A Novel Query Strategy-Based Rank Batch-Mode Active Learning Method for High-Resolution Remote Sensing Image Classification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Training Sample Set
2.3. Feature Setting and Optimization
2.4. Ranked Batch-Mode Active Learning
Algorithm 1: Ranked batch-mode active learning algorithm. |
Input: A set with labeled samples Input: A set with unlabeled samples U 1: Train the classifier with ; then, perform uncertainty estimation for the samples in U: U_uncertainty 2: The sample sets are labeled or ranked: _estimated 3: EmptyList of the sample ranking: Q 4: for u<|U| do = SelectSample (_estimated, U_uncertainty) _estimated = _estimated∪, U_uncertainty = U_uncertainty Insert into List (Q, ) = +1 end for 5: l = Oracle label(Q) 6: = ∪ l, U = U l 7: return (L, U) |
2.5. Combined Query Strategy—SIDLC
Algorithm 2: Combined query strategy. |
Input: A set with labeled samples Input: A set with unlabeled samples U Input: Current α parameter 1: best score = 1 2: InformationSample = nil 3: For ∈U do 4: UncertaintyScore = UncertaintyScore (U) 5: similarity SID = SIDFunction (,U) 6: 7: If score > best Score then 8: best score = score 9: InformationSample = 10: end if 11: end for 12: return InformationSample |
2.5.1. Uncertainty Score Estimation Based on an RF
2.5.2. Similarity Function Based on the SID
Algorithm 3: Set the SID function. |
Input: A sample set Input: A sample to be evaluated 1: SID-MAX = 0.0 2: for all ∈ do 3: Sid = SID-Function(,) 4: If Sid > SID-MAX then 5: SID-MAX = Sid 6: End if 7: End for 8: return SID-MAX |
2.6. The RBSIDLC Framework
3. Experimental Results and Analysis
3.1. Feature Importance Screening Results
3.2. Results of Urban Land Use Information Extraction Based on RBSIDLC
3.3. Comparison with Other AL Query Strategies
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Li, M.; Stein, A.; Bijker, W.; Zhan, Q. Urban land use extraction from Very High Resolution remote sensing imagery using a Bayesian network. ISPRS J. Photogramm. Remote Sens. 2016, 122, 192–205. [Google Scholar] [CrossRef]
- Huang, X.; Wang, Y. Investigating the effects of 3D urban morphology on the surface urban heat island effect in urban functional zones by using high-resolution remote sensing data: A case study of Wuhan, Central China. ISPRS J. Photogramm. Remote Sens. 2019, 152, 119–131. [Google Scholar] [CrossRef]
- Cao, R.; Tu, W.; Yang, C.; Li, Q.; Liu, J.; Zhu, J.; Zhang, Q.; Li, Q.; Qiu, G. Deep learning-based remote and social sensing data fusion for urban region function recognition. ISPRS J. Photogramm. Remote Sens. 2020, 163, 82–97. [Google Scholar] [CrossRef]
- Zhou, M.; Sui, H.; Chen, S.; Wang, J.; Chen, X. BT-RoadNet: A boundary and topologically-aware neural network for road extraction from high-resolution remote sensing imagery. ISPRS J. Photogramm. Remote Sens. 2020, 168, 288–306. [Google Scholar] [CrossRef]
- Fang, F.; McNeil, B.E.; Warner, T.A.; Maxwell, A.E.; Dahle, G.A.; Eutsler, E.; Li, J. Discriminating tree species at different taxonomic levels using multi-temporal Worldview-3 imagery in Washington, DC, USA. Remote Sens. Environ. 2020, 246, 111811. [Google Scholar] [CrossRef]
- Chen, M.; Wu, J.; Liu, L.; Zhao, W.; Tian, F.; Shen, Q.; Zhao, B.; Du, R. DR-Net: An improved network for building extraction from high resolution remote sensing image. Remote Sens. 2021, 13, 294. [Google Scholar] [CrossRef]
- Geiß, C.; Aravena Pelizari, P.; Blickensdörfer, L.; Taubenböck, H. Virtual support vector machines with self-learning strategy for classification of multispectral remote sensing imagery. ISPRS J. Photogramm. Remote Sens. 2019, 151, 42–58. [Google Scholar] [CrossRef]
- Dabija, A.; Kluczek, M.; Zagajewski, B.; Raczko, E.; Kycko, M.; Al-Sulttani, A.H.; Tardà, A.; Pineda, L.; Corbera, J. Comparison of support vector machines and random forests for corine land cover mapping. Remote Sens. 2021, 13, 777. [Google Scholar] [CrossRef]
- Cui, L.; Du, H.; Zhou, G.; Li, X.; Mao, F.; Xu, X.; Fan, W.; Li, Y.; Zhu, D.; Liu, T.; et al. Combination of decision tree and mixed pixel decomposition for extracting bamboo forest information in China. Yaogan Xuebao J. Remote Sens. 2019, 23, 166–176. [Google Scholar] [CrossRef]
- Dong, L.; Xing, L.; Liu, T.; Du, H.; Mao, F.; Han, N.; Li, X.; Zhou, G.; Zhu, D.; Zheng, J.; et al. Very high resolution remote sensing imagery classification using a fusion of random forest and deep learning technique—Subtropical area for example. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 113–128. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăgu, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Paoletti, M.E.; Haut, J.M.; Plaza, J.; Plaza, A. Deep learning classifiers for hyperspectral imaging: A review. ISPRS J. Photogramm. Remote Sens. 2019, 158, 279–317. [Google Scholar] [CrossRef]
- He, S.; Du, H.; Zhou, G.; Li, X.; Mao, F.; Zhu, D.; Xu, Y.; Zhang, M.; Huang, Z.; Liu, H.; et al. Intelligent mapping of urban forests from high-resolution remotely sensed imagery using object-based u-net-densenet-coupled network. Remote Sens. 2020, 12, 3928. [Google Scholar] [CrossRef]
- Ma, L.; Liu, Y.; Zhang, X.; Ye, Y.; Yin, G.; Johnson, B.A. Deep learning in remote sensing applications: A meta-analysis and review. ISPRS J. Photogramm. Remote Sens. 2019, 152, 166–177. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, Q.; Zhang, L.; Tao, D.; Huang, X.; Du, B. Ensemble manifold regularized sparse low-rank approximation for multiview feature embedding. Pattern Recognit. 2015, 48, 3102–3112. [Google Scholar] [CrossRef]
- Xia, J.; Liao, W.; Chanussot, J.; Du, P.; Song, G.; Philips, W. Improving random forest with ensemble of features and semisupervised feature extraction. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1471–1475. [Google Scholar] [CrossRef]
- Zhang, Y.; Zong, R.; Han, J.; Zheng, H.; Lou, Q.; Zhang, D.; Wang, D. TransLand: An adversarial transfer learning approach for migratable urban land usage classification using remote sensing. In Proceedings of the 2019 IEEE International Conference on Big Data, Los Angeles, CA, USA, 9–12 December 2019; pp. 1567–1576. [Google Scholar]
- Sun, X.; Wang, B.; Wang, Z.; Li, H.; Li, H.C.; Fu, K. Research progress on few-shot learning for remote sensing image interpretation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021. [Google Scholar] [CrossRef]
- Zhu, X. Semi-Supervised Learning Literature Survey; University of Wisconsin-Madison Department of Computer Sciences, College of Letters and Science, University of Wisconsin–Madison, 2006; Volume 2, pp. 607–608. Available online: https://minds.wisconsin.edu/handle/1793/60444 (accessed on 1 June 2021).
- Kong, Y.; Wang, X.; Cheng, Y.; Chen, C.L.P. Hyperspectral imagery classification based on semi-supervised broad learning system. Remote Sens. 2018, 10, 685. [Google Scholar] [CrossRef] [Green Version]
- Shi, C.; Lv, Z.; Yang, X.; Xu, P.; Bibi, I. Hierarchical multi-view semi-supervised learning for very high-resolution remote sensing image classification. Remote Sens. 2020, 12, 1012. [Google Scholar] [CrossRef] [Green Version]
- Xia, G.-S.; Wang, Z.; Xiong, C.; Zhang, L. Accurate annotation of remote sensing images via active spectral clustering with little expert knowledge. Remote Sens. 2015, 7, 15014–15045. [Google Scholar] [CrossRef] [Green Version]
- Demarchi, L.; Canters, F.; Cariou, C.; Licciardi, G.; Chan, J.C.W. Assessing the performance of two unsupervised dimensionality reduction techniques on hyperspectral APEX data for high resolution urban land-cover mapping. ISPRS J. Photogramm. Remote Sens. 2014, 87, 166–179. [Google Scholar] [CrossRef]
- Sheikholeslami, M.M.; Nadi, S.; Naeini, A.A.; Ghamisi, P. An efficient deep unsupervised superresolution model for remote sensing images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 1937–1945. [Google Scholar] [CrossRef]
- Wang, S.; Chen, W.; Xie, S.M.; Azzari, G.; Lobell, D.B. Weakly supervised deep learning for segmentation of remote sensing imagery. Remote Sens. 2020, 12, 207. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Tang, P.; Corpetti, T.; Zhao, L. WTS: A Weakly towards strongly supervised learning framework for remote sensing land cover classification using segmentation models. Remote Sens. 2021, 13, 394. [Google Scholar] [CrossRef]
- Tuia, D.; Ratle, F.; Pacifici, F.; Kanevski, M.F.; Emery, W.J. Active learning methods for remote sensing image classification. IEEE Trans. Geosci. Remote Sens. 2009, 47, 2218–2232. [Google Scholar] [CrossRef]
- Tuia, D.; Pasolli, E.; Emery, W.J. Using active learning to adapt remote sensing image classifiers. Remote Sens. Environ. 2011, 115, 2232–2242. [Google Scholar] [CrossRef]
- Settles, B. Active Learning. Synthesis Lectures on Artificial Intelligence and Machine Learning. 2012, pp. 1–114. Available online: https://www.morganclaypool.com/doi/abs/10.2200/S00429ED1V01Y201207AIM018 (accessed on 1 March 2021). [CrossRef]
- Li, J.; Huang, X.; Chang, X. A label-noise robust active learning sample collection method for multi-temporal urban land-cover classification and change analysis. ISPRS J. Photogramm. Remote Sens. 2020, 163, 1–17. [Google Scholar] [CrossRef]
- Stumpf, A.; Lachiche, N.; Malet, J.P.; Kerle, N.; Puissant, A. Active learning in the spatial domain for remote sensing image classification. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2492–2507. [Google Scholar] [CrossRef]
- Ma, K.Y.; Chang, C.-I. Iterative training sampling coupled with active learning for semisupervised spectral-spatial hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2021, 1–21. [Google Scholar] [CrossRef]
- Han, W.; Coutinho, E.; Ruan, H.; Li, H.; Schuller, B.; Yu, X.; Zhu, X. Semi-supervised active learning for sound classification in hybrid learning environments. PLoS ONE 2016, 11. [Google Scholar] [CrossRef] [Green Version]
- Haertel, R.; Felt, P.; Ringger, E.; Seppi, K. Parallel active learning: Eliminating wait time with minimal staleness. In Proceedings of the NAACL HLT 2010 Workshop on Active Learning for Natural Language Processing, Department of Computer ScienceBrigham Young University, Provo, UT, USA, 1 June 2010. [Google Scholar]
- Demir, B.; Persello, C.; Bruzzone, L. Batch-mode active-learning methods for the interactive classification of remote sensing images. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1014–1031. [Google Scholar] [CrossRef] [Green Version]
- Shi, L.; Zhao, Y.; Tang, J. Batch mode active learning for networked data. ACM Trans. Intell. Syst. Technol. 2012, 3, 1–25. [Google Scholar] [CrossRef]
- Shi, Q.; Du, B.; Zhang, L. Spatial coherence-based batch-mode active learning for remote sensing image classification. IEEE Trans. Image Process. 2015, 24, 2037–2050. [Google Scholar] [CrossRef]
- Cardoso, T.N.; Silva, R.M.; Canuto, S.; Moro, M.M.; Gonçalves, M.A. Ranked batch-mode active learning. Inform. Sci. 2017, 379, 313–337. [Google Scholar] [CrossRef]
- Qu, Z.; Du, J.; Cao, Y.; Guan, Q.; Zhao, P. Deep active learning for remote sensing object detection. arXiv 2020, arXiv:2003.08793. [Google Scholar]
- Balcan, M.F.; Broder, A.Z.; Zhang, T. Margin based active learning. In Proceedings of the Conference on Learning Theory, San Diego, CA, USA, 13–15 June 2007; pp. 35–50. [Google Scholar]
- Kumari, P.; Chaudhuri, S.; Borkar, V.; Chaudhuri, S. Maximizing Conditional Entropy for Batch-Mode Active Learning of Perceptual Metrics. 2021. Available online: http://arxiv.org/abs/2102.07365 (accessed on 17 March 2021).
- Dasgupta, S. Two faces of active learning. Theor. Comput. Sci. 2011, 412, 1767–1781. [Google Scholar] [CrossRef] [Green Version]
- Shui, C.; Zhou, F.; Gagné, C.; Wang, B. Deep active learning: Unified and principled method for query and training. arXiv 2019, arXiv:1911.09162. [Google Scholar]
- Ji, X.; Cui, Y.; Teng, L. Joint multi-mode cooperative classification algorithm for hyperspectral images. J. Appl. Remote Sens. 2021, 15, 1–25. [Google Scholar] [CrossRef]
- Yan, S.; Jing, L.; Wang, H. A new individual tree species recognition method based on a convolutional neural network and high-spatial resolution remote sensing imagery. Remote Sens. 2021, 13, 479. [Google Scholar] [CrossRef]
- Maurer, T. How to pan-sharpen images using the gram-schmidt pan-sharpen method—A recipe. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, XL-1/W1, 239–244. [Google Scholar] [CrossRef] [Green Version]
- Anderson, J.R.; Hardy, E.E.; Roach, J.T.; Witmer, R.E. A Land Use and Land Cover Classification System for Use with Remote Sensor Data; USGS Professional Paper, No. 964; US Government Printing Office: Washington, DC, USA, 1976. [CrossRef] [Green Version]
- Sun, J.; Wang, H.; Song, Z.; Lu, J.; Meng, P.; Qin, S. Mapping essential urban land use categories in nanjing by integrating multi-source big data. Remote Sens. 2020, 12, 2386. [Google Scholar] [CrossRef]
- Gong, P.; Liu, H.; Zhang, M.; Li, C.; Wang, J.; Huang, H.; Clinton, N.; Ji, L.; Li, W.; Bai, Y.; et al. Stable classification with limited sample: Transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017. Sci. Bull. 2019, 64, 370–373. [Google Scholar] [CrossRef] [Green Version]
- Shahi, K.; Shafri, H.Z.M.; Taherzadeh, E.; Area, A.S. A Novel Spectral Index for Automatic Shadow Detection in Urban Mapping Based On WorldView-2 Satellite Imagery. 2014. Available online: https://waset.org/publications/9999443/a-novel-spectral-index-for-automatic-shadow-detection-in-urban-mapping-based-on-worldview-2-satellite-imagery (accessed on 3 June 2021).
- Dare, P.M. Shadow analysis in high-resolution satellite imagery of urban areas. Photogramm. Eng. Remote Sens. 2005, 71, 169–177. [Google Scholar] [CrossRef] [Green Version]
- Fatiha, B.; Abdelkader, A.; Latifa, H.; Mohamed, E. Spatio temporal analysis of vegetation by vegetation indices from multi-dates satellite images: Application to a semi arid area in ALGERIA. Energy Procedia 2013, 36, 667–675. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Han, N.; Li, X.; Du, H.; Mao, F.; Cui, L.; Liu, T.; Xing, L. Spatiotemporal estimation of bamboo forest aboveground carbon storage based on Landsat data in Zhejiang, China. Remote Sens. 2018, 10, 898. [Google Scholar] [CrossRef] [Green Version]
- Xu, K.; Qian, J.; Hu, Z.; Duan, Z.; Chen, C.; Liu, J.; Sun, J.; Wei, S.; Xing, X. A new machine learning approach in detecting the oil palm plantations using remote sensing data. Remote Sens. 2021, 13, 236. [Google Scholar] [CrossRef]
- Zhang, M.; Du, H.; Zhou, G.; Li, X.; Mao, F.; Dong, L.; Zheng, J.; Liu, H.; Huang, Z.; He, S. Estimating forest aboveground carbon storage in Hang-Jia-Hu using landsat TM/OLI data and random forest model. Forests 2019, 10, 1004. [Google Scholar] [CrossRef] [Green Version]
- Gao, G.; Du, H.; Han, N.; Xu, X.; Sun, S.; Li, X. Mapping of moso bamboo forest using object-based approach based on the optimal features. Scientia Silvae Sinicae 2016, 52, 77–85. [Google Scholar] [CrossRef]
- Jordan, C.F. Derivation of leaf-area index from quality of light on the forest floor. Ecology 1969, 50, 663–666. [Google Scholar] [CrossRef]
- Ren, H.; Zhou, G.; Zhang, F. Using negative soil adjustment factor in soil-adjusted vegetation index (SAVI) for aboveground living biomass estimation in arid grasslands. Remote Sens. Environ. 2018, 209, 439–445. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Gitelson, A.A.; Merzlyak, M.N. Remote sensing of chlorophyll concentration in higher plant leaves. Adv. Space Res. 1998, 22, 689–692. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Karlson, M.; Ostwald, M.; Reese, H.; Bazié, H.R.; Tankoano, B. Assessing the potential of multi-seasonal WorldView-2 imagery for mapping West African agroforestry tree species. Int. J. Appl. Earth Obs. Geoinf. 2016, 50, 80–88. [Google Scholar] [CrossRef]
- Dash, J.; Curran, P.J. The MERIS terrestrial chlorophyll index. Int. J. Remote Sens. 2004, 25, 5403–5413. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Haboudane, D.; Tremblay, N.; Miller, J.R.; Vigneault, P. Using Spectral Indices Derived From Hyperspectral Data. IEEE Geosci. Remote. Sens. 2008, 46, 423–437. [Google Scholar] [CrossRef]
- Roujean, J.L.; Breon, F.M. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sens. Environ. 1995, 51, 375–384. [Google Scholar] [CrossRef]
- Gitelson, A.A. Remote estimation of canopy chlorophyll content in crops. Geophys. Res. Lett. 2005, 32, L08403. [Google Scholar] [CrossRef] [Green Version]
- Louhaichi, M.; Borman, M.M.; Johnson, D.E. Spatially located platform and aerial photography for documentation of grazing impacts on wheat. Geocarto Int. 2001, 16, 65–70. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Haralick, R.M.; Dinstein, I.; Shanmugam, K. Textural features for image classification. IEEE Trans. Syst. Man Cybern. 1973, SMC-3, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Du, H.; Mao, F.; Zhou, G.; Chen, L.; Xing, L.; Fan, W.; Xu, X.; Liu, Y.; Cui, L.; et al. Estimating bamboo forest aboveground biomass using EnKF-assimilated MODIS LAI spatiotemporal data and machine learning algorithms. Agric. For. Meteorol. 2018, 256, 445–457. [Google Scholar] [CrossRef]
- Van der Meer, F. The effectiveness of spectral similarity measures for the analysis of hyperspectral imagery. Int. J. Appl. Earth Obs. Geoinf. 2006, 8, 3–17. [Google Scholar] [CrossRef]
- Zhang, Y.; Cao, G.; Li, X.; Wang, B.; Fu, P. Active semi-supervised random forest for hyperspectral image classification. Remote Sens. 2019, 11, 2974. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.; Tian, M.; Li, J. Research progress on spectral similarity metrics. Harbin Gongcheng Daxue Xuebao J. Harbin Eng. Univ. 2017, 38, 1179–1189. [Google Scholar] [CrossRef]
- Chang, C.I. Spectral information divergence for hyperspectral image analysis. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS 1999), Hamburg, Germany, 28 June–2 July 1999; pp. 509–511. [Google Scholar]
- Chang, C.I. An information-theoretic approach to spectral variability, similarity, and discrimination for hyperspectral image analysis. IEEE Trans. Inf. Theory 2000, 46, 1927–1932. [Google Scholar] [CrossRef] [Green Version]
- Vakil, M.I.; Malas, J.A.; Megherbi, D.B. An information theoretic metric for identifying optimum solution for normalized cross correlation based similarity measures. In Proceedings of the IEEE National Aerospace Electronics Conference, NAECON, Dayton, OH, USA, 15–19 June 2015; Volume 2016, pp. 136–140. [Google Scholar]
- Zhang, E.; Zhang, X.; Yang, S.; Wang, S. Improving hyperspectral image classification using spectral information divergence. IEEE Geosci. Remote Sens. Lett. 2014, 11, 249–253. [Google Scholar] [CrossRef]
- Wan, L.; Tang, K.; Li, M.; Zhong, Y.; Qin, A.K. Collaborative active and semisupervised learning for hyperspectral remote sensing image classification. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2384–2396. [Google Scholar] [CrossRef]
- Wang, Z.; Du, B.; Zhang, L.; Zhang, L.; Jia, X. A novel semisupervised active-learning algorithm for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3071–3083. [Google Scholar] [CrossRef]
- Hou, C.; Yang, C. Research on Strategies of Active Learning and Its Application to Image Classification. Ph.D. Thesis, Xiamen University, Xiamen, China, 2019. [Google Scholar]
Land Use Classes | Subclass Components |
---|---|
Barren land | Dry salt flats, bare exposed rock, and sandy areas other than beaches |
Built-up land | Residential, industrial, transportation, commercial, and service lands |
Shadows | Shadows of trees, grasslands, and buildings |
Water | Streams, rivers, and ponds |
Grassland | Natural grassland and planted grassland |
Forest | Deciduous forest and evergreen forest |
Class Name | Barren Land | Built-Up Land | Shadows | Water | Grassland | Forest | |
---|---|---|---|---|---|---|---|
Initial sets | Objects (pixels) | 10 (723) | 10 (1226) | 10 (854) | 10 (826) | 10 (873) | 10 (926) |
Expansion sets | Objects (pixels) | 10 (2513) | 90 (9034) | 52 (5435) | 5 (2747) | 16 (2400) | 40 (4079) |
Datasets | Objects (pixels) | 20 (3236) | 100 (10,260) | 62 (6289) | 15 (3573) | 26 (3273) | 50 (5005) |
Feature Types | Feature Names | Details | Remarks |
---|---|---|---|
Spectral | Blue band (B) | 450–510 nm | Worldview-3 data |
Green band (G) | 510–580 nm | ||
Red band (R) | 630–690 nm | ||
Near-infrared band (NIR) | 770–1040 nm | ||
Vegetation indices | Ratio vegetation index (RVI) [57] | X take value for 0.16 L take value for 0.5 [58] | |
Difference vegetation index (DVI) [59] | |||
Normalized difference vegetation index (NDVI) [59] | |||
Green normalized difference vegetation index (GNDVI) [60] | |||
Soil adjusted vegetation index (SAVI) [61] | |||
Triangular vegetation index (TVI) [59] | |||
Green vegetation index (VIgreen) [62] | |||
Modified simple ratio index (MSRI) [63] | |||
Modified chlorophyll absorption in reflection index (MCARI) [64] | |||
Transformed chlorophyll absorption in reflectance index (TCARI) [65] | |||
Renormalized difference vegetation index (RDVI) [66] | |||
Greenness index (GI) [67] | |||
Green leaf index (GLI) [68] | |||
Enhanced vegetation index (EVI) [69] | |||
Texture features based on the gray-level co-occurrence matrix (GLCM) [70] | Mean (ME) | is the th row of the th column in the th moving window | |
Variance (VA) | |||
Entropy (EN) | |||
Angular second moment (SE) | |||
Homogeneity (HO) | |||
Contrast (CON) | |||
Dissimilarity (DI) | |||
Correlation (COR) |
Spectral | G | R | NIR | Vegetation Index |
---|---|---|---|---|
Based on the G | Based on the R | Based on the NIR | ||
NIR | MEA_G_3 | COR_R_11 | MEA_NIR_9 | RDVI |
MEA_G_5 | CON_R_13 | MEA_NIR_11 | RVI | |
VAR_G_13 | COR_R_13 | MEA_NIR_13 | SAVI | |
HOM_G_13 | MEA_R_11 | CON_NIR_11 | GLI | |
MEA_R_13 | COR_NIR_13 | DVI | ||
SEC_NIR_13 | EVI | |||
TVI | ||||
GNDVI | ||||
VIgreen |
Algorithms | OA | Barren Land | Built-Up Land | Shadow | Water | Grassland | Forest | |
---|---|---|---|---|---|---|---|---|
RBSIDLC | 0.9683 | UA | 0.9790 | 0.9191 | 0.9835 | 1.0000 | 0.9425 | 0.9759 |
PA | 0.9589 | 0.9766 | 1.0000 | 0.9845 | 0.9467 | 0.9561 | ||
RBMAL | 0.9435 | UA | 0.9677 | 0.7785 | 0.9834 | 0.9948 | 0.9254 | 0.9789 |
PA | 0.8219 | 0.9609 | 0.9944 | 0.9845 | 0.9378 | 0.9426 | ||
RF | 0.9384 | UA | 0.9627 | 0.7799 | 0.9886 | 1.0000 | 0.9058 | 0.9683 |
PA | 0.8836 | 0.9688 | 0.9721 | 0.9897 | 0.8978 | 0.9291 |
Algorithm Scene | Query Strategy | Abbreviation | Extraction Results |
---|---|---|---|
Batch-based Sampling | Uncertainty sampling least confident | Batch-based least-confident (BBLC) method | Figure 7a |
Margin sampling | Batch-based margin (BBM) method | Figure 7b | |
Entropy based | Batch-based entropy (BBE) method | Figure 7c |
Algorithm | Labeled Samples | Time(s) | SavedRate |
---|---|---|---|
BBLC | 540 | 221.325 | 0.97562 |
BBM | 440 | 221.371 | 0.98013 |
BBE | 970 | 429.453 | 0.95619 |
RBMAL | 420 | 212.562 | 0.98102 |
RBSIDLC | 410 | 162.196 | 0.98149 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, X.; Du, H.; Zhou, G.; Li, X.; Mao, F.; Zhu, D.; Xu, Y.; Zhang, M.; He, S.; Huang, Z. A Novel Query Strategy-Based Rank Batch-Mode Active Learning Method for High-Resolution Remote Sensing Image Classification. Remote Sens. 2021, 13, 2234. https://doi.org/10.3390/rs13112234
Luo X, Du H, Zhou G, Li X, Mao F, Zhu D, Xu Y, Zhang M, He S, Huang Z. A Novel Query Strategy-Based Rank Batch-Mode Active Learning Method for High-Resolution Remote Sensing Image Classification. Remote Sensing. 2021; 13(11):2234. https://doi.org/10.3390/rs13112234
Chicago/Turabian StyleLuo, Xin, Huaqiang Du, Guomo Zhou, Xuejian Li, Fangjie Mao, Di’en Zhu, Yanxin Xu, Meng Zhang, Shaobai He, and Zihao Huang. 2021. "A Novel Query Strategy-Based Rank Batch-Mode Active Learning Method for High-Resolution Remote Sensing Image Classification" Remote Sensing 13, no. 11: 2234. https://doi.org/10.3390/rs13112234
APA StyleLuo, X., Du, H., Zhou, G., Li, X., Mao, F., Zhu, D., Xu, Y., Zhang, M., He, S., & Huang, Z. (2021). A Novel Query Strategy-Based Rank Batch-Mode Active Learning Method for High-Resolution Remote Sensing Image Classification. Remote Sensing, 13(11), 2234. https://doi.org/10.3390/rs13112234