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Abstract: China is one of the countries with the most abundant bamboo forest resources in the world,
and Zhejiang province is among the top-3 Chinese provinces with richest bamboo forests. For rational
bamboo forests management, it is of great significance to study the spatiotemporal dynamic changes
of Aboveground Carbon (AGC) stocks of bamboo forest in Zhejiang. In this study, remote sensing
variables, such as spectral, vegetation indices and texture features of bamboo forest in Zhejiang,
were extracted from 32 Landsat TM and OLI images got from four different years (2000, 2004, 2008
and 2014). These variables were subsequently selected with stepwise regression method to build
an estimation model of AGC of the bamboo forests. The results showed that (1) the accuracy of
bamboo forest remote sensing information extracted from the four different years was high with
a classification accuracy of >76.26% and an accuracy of users of >91.62%. The classification area
of bamboo forest was highly consistent with the area from forest resource inventory, and the area
accuracy was over 96.50%; (2) the estimation model performed well in predicting the AGC in Zhejiang
for different years. The correlation coefficient for estimated and measured AGC was between 63% and
72% with low root mean square error; (3) the derived AGC of the bamboo forests in Zhejiang province
increased gradually from 2000 to 2014, with the AGC density of 6.75 Mg·ha−1, 10.95 Mg·ha−1,
15.25 Mg·ha−1 and 19.07 Mg·ha−1 respectively, and the average annual growth of 0.88 Mg·ha−1.
The spatiotemporal evolution of bamboo forest AGC in Zhejiang province had a close relationship
with the gradual expansion of bamboo forest in the province and the differentiation of management
levels in different regions.

Keywords: bamboo forest; aboveground carbon stocks; Landsat dataset; spatiotemporal evolution;
Remote sensing information model

1. Introduction

Bamboos are naturally distributed in the tropical, subtropical and temperate regions of all the
continents except Europe and western Asia, from lowland up to 4000 m in altitude [1], and mainly
in Asia [2–7]. China locates in the center of world’s bamboo distribution area, and is the most
important bamboo industry country in the world. Bamboo area in China reached 6.01 million hectares,
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accounting for approximately 20% of the total area of bamboo forests in the world [8]. Zhejiang, locating
in the middle-east of China, has more than 0.9 million hectares of bamboo forest, being one of
the top-3 Chinese provinces with richest bamboo forest resource. Such abundant bamboo forest
resources in Zhejiang is mainly attributed to high level of management and developed bamboo
industry. Therefore, it is said that “World bamboo forests focus on China, and Chinese bamboo forests
focus on Zhejiang”.

Bamboo forest is an important part of subtropical ecosystem. Previous studies reported that
bamboo forest, e.g., Moso Bamboo, has higher carbon dioxide sequestration than other subtropical
forests [7,9]. With much effort focused on estimating carbon stocks of bamboo forest [10–19], it has
showed that bamboo forest played an important role in coping with climate change [20–26].

Remote sensing data has been widely used for estimates of AGC in forests [27–31], and in recent
years, high-resolution satellite imageries were used due to the development of technologies [32–39],
e.g., the multi-resolution remote sensing imagery satellites [40–45]. Although the application of high
spatial and spectral resolution sensors succeed in AGC estimation, there are still limitations such
as high acquisition costs, small area coverage, multicollinearity, limited availability and a narrow
bandwidth [46]. The above limitations lead to more workload and lower efficiency in estimating AGC
of large-scale forest. Researches of the spatiotemporal evolution and the carbon storage estimation of
bamboo forest by using medium-resolution remote sensing data has achieved plenteous results [47–52].
Meanwhile, algorithms for estimating carbon stocks/biomass based on remote sensing data have
also been developed. In early studies, carbon stocks/biomass estimation was mostly conducted
with linear or nonlinear regression models. For example, Anaya et al. [53] constructed a linear
model using enhanced vegetation index (EVI) and related characteristics to estimate AGC in different
vegetation types. Du et al. [49] used Partial Least Squares (PLS) method to estimate the carbon storage
of bamboo forest in Anji County. Xu et al. [54] estimated the carbon storage of Phyllostachys praecox
using the PLS regression. In recent years, machine learning algorithms have been widely used not
only for inversion of land use changes but also for carbon storage estimation. Zhou et al. [26] used the
K-Nearest Neighbor (KNN) method to estimate carbon storage in bamboo forests. Vafaei et al. [41]
used Random Forests (RF), Support Vector Regression (SVR), Multi-Layer Perceptron Neural Networks
(MPL Neural Net) and Gaussian Processes (GP) methods to estimate the forest AGC, and proved high
accuracy of the methods. Gao et al. [55] combined Artificial Neural Network (ANN), SVR, RF, KNN,
and Linear Regression (LR) methods to estimate forest AGC.

However, the previous studies mainly focused on small-scale area e.g., protected areas and
countries. Estimation of spatiotemporal variation of bamboo forest carbon stocks on a large scale is of
great significance for understanding the function of bamboo forest on climate change. In this study,
we took Zhejiang province as a case study to establish AGC models of bamboo forest using the remote
sensing information from Landsat5 TM and Landsat8 OLI data. The spatiotemporal dynamics of
bamboo AGC was estimated and analyzed based on the extraction of spatial and temporal distribution
of bamboo forests in four years (2000, 2004, 2008 and 2014) in Zhejiang Province. The study aimed at
providing an insight into the spatiotemporal dynamics of bamboo forest carbon stocks in a long-time
series at a national or global scale.

2. Materials and Methods

2.1. Study Area

Zhejiang province (Figure 1) is located in south of Yangtze River Delta in southeast coast, China
(118–123◦E and 27–31◦N). Under subtropical monsoon climate, it has clearly demarcated seasons,
suitable temperature with abundant rainfall. The annual mean temperature for Zhejiang is between
15 ◦C to 18 ◦C, and the annual precipitation varies in a range of 980–2000 mm. Zhejiang province has
a rich forest resource, covering approximately 6.06 million hectares of forest land, 0.9 million hectares
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of which are occupied by bamboo forest [56]. Moso bamboo forest accounted for 87.22% of the total
bamboo forest area, with 0.79 million hectares [57].Remote Sens. 2018, 10, x FOR PEER REVIEW  3 of 23 

 

 
Figure 1. Study area and location of bamboo forest carbon storage sample plots. Figure 1. Study area and location of bamboo forest carbon storage sample plots.
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2.2. Dataset and Landsat TM Image Preprocessing

In this study, we selected 8 scene remote sensing images per year (2000, 2004, 2008 and 2014),
and each of these 32 images covered the whole province (Table ??). In order to reduce the influence of
acquisition time, vegetation spectral reflectance, cloud thickness and other factors on classification
results, we selected the images with cloud cover below 10%, smallest observational zenith angle,
and consistent time interval.

We used the FLAASH method to make atmospheric correction for each image, with consideration
of eliminating two major kinds of influence factors: (1) those such as water vapor, aerosol, bidirectional
reflection and data transmission, which may influence the trend analysis and information extraction
in time series [58,59]; and (2) the radiation difference between multi-temporal remote sensing data.
Then, the corrected images were furtherly geometrically corrected using ground control points (GCPs)
to splice the remote sensing data of Zhejiang Province [60].

2.3. Mapping of Bamboo

In this study, land use was classified into six types: bamboo, broad-leaved forest, coniferous
forest, farmland, barren land, and water bodies [61]. Based on the fifth to eighth forest resource
inventories (1994–1998, 1999–2003, 2004–2008 and 2009–2013) in Zhejiang Province, the spectral
reflectance characteristics of samples were used to select Regions of Interest (ROIs) as the training
samples for maximum likelihood classification based on visual interpretation, and the sampling data
that derived from the continuous forest resource inventory data of Zhejiang Province, were used
to validate the classification results. Table ?? shows the numbers of validation samples for bamboo,
broad-leaved forest, coniferous forest, farmland, barren land and water bodies indifferent years.

2.4. AGC Estimation

As bamboo forest was dominated by Moso bamboo in Zhejiang province, the Moso bamboo
sample plots were used for spatiotemporal estimation of carbon stocks on bamboo forest from 2000
to 2014 in this study. The numbers of bamboo forest plots were 137, 189, 203 and 139, respectively
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(Figure 1). Above Ground Biomass (AGB) of individual Moso bamboo was calculated based on the
Equation (1) [62]:

M(D, A) = 747.787D2.771
(

0.148A
0.028 + A

)5.555
+ 3.772, (1)

where M, D, and A denote AGB (dry weight in Kg), DBH (cm), and age (du), respectively. For each
plot, the AGB is a sum of all individual Moso bamboo AGB within the plot, and the expansion factor
for the conversion from biomass to carbon for Moso bamboo forestis 0.5042 [9].

2.5. Construction of Estimation Model for Carbon Storage of Bamboo Forest

2.5.1. Setting of Remote Sensing Variables

The variables of bamboo forest AGC model consisted of three types, i.e., original band
combinations, vegetation indices and band texture (Table 1). Five different window sizes (3 × 3,
5 × 5, 7 × 7, 9 × 9, and 11 × 11) were set for calculation of texture variables. Due to different numbers
between Landsat5 and Landsat8 bands, the number of variables was 250 in 2000, 2004 and 2008,
while 290 in 2014. When the sample plot coordinates were matched with the pixel values of remote
sensing variables, they might not fully matched with each other due to geometric correction and
positioning error. In order to reduce the matching error, a window size of 3 × 3 pixels was used to
extract the mean values of the selected remote sensing variables for each plot [63–66].

2.5.2. Method of Model Construction

Stepwise regression screening variables method, one of the most widely used methods in
regression models [67,68], was used to establish a remote sensing information model of AGC in
bamboo forests. 70% of the sample plots were randomly selected for developing the model, and the
others for evaluating the established model. AGC may have high or weak relationships with remote
sensing variables. Because of the strong correlations among some explanatory variables, it was
critical to eliminate the variables that have a high correlation between themselves and nonsignificant
correlations between variables and AGC [55,69]. The advantage of stepwise regression is to determine
the importance of explanatory variables and eliminate the influence of collinearity on accuracy
of models. Correlation analysis can be used to examine the relationship between AGB and remote
sensing variables. The basic idea of stepwise regression is to introduce the variables one by one into
the model. After each of the explanatory variables was introduced, the F-test must be conducted
and the explanatory variables that have been selected must be t-test one by one. When the originally
introduced explanatory variable becomes less significant due to the introduction of later explanatory
variables, it was deleted to ensure that the regression equation contained only significant variables
before each new variable was introduced. The process did not stopped until there was no significant
explanatory variable to choose the regression equation, and no significant explanatory variables were
excluded from the regression equation. After applying stepwise regression, the obtained explanatory
variables were optimal, and there was no serious collinearity among variables.
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Table 1. Information of remote sensing variables.

Type Name Calculate Model Abbreviation Remarks

Band combination

TM546 band5 * band4/band6 TM546

Suitable Landsat5 TM data (2000, 2004, 2008)
TM543 band5 * band4/band3 TM543
TM542 band5 * band4/band2 TM542
TM432 band4 * band3/band2 TM432
TM321 band3 * band2/band1 TM321

TM754 Band7 * band5/band4 TM754

Suitable Landsat8 OLI data (2014)
TM563 Band5 * band6/band3 TM563
TM547 Band4 * band5/band7 TM547
TM432 Band4 * band3/band2 TM432
TM543 Band5 * band4/band3 TM543

Vegetation Index

Normalized Difference
Vegetation Index (NIR-R)/(NIR + R) NDVI

NIR, R, and B represent Near-Infrared Reflectivity, Red reflectivity,
Blue reflectivity, and L take value for 0.5

Difference Vegetation Index NIR-R DVI

Simple Ratio Index NIR/R SR

Enhanced Vegetation Index 2.5(NIR-R)/(NIR + 6R −
7.5B + 1) EVI

Soil-Adjusted Vegetation Index (NIR-R) * (1 + L)/(NIR
+ R + L) SAVI

Texture

Mean
N−1
∑

i=0

N−1
∑

j=0
iP(i, j) Mean

P(i, j) = V(i, j)/
N−1
∑

i=0

N−1
∑

j=0
V(i, j)

V(i, j) is the ith row of the jth column in the Nth moving window;

µx =
N−1
∑

j=0
j
N−1
∑

i=0
P(i, j)

µy =
N−1
∑

i=0
i
N−1
∑

j=0
P(i, j)

σx =
N−1
∑

j=0
(j− µi)

2N−1
∑

i=0
P(i, j)

σy =
N−1
∑

i=0
(i− µj)

2N−1
∑

j=0
P(i, j)

Variance
N−1
∑

i=0

N−1
∑

j=0
(i−mean)2P(i, j) Var

Homogeneity
N−1
∑

i=0

N−1
∑

j=0

P(i,j)
1+(i−j)2 Homo

Contrast
N−1
∑

|i−j|=0
|i− j|2

{
N
∑

i=1

N
∑

j=1
P(i, j)

}
Con

Dissimilarity
N−1
∑

|i−j|=0
|i− j|

{
N
∑

i=1

N
∑

j=1
P(i, j)

}
Dissi

Entropy −
N−1
∑

i=0

N−1
∑

j=0
P(i, j) log(P(i, j)) En

Angular second moment
N−1
∑

i=0

N−1
∑

j=0
P(i, j)2 Sec

Correlation
N−1
∑

i=0

N−1
∑
j=0

(i,j)P(i,j)−µxµy

σxσy

Corr
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2.5.3. Model Evaluation

The model evaluation indexes mainly included Relative Error (RE), Mean Relative Error (MRE)
and root mean square error (RMSE), as well as the analysis and evaluation of the extreme values of the
model predictive value. Formulas were listed as follows, where i represents the ith sample:

REi =
Obs_AGCi − Pre_AGCi

Obs_AGCi
, (2)

MRE =
1
n∑ |REi| × 100%, (3)

RMSE =

√
1
n

n

∑
i=1

(Obs_AGCi − Pre_AGCi)
2, (4)

where Obs_AGCi represent the observed AGC of the ith sample, Pre_AGCi represent the predicted
AGC of the ith sample, n represent the number of sample, respectively.

3. Results

3.1. Spatiotemporal Distribution of Bamboo

The accuracies of bamboo forest remote sensing information extraction in 2000, 2004, 2008 and
2014 are shown in Table 2. Table 2 shows that the overall accuracy of land use types at different
times is above 76.26%, kappa coefficient is higher than 0.75. The overall classification accuracy is high.
Producer’s accuracy of bamboo forest is above 75.86%, and the user’s accuracy is above 91.62%.
In addition, the accuracy of area extraction is over 96.50%, which is a satisfying result according to the
actual area of the forest management inventory. Figure 2 shows the spatial distribution of bamboo
forests in Zhejiang Province. According to Figure 2, the area of bamboo forests in Zhejiang Province
showed a gradually increasing trend in time and space from the year of 2000 to 2014.

Based on the time-series Landsat data, the distribution information of bamboo forests in Zhejiang
Province was extracted, which exhibited high accuracies in terms of both classification results and
area statistics. The spatiotemporal distribution characteristics of bamboo forests are consistent with
the actual situation, which provide a more accurate data.
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Table 2. Accuracy of classification and bamboo forest extraction in Zhejiang Province.

Year Overall Accuracy of Land
Use Classification Bamboo Forest Classification Accuracy Bamboo Area

Estimation Accuracy

Accuracy (%) Kappa Coefficient Producer’s Accuracy (%) User’s Accuracy (%) (%)

2000 85.04 0.82 75.86 94.12 96.50%
2004 81.59 0.78 76.28 91.62 97.50%
2008 76.26 0.75 79.18 95.07 97.50%
2014 81.69 0.78 79.41 93.1 98.90%

3.2. AGC Model of Bamboo

Estimation models of AGC from the year of 2000 to 2014 were obtained by the stepwise regression
method (Formulas (5)–(8)):

AGC model of 2000:

AGC2000 = 20.378− 2.660 ∗W9b1En + 1.495 ∗W11b6Mean− 2.415 ∗W5b2Mear
+2.153 ∗W7b3Con− 1.694 ∗W7b4En− 1.402 ∗W3b6Corr
+1.487 ∗W7b2En− 1.107 ∗W9b5En

, (5)

AGC model of 2004:

AGC2004 = −3.278 + 15.764× SAVI− 1.984 ∗W11b3Var, (6)

AGC model of 2008:

AGC2008 = −8.112 + 14.312 ∗ SAVI + 24.266 ∗W11b5Sec + 6.455 ∗W7b2Var
+0.208 ∗W3b5Mean− 4.788 ∗W7b2Con

, (7)

AGC model of 2014:

AGC2014 = −4.436 + 10.597 ∗NDVI + 6.098 ∗W3b7Sec + 1.99 ∗W3b5En+
0.016 ∗ TM547 + 1.917 ∗W11b2Corr + 3.373 ∗W9b7Corr

(8)

Here, C is bamboo carbon storage; Wi for texture window, i = 3, 5, 7, 9, 11; bi is i band, i = 1, 2, . . . , 7,
and the band 7 was unique for 2014.
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3.3. Accuracy Assessment of AGC Model

Figure 3 shows the correlation between the predicted AGC and the observed AGC for the model.
All of the correlation coefficients R of training and testing data values range from 0.63 to 0.72 in
different years (Figure 3; p < 0.01), and Mean Relative Error (MRE) is less than 0.377, and the highest
accuracy of the AGB model was achieved in the year of 2014 (R = 0.72, RMSE = 2.9, MRE = 0.314).
Both the model accuracy and the verifying accuracy pointed to good performance of the models.
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Figure 3. Relationship between Observed AGC and Predicted AGC in different years (significance at
the 0.01 level).

Further analysis were statistics of model predicting ability (Table 3). According to the model
predicted value, (1) the maximum, minimum and average value of model predicted value exhibited
increasing trends over time from 2000 to 2014. As the economic benefit increasing of bamboo forest,
and the management level of bamboo forests in Zhejiang Province has been improved year by year.
Meanwhile, the biomass has also increased [70,71]. Therefore, the predicted value of AGC maximum,
minimum and mean value are consistent with the actual situation; (2) Predicted STD and MRE value
of bamboo forest AGC are relatively stable from 2.2 to 2.9, which indicates that the model is stable and
has good performance in predicting the spatiotemporal distribution of AGC in bamboo forest.

Table 3. Statistical analysis of the model prediction and residual.

Year Index Minimum Value Maximum Value Average Value STD

2000
Predicted value 3.611 12.950 6.933 2.253

Residual −3.395 3.600 0.369 1.888

2004
Predicted value 5.106 15.546 10.679 2.486

Residual −3.715 3.504 0.317 1.910

2008
Predicted value 5.493 18.035 11.493 2.813

Residual −4.570 5.009 0.059 2.421

2014
Predicted value 6.556 16.758 12.966 2.220

Residual −3.573 3.113 0.122 1.824

3.4. AGC Spatiotemporal Evolution of Bamboo Forest

According to the AGC model of bamboo forest in Zhejiang Province, the spatial distribution of
AGC in different periods from 2000 to 2014 is shown in Figure 4. As is known, the carbon density
of bamboo Zhejiang province has been continuously increasing over time, especially in Hangzhou,
Shaoxing, Quzhou, Ningbo, Lishui, Jinhua, and Wenzhou. Table 4 shows the statistical results of
bamboo forest AGC at different periods in 11 cities of Zhejiang. According to the statistics, the carbon
density in Zhejiang Province increased from 6.75 Mg·ha−1 in 2000 to 19.07 Mg·ha−1 in 2014, with a
growth rate of 182.52%. Carbon storage increased from 5.14 Tg in 2000 to 16.94 Tg in 2014.
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Figure 4. The AGC spatial Distribution map of bamboo forest in Zhejiang Province in different years.

From the spatiotemporal distribution of bamboo forest carbon stock in 11 cities, the cities with
the highest and lowest increase in total carbon storage in four periods are Hangzhou and Jiaxing.
The carbon storage in Hangzhou City increased from 0.81 Tg C in 2000 to 3.47 Tg C in 2014, more
than quadrupled with an average annual increase of 0.19 Tg C; Jiaxing City has low carbon storage
because of the small bamboo area; otherwise, Zhoushan City has maintained a relatively stable total
carbon stock. At the same time, the carbon density of bamboo forests in all counties and cities
maintained a continuous growth pattern at different periods (Table 4), but the difference in growth
ranged greatly. Among them, the growth of carbon stock density in Huzhou and Hangzhou was
the most obvious, from 7.99 And 7.62 Mg·ha−1 in 2000 increased to 22.44 and 21.98 Mg·ha−1 in
2014, a threefold increase. Jiaxing City, on the other hand, showed the smallest increase from 0.6 to
2.4 Mg· ha−1 from 2000 to 2014.

The relationships between the Observed AGC and several factors established the models in
different years are shown in Figures 5–8. As is seen, W9B1En had the highest coefficient (R = 0.3608)
with the Observed AGC in 2000, followed by W9B5En (R = 0.2209), W5B2Mean (R = 0.1794), W7B4En
(R = 0.1676), W7B3Con (R = 0.1658), W11B6Mean (R = 0.1360), W3B6Corr (R = 0.1058) and W7B2En
(R = 0.0824). Meanwhile, SAVI (R = 0.6368, R = 0.5790), NDVI (R = 0.4007) had the highest coefficient
with the Observed AGC in 2004, 2008 and 2014, respectively.
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Table 4. The Spatial and Temporal Changes of Aboveground Carbon Storage in Bamboo Forest from 2000 to 2014 in Zhejiang Province.

City

2000 2004 2008 2014

Bamboo
Area
(ha)

Carbon
Density

(Mg·ha−1)

Total Carbon
Stock
(Tg C)

Bamboo
Area
(ha)

Carbon
Density

(Mg·ha−1)

Total Carbon
Stock
(Tg C)

Bamboo
Area
(ha)

Carbon
Density

(Mg·ha−1)

Total Carbon
Stock
(Tg C)

Bamboo
Area
(ha)

Carbon
Density

(Mg·ha−1)

Total Carbon
Stock
(Tg C)

Hangzhou 106,772.76 7.62 0.81 136,085.36 11.62 1.58 175,642.38 17.94 3.15 157,954.05 21.98 3.47
Huzhou 88,271.10 7.99 0.70 97,067.25 10.92 1.06 104,735.63 19.10 2.00 104,331.98 22.44 2.34
Jiaxing 3.87 4.69 0.00 15.66 8.77 0.00 634.41 5.90 0.00 107.73 5.29 0.00
Taizhou 84,108.87 6.12 0.51 55,287.18 8.72 0.48 21,360.78 13.49 0.29 36,291.87 16.95 0.62

Shaoxing 30,607.29 6.91 0.21 21,675.96 9.98 0.22 41,277.42 15.33 0.63 75,569.90 17.14 1.30
Quzhou 72,458.82 7.19 0.52 50,822.19 13.09 0.67 74,815.83 15.70 1.17 72,991.44 21.37 1.56
Ningbo 91,198.08 5.70 0.52 58,383.90 10.15 0.59 62,439.17 13.89 0.87 88,918.11 17.29 1.54
Lishui 103,576.95 6.15 0.64 173,737.13 11.95 2.08 163,593.90 15.61 2.55 166,664.07 18.77 3.13
Jinhua 75,212.46 6.62 0.50 68,752.17 12.23 0.84 86,205.24 13.57 1.17 75,075.39 16.18 1.21

Zhoushan 12,782.16 4.37 0.06 3560.67 8.99 0.03 5068.85 11.89 0.06 5327.37 9.83 0.05
Wenzhou 104,261.31 6.42 0.67 114,684.30 7.59 0.87 76,519.65 10.64 0.81 97,825.57 17.60 1.72
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Figure 8. The AGC (Mg·ha−1) versus eight variables derived from the AGC model of 2014: (a) AGC
versus NDVI; (b) AGC versus W3B7Sec; (c) AGC versus W3B5En; (d) AGC versus TM547; (e) AGC versus
W11B2Sec; (f) AGC versus W9B7Corr.

The role of the predictive variable for the AGC estimation in this study of different years was assessed
using factor analysis method in the SPSS.20 software (Statistical Product and Service Solutions, SPSS;
International Business Machines Corporation, IBM; Chicago, America). Accordingly, the correlation
coefficient was used to calculate the merit of the variables. The result is listed in Table 5. It can be seen that
W7B3Con, SAVI, W7B2Con, and NDVI were the most important variables for predicting the bamboo forest
AGC in different years. Meanwhile, we could realize that the most important variables in different years
were derived from vegetable indexes and texture, and they could improve the accuracy. The results are
inconsistent with the recent study reported by Vafaei et al. [41] and Eckert [37].

Table 5. The importance of the variables for the AGC estimation in different years.

Year Merit Value Variable Ranking

2000

0.825 W7B3Con 1
0.813 W9B1En 2
0.81 W7B2En 3

0.651 W9B5En 4
0.468 W5B2Mean 5
0.261 W11B6Mean 6
0.532 W7B4En 7
0.044 W3B6Corr 8

2004
0.869 SAVI 1
0.766 W11b3Var 2

2008

0.823 W7B2Con 1
0.764 W7B2Var 2
0.643 SAVI 3
0.611 W11B5Sec 4
0.096 W3B5Mean 5

2014

0.663 NDVI 1
0.656 W3b7Sec 2
0.231 W11b2Corr 3
0.23 TM547 4
0.11 W3b5En 5

0.016 W9b7Corr 6

4. Discussion

The study shows that the stepwise regression method of Zhejiang province AGC spatiotemporal
estimation of remote sensing information model has a good performance. The predicting ability of the
model is strong. Errors such as RMSE and predicted error are small. Figure 5 shows the analysis of the
residual distribution of the model prediction residual error when the standardization residual threshold of
the test sample was 2. As is shown in Figure 9, the STD of all test samples were within the threshold range,
which further illustrated that the model had good stability and reliability in predicting AGC of bamboo
forests at the provincial scale.

The results shows that the bamboo forest AGC and carbon density both had an increasing trend
from 2000 to 2014 in Zhejiang province. The study has great consistency with the previous researches
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by plot sampling [9] or ecological process model simulations [72] (Table 6, Except for the lack of data on
related studies in 2000). Certainly, there are some discrepancies mainly coursed by different methods or
models of estimation. The remote sensing information model is a kind of spatial information model [73].
There are some differences on spectrum, texture, and vegetation index in a same background object that
may influence the estimation results; however, the remote sensing has obvious advantages in large-scale
dynamic monitoring. The results of this study and previous studies provide a guarantee for using the
remote sensing information to accurately monitor the spatiotemporal dynamics of bamboo carbon storage
in a wide range.
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Table 6. The results were compared on the AGC of Bamboo Forest in Zhejiang Province.

Study Area Year
Carbon Density (Mg·ha−1) Carbon Stock (Tg C)

The Study References The Study References

Zhejiang province
2004 10.95

12.17; [72] 8.42 9.45; [72]
13; [74]

2008 15.72 13.85; [72] 12.72 11.33; [72]

2014 19.07 18.15; [72] 16.84 16.41; [72]

The previous researches showed that there was obvious relationship between the trend of gradual
increase of bamboo forest carbon stocks and carbon density, bamboo forest area gradual expansion and
improving management level of Zhejiang province [51,71]. Based on Table 4, Figure 10 showed the
relationship between spatiotemporal changes in carbon stocks and carbon densities and bamboo forest area
in 2000–2004, 2004–2008, 2014–2008 and 2000–2014 in different counties and cities in Zhejiang Province.
As we can see from Figure 10, there is a significant linear correlation between the change of bamboo forest
carbon storage and bamboo forest area. The main reason why there was no obvious linear relationship
between the change of carbon density and the area of bamboo forest was that average carbon storage
per unit area was affected by management level. As is shown in Table 4, the general change of bamboo
forest area in Huzhou was small, especially the year of 2008–2014, but the carbon density of bamboo
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forest remained relatively high, and the highest of 2014 was 22.44 Mg C/ha, which was related to
the long-term intensive management in the region and the high biomass of bamboo forests [75–78].
Therefore, the management level of bamboo forests in different regions will also affect the spatial and
temporal evolution of carbon storage to a huge extent.

In this paper, the estimation accuracy R of carbon storage models for different years range from
0.63 to 0.69 compared with previous studies. For instance, Shang et al. [22] used MODIS images to
estimate bamboo forest AGC and reported an R of 0.68. Shang et al. [47] estimated the AGC of Moso
bamboo forests in combination with Landsat and MODIS data, and the estimation accuracy R was 0.70.
Zhu et al. [79] estimated forest biomass using time series Landsat data and the model accuracy was 0.69.
Sandra Eckert [37] used WorldView-2 data estimated forest AGB and model accuracy R is up to 0.93.
Vafaei et al. [41] used ALOS-2 PALSAR-2 and Sentinel-2A data to estimate above-ground biomass in
forests, with a highest estimated accuracy R = 0.85. The estimation accuracy in this study is similar
to those studies based on medium resolution images, and it was less accurate than models based on
high-resolution images. In this research, the satellite remote sensing image used to estimate the carbon
stocks were Landsat time series of medium resolution data with a spatial resolution of 30× 30 m, and there
were many disadvantages compared to the high-resolution satellite data used to estimate forest AGC [80].
Previous studies showed that the combination with multi-source remote sensing data could effectively
improve the estimation accuracy of AGC [81]. Remote sensing data were affected by their own spectral
resolution, resulting in differences in the extraction accuracy of the band spectrum, vegetation index,
texture information compared with high-resolution images [37,38,42,81]. In addition, due to the large span
of date and time acquisition of the eight scenes in the same period, although atmospheric correction was
performed, radiation differences could not be completely eliminated, resulting in errors in bamboo forest
information extraction [82]. This is what we might improve in the future study.
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5. Conclusions

Based on the time series imageries of Landsat 5 TM and Landsat 8 OLI in 2000, 2004, 2008 and
2014, we took Zhejiang province as study area, as a precondition to extract bamboo forest distribution
information in different periods of Zhejiang province. Model of remote sensing variables were
constructed to estimate the spatiotemporal evolution of bamboo forest AGC in Zhejiang province.
The results shows that:

(1) The spatiotemporal distribution of bamboo forests in Zhejiang Province at different periods had
a higher accuracy of information extraction, of which the classification accuracy reached above
76.36%, the user’s accuracy was above 91.62% and the area accuracy was above 96.50%.

(2) Bamboo forest AGC spatiotemporal estimation model built by the stepwise regression method in
Zhejiang Province has good performance and robustness. RMSE and prediction error are small.
The estimated carbon storage results have a good consistency with the previous research.

(3) Bamboo forest AGC storage shows gradually increased tend in Zhejiang province from
2000 to 2014, and the average carbon stock density at different years was 6.75 Mg·ha−1,
10.95 Mg·ha−1, 15.25 Mg·ha−1 and 19.07 Mg·ha−1, and an average annual growth was
0.88 Mg·ha−1. Spatiotemporal evolution of bamboo forest carbon stocks has close relationships
with the expansion of bamboo forest area and the differences in management level in various
regions of Zhejiang province.
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