecosphere 2017, 8, e01697. [Google Scholar] [CrossRef]
- Keller, M.; Schimel, D.S.; Hargrove, W.W.; Hoffman, F.M. A continental strategy for the National Ecological Observatory Network. Front. Ecol. Environ. 2008, 6, 282–284. [Google Scholar] [CrossRef]
- Horton, K.G.; Nilsson, C.; Doren, B.M.V.; Sorte, F.A.L.; Dokter, A.M.; Farnsworth, A. Bright lights in the big cities: Migratory birds’ exposure to artificial light. Front. Ecol. Environ. 2019, 17, 209–214. [Google Scholar] [CrossRef]
- Owens, A.C.; Cochard, P.; Durrant, J.; Farnworth, B.; Perkin, E.K.; Seymoure, B. Light pollution is a driver of insect declines. Biol. Conserv. 2020, 241, 108259. [Google Scholar] [CrossRef]
- Longcore, T.; Rodríguez, A.; Witherington, B.; Penniman, J.F.; Herf, L.; Herf, M. Rapid assessment of lamp spectrum to quantify ecological effects of light at night. J. Exp. Zool. Part Ecol. Integr. Physiol. 2018, 329, 511–521. [Google Scholar] [CrossRef]
- Brown, R. World On the Edge: How to Prevent Environmental and Economic Collapse; W. W. Nortion & Company: New York, NY, USA, 2010. [Google Scholar]
- IEA. Light’s Labour’s Lost: Policies for Energy-Efficient Lighting; Technical Report; International Energy Agency: Paris, France, 2006. [Google Scholar] [CrossRef]
- IEA. World Energy Outlook; Technical Report; International Energy Agency: Paris, France, 2006. [Google Scholar] [CrossRef]
- Elliott, C.; Lee, K. Adoption of Light-Emitting Diodes in Common Lighting Applications; Technical Report; U.S. Department of Energy: Washington, DC, USA, 2020. [Google Scholar]
- Asefi-Najafabady, S.; Rayner, P.J.; Gurney, K.R.; McRobert, A.; Song, Y.; Coltin, K.; Huang, J.; Elvidge, C.; Baugh, K. A multiyear, global gridded fossil fuel CO2 emission data product: Evaluation and analysis of results. J. Geophys. Res. Atmos. 2014, 119, 10213–10231. [Google Scholar] [CrossRef] [Green Version]
- Kyba, C.C.M.; Hänel, A.; Hölker, F. Redefining efficiency for outdoor lighting. Energy Environ. Sci. 2014, 7, 1806–1809. [Google Scholar] [CrossRef]
- Xie, Y.; Weng, Q.; Fu, P. Temporal variations of artificial nighttime lights and their implications for urbanization in the conterminous United States, 2013–2017. Remote Sens. Environ. 2019, 225, 160–174. [Google Scholar] [CrossRef]
- Chen, X.; Nordhaus, W.D. VIIRS Nighttime Lights in the Estimation of Cross-Sectional and Time-Series GDP. Remote Sens. 2019, 11, 1057. [Google Scholar] [CrossRef] [Green Version]
- Falchetta, G.; Pachauri, S.; Parkinson, S.; Byers, E. A high-resolution gridded dataset to assess electrification in sub-Saharan Africa. Sci. Data 2019, 6, 110. [Google Scholar] [CrossRef] [Green Version]
- Jasiński, T. Modeling electricity consumption using nighttime light images and artificial neural networks. Energy 2019, 179, 831–842. [Google Scholar] [CrossRef]
- Fehrer, D.; Krarti, M. Spatial distribution of building energy use in the United States through satellite imagery of the earth at night. Build. Environ. 2018, 142, 252–264. [Google Scholar] [CrossRef]
- Levin, N.; Ali, S.; Crandall, D. Utilizing remote sensing and big data to quantify conflict intensity: The Arab Spring as a case study. Appl. Geogr. 2018, 94, 1–17. [Google Scholar] [CrossRef]
- Levin, N.; Ali, S.; Crandall, D.; Kark, S. World Heritage in danger: Big data and remote sensing can help protect sites in conflict zones. Glob. Environ. Chang. 2019, 55, 97–104. [Google Scholar] [CrossRef]
- Román, M.O.; Stokes, E.C.; Shrestha, R.; Wang, Z.; Schultz, L.; Carlo, E.A.S.; Sun, Q.; Bell, J.; Molthan, A.; Kalb, V.; et al. Satellite-based assessment of electricity restoration efforts in Puerto Rico after Hurricane Maria. PLoS ONE 2019, 14, e0218883. [Google Scholar] [CrossRef]
- Heger, M.P.; Neumayer, E. The impact of the Indian Ocean tsunami on Aceh’s long-term economic growth. J. Dev. Econ. 2019, 141, 102365. [Google Scholar] [CrossRef]
- Garcia-Saenz, A.; de Miguel, A.S.; Espinosa, A.; Valentin, A.; Aragonés, N.; Llorca, J.; Amiano, P.; Sánchez, V.M.; Guevara, M.; Capelo, R.; et al. Evaluating the Association between Artificial Light-at-Night Exposure and Breast and Prostate Cancer Risk in Spain (MCC-Spain Study). Environ. Health Perspect. 2018, 126, 047011. [Google Scholar] [CrossRef]
- Khan, Z.A.; Yumnamcha, T.; Mondal, G.; Devi, S.D.; Rajiv, C.; Labala, R.K.; Devi, H.S.; Chattoraj, A. Artificial Light at Night (ALAN): A Potential Anthropogenic Component for the COVID-19 and HCoVs Outbreak. Front. Endocrinol. 2020, 11, 622. [Google Scholar] [CrossRef]
- Ghosh, T.; Anderson, S.; Elvidge, C.; Sutton, P. Using Nighttime Satellite Imagery as a Proxy Measure of Human Well-Being. Sustainability 2013, 5, 4988–5019. [Google Scholar] [CrossRef] [Green Version]
- Guetté, A.; Godet, L.; Juigner, M.; Robin, M. Worldwide increase in Artificial Light At Night around protected areas and within biodiversity hotspots. Biol. Conserv. 2018, 223, 97–103. [Google Scholar] [CrossRef]
- Xu, P.; Wang, Q.; Jin, J.; Jin, P. An increase in nighttime light detected for protected areas in mainland China based on VIIRS DNB data. Ecol. Indic. 2019, 107, 105615. [Google Scholar] [CrossRef]
- Hyde, E.; Frank, S.; Barentine, J.C.; Kuechly, H.; Kyba, C.C.M. Testing for changes in light emissions from certified International Dark Sky Places. Int. J. Sustain. Light. 2019, 21, 11–19. [Google Scholar] [CrossRef]
- Fu, D.; Xia, X.; Duan, M.; Zhang, X.; Li, X.; Wang, J.; Liu, J. Mapping nighttime PM2.5 from VIIRS DNB using a linear mixed-effect model. Atmos. Environ. 2018, 178, 214–222. [Google Scholar] [CrossRef]
- Zhang, J.; Jaker, S.L.; Reid, J.S.; Miller, S.D.; Solbrig, J.; Toth, T.D. Characterization and application of artificial light sources for nighttime aerosol optical depth retrievals using the Visible Infrared Imager Radiometer Suite Day/Night Band. Atmos. Meas. Tech. 2019, 12, 3209–3222. [Google Scholar] [CrossRef] [Green Version]
- Doll, C.H.; Muller, J.P.; Elvidge, C.D. Night-time Imagery as a Tool for Global Mapping of Socioeconomic Parameters and Greenhouse Gas Emissions. AMBIO A J. Hum. Environ. 2000, 29, 157–162. [Google Scholar] [CrossRef]
- Barentine, J.C.; Walker, C.E.; Kocifaj, M.; Kundracik, F.; Juan, A.; Kanemoto, J.; Monrad, C.K. Skyglow changes over Tucson, Arizona, resulting from a municipal LED street lighting conversion. J. Quant. Spectrosc. Radiat. Transf. 2018, 212, 10–23. [Google Scholar] [CrossRef] [Green Version]
- Kyba, C.; Ruby, A.; Kuechly, H.; Kinzey, B.; Miller, N.; Sanders, J.; Barentine, J.; Kleinodt, R.; Espey, B. Direct measurement of the contribution of street lighting to satellite observations of nighttime light emissions from urban areas. Light. Res. Technol. 2020, 147715352095846. [Google Scholar] [CrossRef]
- Barentine, J.C.; Kundracik, F.; Kocifaj, M.; Sanders, J.C.; Esquerdo, G.A.; Dalton, A.M.; Foott, B.; Grauer, A.; Tucker, S.; Kyba, C.C. Recovering the city street lighting fraction from skyglow measurements in a large-scale municipal dimming experiment. J. Quant. Spectrosc. Radiat. Transf. 2020, 253, 107120. [Google Scholar] [CrossRef]
- Bullough, J.D.; Donnell, E.T.; Rea, M.S. To illuminate or not to illuminate: Roadway lighting as it affects traffic safety at intersections. Accid. Anal. Prev. 2013, 53, 65–77. [Google Scholar] [CrossRef]
- Wanvik, P.O. Effects of road lighting: An analysis based on Dutch accident statistics 1987–2006. Accid. Anal. Prev. 2009, 41, 123–128. [Google Scholar] [CrossRef]
- Morrow, N.; Hutton, S. The Chicago Alley Lighting Project: Final Evaluation Report; Technical Report; Illinois Criminal Justice Information Authority: Chicago, IL, USA, 2000. [Google Scholar]
- Sullivan, J.M.; Flannagan, M.J. The role of ambient light level in fatal crashes: Inferences from daylight saving time transitions. Accid. Anal. Prev. 2002, 34, 487–498. [Google Scholar] [CrossRef]
- Marchant, P.R. A Demonstration That the Claim That Brighter Lighting Reduces Crime Is Unfounded. Br. J. Criminol. 2004, 44, 441–447. [Google Scholar] [CrossRef]
- Marchant, P. Have new street lighting schemes reduced crime in London? Radic. Stat. 2011, 104, 39–48. [Google Scholar]
- Wanvik, P.O. Effects of Road Lighting on Motorways. Traffic Inj. Prev. 2009, 10, 279–289. [Google Scholar] [CrossRef]
- Steinbach, R.; Perkins, C.; Tompson, L.; Johnson, S.; Armstrong, B.; Green, J.; Grundy, C.; Wilkinson, P.; Edwards, P. The effect of reduced street lighting on road casualties and crime in England and Wales: Controlled interrupted time series analysis. J. Epidemiol. Community Health 2015, 69, 1118–1124. [Google Scholar] [CrossRef]
- Marchant, P. Why Lighting Claims Might Well Be Wrong. Int. J. Sustain. Light. 2017, 19, 69–74. [Google Scholar] [CrossRef] [Green Version]
- Marchant, P. Do brighter, whiter street lights improve road safety? Significance 2019, 16, 8–9. [Google Scholar] [CrossRef]
- Walmsley, L.; Hanna, L.; Mouland, J.; Martial, F.; West, A.; Smedley, A.R.; Bechtold, D.A.; Webb, A.R.; Lucas, R.J.; Brown, T.M. Colour As a Signal for Entraining the Mammalian Circadian Clock. PLoS Biol. 2015, 13, e1002127. [Google Scholar] [CrossRef]
- Lewy, A.; Wehr, T.; Goodwin, F.; Newsome, D.; Markey, S. Light suppresses melatonin secretion in humans. Science 1980, 210, 1267–1269. [Google Scholar] [CrossRef]
- Carrillo-Vico, A.; Guerrero, J.M.; Lardone, P.J.; Reiter, R.J. A Review of the Multiple Actions of Melatonin on the Immune System. Endocrine 2005, 27, 189–200. [Google Scholar] [CrossRef]
- Phillips, A.J.K.; Vidafar, P.; Burns, A.C.; McGlashan, E.M.; Anderson, C.; Rajaratnam, S.M.W.; Lockley, S.W.; Cain, S.W. High sensitivity and interindividual variability in the response of the human circadian system to evening light. Proc. Natl. Acad. Sci. USA 2019, 116, 12019–12024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durrant, J.; Green, M.P.; Jones, T.M. Dim artificial light at night reduces the cellular immune response of the black field cricket, Teleogryllus commodus. Insect Sci. 2019, 27, 571–582. [Google Scholar] [CrossRef] [PubMed]
- Kernbach, M.E.; Hall, R.J.; Burkett-Cadena, N.D.; Unnasch, T.R.; Martin, L.B. Dim light at night: Physiological effects and ecological consequences for infectious disease. Integr. Comp. Biol. 2018, 58, 995–1007. [Google Scholar] [CrossRef] [PubMed]
- Falchi, F.; Cinzano, P.; Duriscoe, D.; Kyba, C.C.M.; Elvidge, C.D.; Baugh, K.; Portnov, B.A.; Rybnikova, N.A.; Furgoni, R. The new world atlas of artificial night sky brightness. Sci. Adv. 2016, 2, e1600377. [Google Scholar] [CrossRef] [Green Version]
- Falchi, F.; Furgoni, R.; Gallaway, T.; Rybnikova, N.; Portnov, B.; Baugh, K.; Cinzano, P.; Elvidge, C. Light pollution in USA and Europe: The good, the bad and the ugly. J. Environ. Manag. 2019, 248, 109227. [Google Scholar] [CrossRef]
- Davis, G. History of the NOAA satellite program. J. Appl. Remote Sens. 2007, 1, 012504. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Keith, D.M.; Tuttle, B.T.; Baugh, K.E. Spectral Identification of Lighting Type and Character. Sensors 2010, 10, 3961–3988. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.E.; Zhizhin, M.; Hsu, F.C. Why VIIRS data are superior to DMSP for mapping nighttime lights. Proc. Asia Pac. Adv. Netw. 2013, 35, 62. [Google Scholar] [CrossRef] [Green Version]
- Cinzano, P.; Falchi, F.; Elvidge, C. The first World Atlas of the artificial night sky brightness. Mon. Not. R. Astron. Soc. 2001, 328, 689–707. [Google Scholar] [CrossRef] [Green Version]
- Huang, Q.; Yang, X.; Gao, B.; Yang, Y.; Zhao, Y. Application of DMSP/OLS Nighttime Light Images: A Meta-Analysis and a Systematic Literature Review. Remote Sens. 2014, 6, 6844–6866. [Google Scholar] [CrossRef] [Green Version]
- De Miguel, A.S.; Castano, J.G.; Zamorano, J.; Pascual, S.; Angeles, M.; Cayuela, L.; Martinez, G.M.; Challupner, P.; Kyba, C.C.M. Atlas of astronaut photos of Earth at night. Astron. Geophys. 2014, 55, 4.36. [Google Scholar] [CrossRef] [Green Version]
- De Miguel, A.S. Variación Espacial, Temporal Y Espectral De La Contaminación Lumínica Y Sus Fuentes: Metodología Y Resultados. Ph.D. Thesis, Universidad Complutense de Madrid, Madrid, Spain, 2015. [Google Scholar] [CrossRef]
- De Miguel, A.S.; Kyba, C.C.; Aubé, M.; Zamorano, J.; Cardiel, N.; Tapia, C.; Bennie, J.; Gaston, K.J. Colour remote sensing of the impact of artificial light at night (I): The potential of the International Space Station and other DSLR-based platforms. Remote Sens. Environ. 2019, 224, 92–103. [Google Scholar] [CrossRef]
- De Miguel, A.S.; Zamorano, J.; Castaño, J.G. Image Classification of Night Time Images Detected from the International Space Station; Technical Report 24808; Universidad Complutense de Madrid: Madrid, Spain, 2014. [Google Scholar]
- Elvidge, C.D.; Cinzano, P.; Pettit, D.R.; Arvesen, J.; Sutton, P.; Small, C.; Nemani, R.; Longcore, T.; Rich, C.; Safran, J.; et al. The Nightsat mission concept. Int. J. Remote Sens. 2007, 28, 2645–2670. [Google Scholar] [CrossRef]
- Jiang, W.; He, G.; Long, T.; Guo, H.; Yin, R.; Leng, W.; Liu, H.; Wang, G. Potentiality of Using Luojia 1-01 Nighttime Light Imagery to Investigate Artificial Light Pollution. Sensors 2018, 18, 2900. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Li, X.; Li, D.; He, X.; Jendryke, M. A preliminary investigation of Luojia-1 night-time light imagery. Remote Sens. Lett. 2019, 10, 526–535. [Google Scholar] [CrossRef]
- Zheng, Q.; Weng, Q.; Huang, L.; Wang, K.; Deng, J.; Jiang, R.; Ye, Z.; Gan, M. A new source of multi-spectral high spatial resolution night-time light imagery—JL1-3B. Remote Sens. Environ. 2018, 215, 300–312. [Google Scholar] [CrossRef]
- Levin, N.; Johansen, K.; Hacker, J.M.; Phinn, S. A new source for high spatial resolution night time images—The EROS-B commercial satellite. Remote Sens. Environ. 2014, 149, 1–12. [Google Scholar] [CrossRef]
- Katz, Y.; Levin, N. Quantifying urban light pollution—A comparison between field measurements and EROS-B imagery. Remote Sens. Environ. 2016, 177, 65–77. [Google Scholar] [CrossRef]
- Pack, D.; Hardy, B.; Longcore, T. Studying the Earth at Night from CubeSats. In Proceedings of the 31st Annual AIAA/USU Conference on Small Satellites, Logan, UT, USA, 5–10 August 2017; Number 10, p. 41. [Google Scholar]
- Bará, S.; Rodríguez-Arós, Á.; Pérez, M.; Tosar, B.; Lima, R.; de Miguel, A.S.; Zamorano, J. Estimating the relative contribution of streetlights, vehicles, and residential lighting to the urban night sky brightness. Light. Res. Technol. 2018, 51, 1092–1107. [Google Scholar] [CrossRef] [Green Version]
- Meier, J.M. Temporal Profiles of Urban Lighting: Proposal for a research design and first results from three sites in Berlin. Int. J. Sustain. Light. 2018, 20, 11. [Google Scholar] [CrossRef] [Green Version]
- Levin, N.; Kyba, C.C.; Zhang, Q.; de Miguel, A.S.; Román, M.O.; Li, X.; Portnov, B.A.; Molthan, A.L.; Jechow, A.; Miller, S.D.; et al. Remote sensing of night lights: A review and an outlook for the future. Remote Sens. Environ. 2020, 237, 111443. [Google Scholar] [CrossRef]
- De Meester, J.; Storch, T. Optimized Performance Parameters for Nighttime Multispectral Satellite Imagery to Analyze Lightings in Urban Areas. Sensors 2020, 20, 3313. [Google Scholar] [CrossRef] [PubMed]
- De Miguel, A.S.; Aubé, M.; Zamorano, J.; Kocifaj, M.; Roby, J.; Tapia, C. Sky Quality Meter measurements in a colour-changing world. Mon. Not. R. Astron. Soc. 2017, 467, 2966–2979. [Google Scholar] [CrossRef]
- Evans, J.; Carter, S.; Freeman, D.; Gorman, M. Dim nighttime illumination alters photoperiodic responses of hamsters through the intergeniculate leaflet and other photic pathways. Neuroscience 2012, 202, 300–308. [Google Scholar] [CrossRef] [Green Version]
- Kyba, C.C.M.; Mohar, A.; Posch, T. How bright is moonlight? Astron. Geophys. 2017, 58, 1.31–1.32. [Google Scholar] [CrossRef]
- Roach, F.; Gordon, J. The Light of the Night Sky; Geophysics and Astrophysics Monographs; Ridel Publishing Co.: Boston, MA, USA, 1973; Volume 4. [Google Scholar]
- Kummu, M.; Varis, O. The world by latitudes: A global analysis of human population, development level and environment across the north–south axis over the past half century. Appl. Geogr. 2011, 31, 495–507. [Google Scholar] [CrossRef]
- Tuttle, B.; Anderson, S.; Elvidge, C.; Ghosh, T.; Baugh, K.; Sutton, P. Aladdin’s Magic Lamp: Active Target Calibration of the DMSP OLS. Remote Sens. 2014, 6, 12708–12722. [Google Scholar] [CrossRef] [Green Version]
- Dalby, S. Framing the Anthropocene: The good, the bad and the ugly. Anthr. Rev. 2015, 3, 33–51. [Google Scholar] [CrossRef]
DMSP-OLS | VIIRS-DNB | LJ1-01 | Worldview-3 | ISS | |
---|---|---|---|---|---|
1st & 2nd generation | National/ | Private | Serendipitous | ||
National Facilities | Commercial | Commercial | National | ||
Operational dates | 1992–2013 | 2011–present | 2018–2019 | 2014–present | 2000–present |
Spatial Resolution (m px) | 2700 | 750 | 130 | 0.31 (panchromatic) | 5 |
1.24 (multispectral) | |||||
3.7 (shortwave IR) | |||||
Radiometric Resolution (nm) | 400 | 400 | ≤82 | 350 (panchromatic) | 300 |
Spectral Sensitivity (m) | 0.5–0.9 | 0.5–0.9 | 0.46–0.98 | 0.45–2.365 | 0.4–0.7 |
Spectral Bands | panchromatic | panchromatic | 3 (RGB) | Panchromatic | 3 (RGB) |
8 multispectral | |||||
8 shortwave IR | |||||
Dynamic Range (bits) | 6 | 14 | 14 | 11 (panchromatic and multispectral) | 12 |
14 (shortwave IR) | |||||
Calibration | n/a | on-board | on-board | pre-flight | n/a |
Ground Coverage | global | global | local/regional | global | local/regional |
Ground Swath at nadir (km) | ∼3000 | ∼3000 | ∼250 | 13.1 | varied |
Local Overpass Time | ∼19:30 | ∼01:30 | varied | varied | varied |
Rank | Parameter | Suggested Parameter Value |
---|---|---|
1 | Ground-Scale Resolution | 10 m px (optical) |
2 | Spectral Coverage | Panchromatic 370–870 nm |
383–503, 493–619, 568–584, 797–833 [117]; thermal IR | ||
3 | Sensitivity | 5 × 10 W cm sr |
4 | Dynamic Range | 10 |
5 | Coverage | Global land map ±60 latitude |
6 | Temporal Sampling | Monthly |
7 | Mission Duration | 10 years |
8 | Overpass Times | Varied |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barentine, J.C.; Walczak, K.; Gyuk, G.; Tarr, C.; Longcore, T. A Case for a New Satellite Mission for Remote Sensing of Night Lights. Remote Sens. 2021, 13, 2294. https://doi.org/10.3390/rs13122294
Barentine JC, Walczak K, Gyuk G, Tarr C, Longcore T. A Case for a New Satellite Mission for Remote Sensing of Night Lights. Remote Sensing. 2021; 13(12):2294. https://doi.org/10.3390/rs13122294
Chicago/Turabian StyleBarentine, John C., Ken Walczak, Geza Gyuk, Cynthia Tarr, and Travis Longcore. 2021. "A Case for a New Satellite Mission for Remote Sensing of Night Lights" Remote Sensing 13, no. 12: 2294. https://doi.org/10.3390/rs13122294
APA StyleBarentine, J. C., Walczak, K., Gyuk, G., Tarr, C., & Longcore, T. (2021). A Case for a New Satellite Mission for Remote Sensing of Night Lights. Remote Sensing, 13(12), 2294. https://doi.org/10.3390/rs13122294