Assessing the Self-Recovery Ability of Maize after Lodging Using UAV-LiDAR Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Experimental Design
2.3. LiDAR Data Acquisition
2.4. Sample Collection
2.5. Data Preprocessing
2.6. Research Methods
2.6.1. Construction of the Canopy Height Model
2.6.2. Canopy Height Extraction
2.6.3. Lodging Angle Extraction
2.7. Evaluation of Self-Recovery Ability
2.8. Accuracy Evaluation
3. Results and Analysis
3.1. Canopy Height Extraction and Verification
3.2. Extraction and Analysis of the Lodging Angle
3.3. Plant Self-Recovery Ability Analysis
3.3.1. Analysis of Different Growth Stages
3.3.2. Analysis of Different Lodging Severity
3.3.3. Response of Yield to Plant Height and Lodging Angle
4. Discussion
4.1. Comparative Analysis of the Research Method
4.2. Analysis of Plant Height and Lodging Angle
4.3. Analysis of Self-Recovery Ability
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- National Bureau of Statistics of China. Announcement of the National Bureau of Statistics on Grain Output Data in 2020. Available online: http://www.stats.gov.cn/tjsj/zxfb/202012/t20201210_1808377.html (accessed on 10 December 2020).
- China Meteorological Administration. China Blue Book on Climate Change (2020). Available online: http://www.cma.gov.cn/kppd/kppdqxyr/kppdjsqx/202008/t20200828_561907.html (accessed on 8 August 2020).
- Elmore, R. Mid-to Late-Season Lodging. Iowa State University Extension and Outreach. Available online: http://crops.extension.iastate.edu/corn/production/management/mid/silking.html (accessed on 6 January 2020).
- Berry, P.; Sterling, M.; Spink, J.; Baker, C.; Sylvester-Bradley, R.; Mooney, S.; Tams, A.; Ennos, A. Understanding and Reducing Lodging in Cereals. Adv. Agron. 2004, 84, 217–271. [Google Scholar] [CrossRef]
- Liu, X.; Gu, W.; Li, C.; Li, J.; Wei, S. Effects of nitrogen fertilizer and chemical regulation on spring maize lodging character-istics, grain filling and yield formation under high planting density in Heilongjiang Province, China. J. Integr. Agric. 2021, 20, 511–526. [Google Scholar] [CrossRef]
- Manga-Robles, A.; Santiago, R.; Malvar, R.A.; Moreno-González, V.; Fornalé, S.; López, I.; Luz Centeno, M.; Acebes, J.L.; Álvarez, J.M.; Caparros-Ruiz, D.; et al. Elucidating compositional factors of maize cell walls contributing to stalk strength and lodging resistance. Plant Sci. 2021, 307, 110882. [Google Scholar] [CrossRef] [PubMed]
- Bian, D.; Jia, G.; Cai, L.; Ma, Z.; Eneji, A.; Cui, Y. Effects of tillage practices on root characteristics and root lodging resistance of maize. Field Crop. Res. 2016, 185, 89–96. [Google Scholar] [CrossRef]
- Nleya, T.; Chungu, C.; Kleinjan, J. Corn Growth and Development. In iGrow Corn: Best Managemenent Practices, 1st ed.; SDSU Extension: Brookings, SD, USA, 2019; pp. 5–8. [Google Scholar]
- Xue, J.; Gou, L.; Zhao, Y.; Yao, M.; Yao, H.; Tian, J.; Zhang, W. Effects of light intensity within the canopy on maize lodging. Field Crop. Res. 2016, 188, 133–141. [Google Scholar] [CrossRef]
- Mi, C.; Zhang, X.; Li, S.; Yang, J.; Zhu, D.; Yang, Y. Assessment of environment lodging stress for maize using fuzzy synthetic evaluation. Math. Comput. Model. 2011, 54, 1053–1060. [Google Scholar] [CrossRef]
- Selkowitz, D.J.; Green, G.; Peterson, B.; Wylie, B. A multi-sensor lidar, multi-spectral and multi-angular approach for mapping canopy height in boreal forest regions. Remote Sens. Environ. 2012, 121, 458–471. [Google Scholar] [CrossRef]
- Bendig, J.; Bolten, A.; Bennertz, S.; Broscheit, J.; Eichfuss, S.; Bareth, G. Estimating Biomass of Barley Using Crop Surface Models (CSMs) Derived from UAV-Based RGB Imaging. Remote Sens. 2014, 6, 10395–10412. [Google Scholar] [CrossRef] [Green Version]
- Shu, M.; Zhou, L.; Gu, X.; Ma, Y.; Sun, Q.; Yang, G.; Zhou, C. Monitoring of maize lodging using multi-temporal Sentinel-1 SAR data. Adv. Space Res. 2020, 65, 470–480. [Google Scholar] [CrossRef]
- Yang, H.; Chen, E.; Li, Z.; Zhao, C.; Yang, G.; Pignatti, S.; Casa, R.; Zhao, L. Wheat lodging monitoring using polarimetric index from RADARSAT-2 data. Int. J. Appl. Earth Obs. Geoinf. 2015, 34, 157–166. [Google Scholar] [CrossRef]
- Peng, Y.; Zhu, T.; Li, Y.; Dai, C.; Fang, S.; Gong, Y.; Wu, X.; Zhu, R.; Liu, K. Remote prediction of yield based on LAI estimation in oilseed rape under different planting methods and nitrogen fertilizer applications. Agric. For. Meteorol. 2019, 271, 116–125. [Google Scholar] [CrossRef]
- Kanning, M.; Kühling, I.; Trautz, D.; Jarmer, T. High-Resolution UAV-Based Hyperspectral Imagery for LAI and Chlorophyll Estimations from Wheat for Yield Prediction. Remote Sens. 2018, 10, 2000. [Google Scholar] [CrossRef] [Green Version]
- Shendryk, Y.; Sofonia, J.; Garrard, R.; Rist, Y.; Skocaj, D.; Thorburn, P. Fine-scale prediction of biomass and leaf nitrogen content in sugarcane using UAV LiDAR and multispectral imaging. Int. J. Appl. Earth Obs. Geoinf. 2020, 92, 102177. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, S.; Li, J.; Guo, X.; Wang, S.; Lu, J. Estimating biomass of winter oilseed rape using vegetation indices and texture metrics derived from UAV multispectral images. Comput. Electron. Agric. 2019, 166, 105026. [Google Scholar] [CrossRef]
- Yue, J.; Yang, G.; Tian, Q.; Feng, H.; Xu, K.; Zhou, C. Estimate of winter-wheat above-ground biomass based on UAV ultra-high-ground-resolution image textures and vegetation indices. ISPRS J. Photogram. Remote Sens. 2019, 150, 226–244. [Google Scholar] [CrossRef]
- Lu, J.; Cheng, D.; Geng, C.; Zhang, Z.; Xiang, Y.; Hu, T. Combining plant height, canopy coverage and vegetation index from UAV-based RGB images to estimate leaf nitrogen concentration of summer maize. Biosyst. Eng. 2021, 202, 42–54. [Google Scholar] [CrossRef]
- Cheng, J.; Zhang, X.; Sun, M.; Luo, P.; Yang, W. Random forest model for the estimation of fractional vegetation coverage based on a UAV-ground co-sampling strategy. J. Peking Univ. 2020, 56, 143–154. [Google Scholar] [CrossRef]
- Tao, H.; Feng, H.; Xu, L.; Miao, M.; Yang, G.; Yang, X.; Fan, L. Estimation of the Yield and Plant Height of Winter Wheat Using UAV-Based Hyperspectral Images. Sensors 2020, 20, 1231. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Wang, J. Winter Wheat Canopy Height Extraction from UAV-Based Point Cloud Data with a Moving Cuboid Filter. Remote Sens. 2019, 11, 1239. [Google Scholar] [CrossRef] [Green Version]
- Kawamura, K.; Asai, H.; Yasuda, T.; Khanthavong, P.; Soisouvanh, P.; Phongchanmixay, S. Field phenotyping of plant height in an upland rice field in Laos using low-cost small unmanned aerial vehicles (UAVs). Plant Prod. Sci. 2020, 23, 1–14. [Google Scholar] [CrossRef]
- Zhang, N.; Su, X.; Zhang, X.; Yao, X.; Cheng, T.; Zhu, Y.; Cao, W.; Tian, Y. Monitoring daily variation of leaf layer photo-synthesis in rice using UAV-based multi-spectral imagery and a light response curve model. Agric. For. Meteorol. 2020, 291, 108098. [Google Scholar] [CrossRef]
- Guerra-Hernández, J.; González-Ferreiro, E.; Monleón, V.J.; Faias, S.P.; Tomé, M.; Díaz-Varela, R.A. Use of Multi-Temporal UAV-Derived Imagery for Estimating Individual Tree Growth in Pinus pinea Stands. Forest 2017, 8, 300. [Google Scholar] [CrossRef]
- Mohan, M.; Silva, C.A.; Klauberg, C.; Jat, P.; Catts, G.; Cardil, A.; Hudak, A.T.; Dia, M. Individual Tree Detection from Unmanned Aerial Vehicle (UAV) Derived Canopy Height Model in an Open Canopy Mixed Conifer Forest. Forest 2017, 8, 340. [Google Scholar] [CrossRef] [Green Version]
- Tirado, S.B.; Hirsch, C.N.; Springer, N.M. Utilizing temporal measurements from UAVs to assess root lodging in maize and its impact on productivity. Field Crop. Res. 2021, 262, 108014. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, R.; Song, W.; Han, L.; Liu, X.; Sun, X.; Luo, M.; Chen, K.; Zhang, Y.; Yang, H.; et al. Dynamic plant height QTL revealed in maize through remote sensing phenotyping using a high-throughput unmanned aerial vehicle (UAV). Sci. Rep. 2019, 9, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Wilke, N.; Siegmann, B.; Klingbeil, L.; Burkart, A.; Kraska, T.; Muller, O.; van Doorn, A.; Heinemann, S.; Rascher, U. Quan-tifying Lodging Percentage and Lodging Severity Using a UAV-Based Canopy Height Model Combined with an Objective Threshold Approach. Remote Sens. 2019, 11, 515. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Yang, H.; Li, X.; Zheng, Y.; Yan, H.; Li, N. Research on maize growth monitoring based on visible spectrum of UAV remote sensing. Spectrosc. Spectr. Anal. 2021, 41, 265–270. [Google Scholar] [CrossRef]
- Sui, L. Active Radar and LiDAR Remote Sensing, 2nd ed.; Surveying and Mapping Press: Beijing, China, 2011; pp. 164–168. [Google Scholar]
- Hosoi, F.; Omasa, K. Estimating vertical plant area density profile and growth parameters of a wheat canopy at different growth stages using three-dimensional portable lidar imaging. ISPRS J. Photogramm. Remote Sens. 2009, 64, 151–158. [Google Scholar] [CrossRef]
- Crommelinck, S.; Höfle, B. Simulating an Autonomously Operating Low-Cost Static Terrestrial LiDAR for Multitemporal Maize Crop Height Measurements. Remote Sens. 2016, 8, 205. [Google Scholar] [CrossRef] [Green Version]
- Lei, L.; Qiu, C.; Li, Z.; Han, D.; Han, L.; Zhu, Y.; Wu, J.; Xu, B.; Feng, H.; Yang, H.; et al. Effect of leaf occlusion on leaf area index inversion of maize using UAV-LiDAR data. Remote Sens. 2019, 11, 1067. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Gu, X.; Cheng, S.; Yang, G.; Shu, M.; Sun, Q. Analysis of Plant Height Changes of Lodged Maize Using UAV-LiDAR Data. Agriculture 2020, 10, 146. [Google Scholar] [CrossRef]
- HeBei Meteorological Service. Shijiazhuang Climate Bulletin. 2019. Available online: http://he.cma.gov.cn/sjz/xwdt/gzdt/202001/t20200123_1406824.html (accessed on 23 January 2020).
- Zhou, L.; Cheng, S.; Sun, Q.; Gu, X.; Yang, G.; Shu, M.; Feng, H. Remote sensing of regional-scale maize lodging using mul-titemporal GF-1 images. J. Appl. Remote Sens. 2020, 14, 014514. [Google Scholar] [CrossRef]
- Lisein, J.; Pierrot-Deseilligny, M.; Bonnet, S.; Lejeune, P. A Photogrammetric Workflow for the Creation of a Forest Canopy Height Model from Small Unmanned Aerial System Imagery. Forest 2013, 4, 922–944. [Google Scholar] [CrossRef] [Green Version]
- Bendig, J.; Yu, K.; Aasen, H.; Bolten, A.; Bennertz, S.; Broscheit, J.; Gnyp, M.L.; Bareth, G. Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 79–87. [Google Scholar] [CrossRef]
- Madec, S.; Baret, F.; De Solan, B.; Thomas, S.; Dutartre, D.; Jezequel, S.; Hemmerlé, M.; Colombeau, G.; Comar, A. High-Throughput Phenotyping of Plant Height: Comparing Unmanned Aerial Vehicles and Ground LiDAR Estimates. Front. Plant Sci. 2017, 8, 2002. [Google Scholar] [CrossRef] [Green Version]
- Virlet, N.; Sabermanesh, K.; Sadeghi-Tehran, P.; Hawkesford, M.J. Field Scanalyzer: An automated robotic field phenotyping platform for detailed crop monitoring. Funct. Plant Biol. 2017, 44, 143. [Google Scholar] [CrossRef] [Green Version]
- Guo, T.; Fang, Y.; Cheng, T.; Tian, Y.; Zhu, Y.; Chen, Q.; Qiu, X.; Yao, X. Detection of wheat height using optimized multi-scan mode of LiDAR during the entire growth stages. Comput. Electron. Agric. 2019, 165, 104959. [Google Scholar] [CrossRef]
- Wang, X.; Singh, D.; Marla, S.; Morris, G.; Poland, J. Field-based high-throughput phenotyping of plant height in sorghum using different sensing technologies. Plant Methods 2018, 14, 1–16. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Size (mm) | 227 × 180 × 125 |
Weight (kg) | 3.5 |
Wavelength (nm) | 1550 |
Survey-grade accuracy (mm) | 10 |
Pulse frequency (kHz) | 550 |
Scan overlap rate (%) | 40 |
Scan speed (scans·s−1) | 200 |
Beam divergence angle (mrad) | 0.5 |
Field of view (°) | 330 |
Route | Point Cloud Density(pts/m2) on 27 August | Point Cloud Density(pts/m2) on 6 September |
---|---|---|
NS1 | 996.69 | 855.36 |
NS2 | 808.71 | 1007.96 |
EW1 | 625.03 | 838.69 |
EW2 | 698.64 | 693.27 |
EW3 | 660.46 | 704.64 |
EW4 | 379.26 | 654.97 |
Lodging Type | Tasselling Stage | Filling Stage | ||
---|---|---|---|---|
Per Unit Yield kg/ha | Yield Reduction Rate/% | Per Unit Yield kg/ha | Yield Reduction Rate/% | |
RL | 1219.73 | 78.89 | 2037.61 | 64.73 |
SF1 | 2336.29 | 59.56 | 3241.27 | 43.90 |
SF2 | 3135.58 | 45.73 | 4658.87 | 19.36 |
ST1 | 2420.97 | 58.10 | 3698.24 | 35.99 |
ST2 | 3227.61 | 44.13 | 4284.77 | 25.83 |
ST3 | 4167.21 | 27.87 | 5205.13 | 9.90 |
CK | 5777.29 | 0.00 | 5777.29 | 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, X.; Sun, L.; Gu, X.; Sun, Q.; Wei, Z.; Pan, Y.; Chen, L. Assessing the Self-Recovery Ability of Maize after Lodging Using UAV-LiDAR Data. Remote Sens. 2021, 13, 2270. https://doi.org/10.3390/rs13122270
Hu X, Sun L, Gu X, Sun Q, Wei Z, Pan Y, Chen L. Assessing the Self-Recovery Ability of Maize after Lodging Using UAV-LiDAR Data. Remote Sensing. 2021; 13(12):2270. https://doi.org/10.3390/rs13122270
Chicago/Turabian StyleHu, Xueqian, Lin Sun, Xiaohe Gu, Qian Sun, Zhonghui Wei, Yuchun Pan, and Liping Chen. 2021. "Assessing the Self-Recovery Ability of Maize after Lodging Using UAV-LiDAR Data" Remote Sensing 13, no. 12: 2270. https://doi.org/10.3390/rs13122270
APA StyleHu, X., Sun, L., Gu, X., Sun, Q., Wei, Z., Pan, Y., & Chen, L. (2021). Assessing the Self-Recovery Ability of Maize after Lodging Using UAV-LiDAR Data. Remote Sensing, 13(12), 2270. https://doi.org/10.3390/rs13122270