Drivers of Organic Carbon Stocks in Different LULC History and along Soil Depth for a 30 Years Image Time Series
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methods
2.2.1. Soil Survey Data
2.2.2. Land Use Time Series and Land Cover (LULC History)
2.2.3. Covariates Preparation
2.2.4. Covariates Selection
2.2.5. Random Forest Models
2.2.6. Spatial Predictions and Uncertainty Maps
3. Results
3.1. LULC History
3.2. Distribution of SOC Stocks across the LULC and Soil Profile
3.3. Covariate Selection
3.4. Performance of the Random Forest Models
3.5. Controlling Factors in Different LULC History Classes and Soil Depths
3.5.1. Ag = 100
3.5.2. Pas = 100
3.5.3. Ag > 50–Pas < 50
3.5.4. Ag > 50–Fo < 50
3.5.5. Total Samples
3.6. Predicting SOC Stocks
4. Discussion
4.1. LULC History and Distribution of SOC Stocks
4.2. Variable Selection and Model Performance
4.3. Controlling Factors
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lal, R. Enhancing crop yields in the developing countries through restoration of the soil organic carbon pool in agricultural lands. Land Degrad. Dev. 2006, 17, 197–209. [Google Scholar] [CrossRef]
- Srivastava, P.; Singh, R.; Tripathi, S.; Singh, H.; Raghubanshi, A.S. Soil carbon dynamics and climate change: Current agro-environmental perspectives and future dimensions. Energy Ecol. Environ. 2016, 1, 315–322. [Google Scholar] [CrossRef] [Green Version]
- Blanco-Canqui, H.; Shapiro, C.A.; Wortmann, C.S.; Drijber, R.A.; Mamo, M.; Shaver, T.M.; Ferguson, R.B. Soil organic carbon: The value to soil properties. J. Soil Water Conserv. 2013, 68, 129A–134A. [Google Scholar] [CrossRef]
- Li, M.; Han, X.; Du, S.; Li, L.-J. Profile stock of soil organic carbon and distribution in croplands of Northeast China. Catena 2019, 174, 285–292. [Google Scholar] [CrossRef]
- Ruiz-Sinoga, J.D.; García-Marín, R.; Gabarrón-Galeote, M.A.; Martínez-Murillo, J.F. Analysis of dry periods along a pluviometric gradient in Mediterranean southern Spain. Int. J. Clim. 2012, 32, 1558–1571. [Google Scholar] [CrossRef]
- Batjes, N.H. Total carbon and nitrogen in the soils of the world. Eur. J. Soil Sci. 1996, 47, 151–163. [Google Scholar] [CrossRef]
- Bonfatti, B.R.; Hartemink, A.E.; Giasson, E.; Tornquist, C.G.; Adhikari, K. Digital mapping of soil carbon in a viticultural region of Southern Brazil. Geoderma 2016, 261, 204–221. [Google Scholar] [CrossRef]
- Taghizadeh-Mehrjardi, R.; Nabiollahi, K.; Kerry, R. Digital mapping of soil organic carbon at multiple depths using different data mining techniques in Baneh region, Iran. Geoderma 2016, 266, 98–110. [Google Scholar] [CrossRef]
- Lal, R. Digging deeper: A holistic perspective of factors affecting soil organic carbon sequestration in agroecosystems. Glob. Chang. Biol. 2018, 24, 3285–3301. [Google Scholar] [CrossRef]
- Bartholomeus, H.; Kooistra, L.; Stevens, A.; van Leeuwen, M.; van Wesemael, B.; Ben-Dor, E.; Tychon, B. Soil Organic Carbon mapping of partially vegetated agricultural fields with imaging spectroscopy. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 81–88. [Google Scholar] [CrossRef]
- Wang, B.; Waters, C.; Orgill, S.; Gray, J.; Cowie, A.; Clark, A.; Liu, D.L. High resolution mapping of soil organic carbon stocks using remote sensing variables in the semi-arid rangelands of eastern Australia. Sci. Total. Environ. 2018, 630, 367–378. [Google Scholar] [CrossRef] [PubMed]
- Qi, L.; Wang, S.; Zhuang, Q.; Yang, Z.; Bai, S.; Jin, X.; Lei, G. Spatial-Temporal Changes in Soil Organic Carbon and pH in the Liaoning Province of China: A Modeling Analysis Based on Observational Data. Sustainability 2019, 11, 3569. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Gao, J.; Zhuang, Q.; Lu, Y.; Gu, H.; Jin, X. Multispectral Remote Sensing Data Are Effective and Robust in Mapping Regional Forest Soil Organic Carbon Stocks in a Northeast Forest Region in China. Remote Sens. 2020, 12, 393. [Google Scholar] [CrossRef] [Green Version]
- Schulp, C.; Verburg, P. Effect of land use history and site factors on spatial variation of soil organic carbon across a physiographic region. Agric. Ecosyst. Environ. 2009, 133, 86–97. [Google Scholar] [CrossRef]
- Wiesmeier, M.; Barthold, F.; Spörlein, P.; Geuß, U.; Hangen, E.; Reischl, A.; Schilling, B.; Angst, G.; von Lützow, M.; Kögel-Knabner, I. Estimation of total organic carbon storage and its driving factors in soils of Bavaria (southeast Germany). Geoderma Reg. 2014, 1, 67–78. [Google Scholar] [CrossRef]
- Mayer, S.; Kühnel, A.; Burmeister, J.; Kögel-Knabner, I.; Wiesmeier, M. Controlling factors of organic carbon stocks in agricultural topsoils and subsoils of Bavaria. Soil Tillage Res. 2019, 192, 22–32. [Google Scholar] [CrossRef]
- Canedoli, C.; Ferrè, C.; Abu El Khair, D.; Padoa-Schioppa, E.; Comolli, R. Soil organic carbon stock in different urban land uses: High stock evidence in urban parks. Urban Ecosyst. 2020, 23, 159–171. [Google Scholar] [CrossRef]
- Wan, Q.; Zhu, G.; Guo, H.; Zhang, Y.; Pan, H.; Yong, L.; Ma, H. Influence of Vegetation Coverage and Climate Environment on Soil Organic Carbon in the Qilian Mountains. Sci. Rep. 2019, 9, 17623. [Google Scholar] [CrossRef]
- Bui, E.; Henderson, B.; Viergever, K. Using knowledge discovery with data mining from the Australian Soil Resource Information System database to inform soil carbon mapping in Australia. Glob. Biogeochem. Cycles 2009, 23. [Google Scholar] [CrossRef]
- Muñoz-Rojas, M.; Abd-Elmabod, S.K.; Zavala, L.M.; De La Rosa, D.; Jordán, A. Climate change impacts on soil organic carbon stocks of Mediterranean agricultural areas: A case study in Northern Egypt. Agric. Ecosyst. Environ. 2017, 238, 142–152. [Google Scholar] [CrossRef]
- Gomes, L.C.; Faria, R.M.; de Souza, E.; Veloso, G.V.; Schaefer, C.E.G.; Filho, E.I.F. Modelling and mapping soil organic carbon stocks in Brazil. Geoderma 2019, 340, 337–350. [Google Scholar] [CrossRef]
- Zhu, M.; Feng, Q.; Zhang, M.; Liu, W.; Qin, Y.; Deo, R.C.; Zhang, C. Effects of topography on soil organic carbon stocks in grasslands of a semiarid alpine region, northwestern China. J. Soils Sediments 2019, 19, 1640–1650. [Google Scholar] [CrossRef]
- Fissore, C.; Dalzell, B.; Berhe, A.; Voegtle, M.; Evans, M.; Wu, A. Influence of topography on soil organic carbon dynamics in a Southern California grassland. Catena 2017, 149, 140–149. [Google Scholar] [CrossRef]
- Powers, J.S.; Corre, M.D.; Twine, T.E.; Veldkamp, E. Geographic bias of field observations of soil carbon stocks with tropical land-use changes precludes spatial extrapolation. Proc. Natl. Acad. Sci. USA 2011, 108, 6318–6322. [Google Scholar] [CrossRef] [Green Version]
- Davy, M.C.; Koen, T.B. Variations in soil organic carbon for two soil types and six land uses in the Murray Catchment, New South Wales, Australia. Soil Res. 2013, 51, 631–644. [Google Scholar] [CrossRef]
- Mao, X.; Van Zwieten, L.; Zhang, M.; Qiu, Z.; Yao, Y.; Wang, H. Soil parent material controls organic matter stocks and retention patterns in subtropical China. J. Soils Sediments 2020, 20, 2426–2438. [Google Scholar] [CrossRef]
- Angst, G.; Messinger, J.; Greiner, M.; Häusler, W.; Hertel, D.; Kirfel, K.; Kögel-Knabner, I.; Leuschner, C.; Rethemeyer, J.; Mueller, C.W. Soil organic carbon stocks in topsoil and subsoil controlled by parent material, carbon input in the rhizosphere, and microbial-derived compounds. Soil Biol. Biochem. 2018, 122, 19–30. [Google Scholar] [CrossRef]
- Vos, C.; Don, A.; Hobley, E.U.; Prietz, R.; Heidkamp, A.; Freibauer, A. Factors controlling the variation in organic carbon stocks in agricultural soils of Germany. Eur. J. Soil Sci. 2019, 70, 550–564. [Google Scholar] [CrossRef]
- Jiang, Y.-J.; Yuan, D.-X.; Zhang, C.; Kuang, M.-S.; Wang, J.-L.; Xie, S.-Y.; Li, L.-L.; Zhang, G.; He, R.-S. Impact of land-use change on soil properties in a typical karst agricultural region of Southwest China: A case study of Xiaojiang watershed, Yunnan. Environ. Earth Sci. 2006, 50, 911–918. [Google Scholar] [CrossRef]
- Zhu, P.; Chen, R.; Song, Y.; Liu, G.; Chen, T.; Zhang, W. Effects of land cover conversion on soil properties and soil microbial activity in an alpine meadow on the Tibetan Plateau. Environ. Earth Sci. 2015, 74, 4523–4533. [Google Scholar] [CrossRef]
- Deng, L.; Zhu, G.-Y.; Tang, Z.-S.; Shangguan, Z.-P. Global patterns of the effects of land-use changes on soil carbon stocks. Glob. Ecol. Conserv. 2016, 5, 127–138. [Google Scholar] [CrossRef] [Green Version]
- Andriamananjara, A.; Hewson, J.; Razakamanarivo, H.; Andrisoa, R.H.; Ranaivoson, N.; Ramboatiana, N.; Razafindrakoto, M.; Ramifehiarivo, N.; Razafimanantsoa, M.-P.; Rabeharisoa, L.; et al. Land cover impacts on aboveground and soil carbon stocks in Malagasy rainforest. Agric. Ecosyst. Environ. 2016, 233, 1–15. [Google Scholar] [CrossRef]
- Qi, Y.; Chen, T.; Pu, J.; Yang, F.; Shukla, M.K.; Chang, Q. Response of soil physical, chemical and microbial biomass properties to land use changes in fixed desertified land. Catena 2018, 160, 339–344. [Google Scholar] [CrossRef]
- Pachauri, R.K.; Mayer, L. Intergovernmental Panel on Climate Change. Climate Change 2014: Synthesis Report; Intergovernmental Panel on Climate Change, IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Shiferaw, A.; Yimer, F.; Tuffa, S. Changes in Soil Organic Carbon Stock Under Different Land Use Types in Semiarid Borana Rangelands: Implications for CO2 Emission Mitigation in the Rangelands. J. Agric. Sci. Food Res. 2019, 10, 1–5. [Google Scholar] [CrossRef]
- Watson, R.T.; Noble, I.R.; Bolin, B.; Ravindranath, N.H.; Verardo, D.J.; Dokken, D.J. Land Use, Land-Use Change, and Forestry: A Special Report for the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Li, X.; Wang, Y.; Liu, L.; Luo, G.; Li, Y.; Chen, X. Effect of Land Use History and Pattern on Soil Carbon Storage in Arid Region of Central Asia. PLoS ONE 2013, 8, e68372. [Google Scholar] [CrossRef]
- Guo, L.B.; Gifford, R.M. Soil carbon stocks and land use change: A meta analysis. Glob. Chang. Biol. 2002, 8, 345–360. [Google Scholar] [CrossRef]
- Lal, R. Residue management, conservation tillage and soil restoration for mitigating greenhouse effect by CO2-enrichment. Soil Tillage Res. 1997, 43, 81–107. [Google Scholar] [CrossRef]
- Balesdent, J.; Besnard, E.; Arrouays, D.; Chenu, C. The dynamics of carbon in particle-size fractions of soil in a forest-cultivation sequence. Plant Soil 1998, 201, 49–57. [Google Scholar] [CrossRef]
- Smith, P. Land use change and soil organic carbon dynamics. Nutr. Cycl. Agroecosyst. 2008, 81, 169–178. [Google Scholar] [CrossRef]
- Don, A.; Schumacher, J.; Freibauer, A. Impact of tropical land-use change on soil organic carbon stocks—A meta-analysis. Glob. Chang. Biol. 2010, 17, 1658–1670. [Google Scholar] [CrossRef] [Green Version]
- Koga, N.; Shimoda, S.; Shirato, Y.; Kusaba, T.; Shima, T.; Niimi, H.; Yamane, T.; Wakabayashi, K.; Niwa, K.; Kohyama, K.; et al. Assessing changes in soil carbon stocks after land use conversion from forest land to agricultural land in Japan. Geoderma 2020, 377, 114487. [Google Scholar] [CrossRef]
- Rahman, M.; Khan, N.I.; Hoque, A.K.F.; Ahmed, I. Carbon stock in the Sundarbans mangrove forest: Spatial variations in vegetation types and salinity zones. Wetl. Ecol. Manag. 2014, 23, 269–283. [Google Scholar] [CrossRef]
- Manning, P.; De Vries, F.T.; Tallowin, J.R.B.; Smith, R.; Mortimer, S.R.; Pilgrim, E.S.; Harrison, K.A.; Wright, D.G.; Quirk, H.; Benson, J.; et al. Simple measures of climate, soil properties and plant traits predict national-scale grassland soil carbon stocks. J. Appl. Ecol. 2015, 52, 1188–1196. [Google Scholar] [CrossRef] [Green Version]
- Ottoy, S.; Van Meerbeek, K.; Sindayihebura, A.; Hermy, M.; Van Orshoven, J. Assessing top- and subsoil organic carbon stocks of Low-Input High-Diversity systems using soil and vegetation characteristics. Sci. Total. Environ. 2017, 589, 153–164. [Google Scholar] [CrossRef]
- Quideau, S.; Chadwick, O.; Benesi, A.; Graham, R.; Anderson, M. A direct link between forest vegetation type and soil organic matter composition. Geoderma 2001, 104, 41–60. [Google Scholar] [CrossRef]
- Hevia, G.; Buschiazzo, D.; Hepper, E.; Urioste, A.; Antón, E. Organic matter in size fractions of soils of the semiarid Argentina. Effects of climate, soil texture and management. Geoderma 2003, 116, 265–277. [Google Scholar] [CrossRef]
- Liu, Z.; Shao, M.; Wang, Y. Effect of environmental factors on regional soil organic carbon stocks across the Loess Plateau region, China. Agric. Ecosyst. Environ. 2011, 142, 184–194. [Google Scholar] [CrossRef]
- Gray, J.M.; Bishop, T.; Wilson, B.R. Factors Controlling Soil Organic Carbon Stocks with Depth in Eastern Australia. Soil Sci. Soc. Am. J. 2015, 79, 1741–1751. [Google Scholar] [CrossRef] [Green Version]
- Griffiths, R.; Madritch, M.; Swanson, A. The effects of topography on forest soil characteristics in the Oregon Cascade Mountains (USA): Implications for the effects of climate change on soil properties. For. Ecol. Manag. 2009, 257, 1–7. [Google Scholar] [CrossRef]
- Lenka, N.K.; Sudhishri, S.; Dass, A.; Choudhury, P.; Lenka, S.; Patnaik, U. Soil carbon sequestration as affected by slope aspect under restoration treatments of a degraded alfisol in the Indian sub-tropics. Geoderma 2013, 204–205, 102–110. [Google Scholar] [CrossRef]
- Bochet, E. The fate of seeds in the soil: A review of the influence of overland flow on seed removal and its consequences for the vegetation of arid and semiarid patchy ecosystems. Soil 2015, 1, 131–146. [Google Scholar] [CrossRef] [Green Version]
- Lozano-García, B.; Parras-Alcántara, L.; Brevik, E.C. Impact of topographic aspect and vegetation (native and reforested areas) on soil organic carbon and nitrogen budgets in Mediterranean natural areas. Sci. Total Environ. 2016, 544, 963–970. [Google Scholar] [CrossRef]
- Rabbi, S.; Tighe, M.; Delgado-Baquerizo, M.; Cowie, A.; Robertson, F.; Dalal, R.; Page, K.; Crawford, D.; Wilson, B.R.; Schwenke, G.; et al. Climate and soil properties limit the positive effects of land use reversion on carbon storage in Eastern Australia. Sci. Rep. 2015, 5, 17866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, Z.; Feng, W.; Luo, Y.; Baldock, J.; Wang, E. Soil organic carbon dynamics jointly controlled by climate, carbon inputs, soil properties and soil carbon fractions. Glob. Chang. Biol. 2017, 23, 4430–4439. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, D.R.P.; Sá, J.C.D.M.; Mishra, U.; Cerri, C.E.; Ferreira, L.A.; Furlan, F.J.F. Soil type and texture impacts on soil organic carbon storage in a sub-tropical agro-ecosystem. Geoderma 2017, 286, 88–97. [Google Scholar] [CrossRef]
- Ottoy, S.; De Vos, B.; Sindayihebura, A.; Hermy, M.; Van Orshoven, J. Assessing soil organic carbon stocks under current and potential forest cover using digital soil mapping and spatial generalisation. Ecol. Indic. 2017, 77, 139–150. [Google Scholar] [CrossRef]
- Song, G.; Li, L.; Pan, G.; Zhang, Q. Topsoil organic carbon storage of China and its loss by cultivation. Biogeochemistry 2005, 74, 47–62. [Google Scholar] [CrossRef]
- De Brogniez, D.; Ballabio, C.; Stevens, A.; Jones, R.J.A.; Montanarella, L.; van Wesemael, B. A map of the topsoil organic carbon content of Europe generated by a generalized additive model. Eur. J. Soil Sci. 2015, 66, 121–134. [Google Scholar] [CrossRef]
- Yang, R.-M.; Zhang, G.-L.; Liu, F.; Lu, Y.-Y.; Yang, F.; Yang, F.; Yang, M.; Zhao, Y.-G.; Li, D.-C. Comparison of boosted regression tree and random forest models for mapping topsoil organic carbon concentration in an alpine ecosystem. Ecol. Indic. 2016, 60, 870–878. [Google Scholar] [CrossRef]
- Rial, M.; Cortizas, A.M.; Rodríguez-Lado, L. Understanding the spatial distribution of factors controlling topsoil organic carbon content in European soils. Sci. Total Environ. 2017, 609, 1411–1422. [Google Scholar] [CrossRef] [PubMed]
- Kempen, B.; Dalsgaard, S.; Kaaya, A.K.; Chamuya, N.; Ruipérez-González, M.; Pekkarinen, A.; Walsh, M.G. Mapping topsoil organic carbon concentrations and stocks for Tanzania. Geoderma 2019, 337, 164–180. [Google Scholar] [CrossRef]
- Chen, S.; Mulder, V.L.; Heuvelink, G.B.; Poggio, L.; Caubet, M.; Dobarco, M.R.; Walter, C.; Arrouays, D. Model averaging for mapping topsoil organic carbon in France. Geoderma 2020, 366, 114237. [Google Scholar] [CrossRef]
- Fontaine, S.; Barot, S.; Barré, P.; Bdioui, N.; Mary, B.; Rumpel, C. Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nat. Cell Biol. 2007, 450, 277–280. [Google Scholar] [CrossRef] [PubMed]
- Soucémarianadin, L.N.; Cécillon, L.; Guenet, B.; Chenu, C.; Baudin, F.; Nicolas, M.; Girardin, C.; Barré, P. Environmental factors controlling soil organic carbon stability in French forest soils. Plant Soil 2018, 426, 267–286. [Google Scholar] [CrossRef]
- Simo, I.; Schulte, R.; O’Sullivan, L.; Creamer, R. Digging deeper: Understanding the contribution of subsoil carbon for climate mitigation, a case study of Ireland. Environ. Sci. Policy 2019, 98, 61–69. [Google Scholar] [CrossRef]
- Meersmans, J.; van Wesemael, B.; De Ridder, F.; Dotti, M.F.; De Baets, S.; Van Molle, M. Changes in organic carbon distribution with depth in agricultural soils in northern Belgium, 1960–2006: CHANGES IN SOC OF NORTHERN BELGIUM. Glob. Chang. Biol. 2009, 15, 2739–2750. [Google Scholar] [CrossRef]
- Saha, D.-; Kukal, S.; Bawa, S. Soil organic carbon stock and fractions in relation to land use and soil depth in the degraded shiwaliks hills of lower himalayas. Land Degrad. Dev. 2012, 25, 407–416. [Google Scholar] [CrossRef]
- Batsaikhan, B.; Lkhamjav, O.; Batsaikhan, G.; Batsaikhan, N.; Norovsuren, B. Carbon stock estimation using remote sensing data and field measurement in haloxylon ammodendron dominant winter cold desert region of mongolia. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, V-3-2020, 9–17. [Google Scholar] [CrossRef]
- Patil, V.; Singh, A.; Naik, N.; Unnikrishnan, S. Estimation of Mangrove Carbon Stocks by Applying Remote Sensing and GIS Techniques. Wetlands 2015, 35, 695–707. [Google Scholar] [CrossRef]
- Lu, D.; Mausel, P.; Batistella, M.; Moran, E. Land-cover binary change detection methods for use in the moist tropical region of the Amazon: A comparative study. Int. J. Remote. Sens. 2005, 26, 101–114. [Google Scholar] [CrossRef]
- Dwyer, J.L.; Roy, D.P.; Sauer, B.; Jenkerson, C.B.; Zhang, H.K.; Lymburner, L. Analysis Ready Data: Enabling Analysis of the Landsat Archive. Remote Sens. 2018, 10, 1363. [Google Scholar]
- Potapov, P.; Hansen, M.C.; Kommareddy, I.; Kommareddy, A.; Turubanova, S.; Pickens, A.; Adusei, B.; Tyukavina, A.; Ying, Q. Landsat Analysis Ready Data for Global Land Cover and Land Cover Change Mapping. Remote Sens. 2020, 12, 426. [Google Scholar] [CrossRef] [Green Version]
- Mendes, W.D.S.; Neto, L.G.M.; Demattê, J.A.; Gallo, B.C.; Rizzo, R.; Safanelli, J.L.; Fongaro, C.T. Is it possible to map subsurface soil attributes by satellite spectral transfer models? Geoderma 2019, 343, 269–279. [Google Scholar] [CrossRef]
- Poppiel, R.R.; Lacerda, M.P.C.; Rizzo, R.; Safanelli, J.L.; Bonfatti, B.R.; Silvero, N.E.Q.; Demattê, J.A.M. Soil Color and Mineralogy Mapping Using Proximal and Remote Sensing in Midwest Brazil. Remote Sens. 2020, 12, 1197. [Google Scholar] [CrossRef] [Green Version]
- Mendes, W.D.S.; Demattê, J.A.; Bonfatti, B.R.; de Resende, M.E.B.; Campos, L.R.; da Costa, A.C.S. A novel framework to estimate soil mineralogy using soil spectroscopy. Appl. Geochem. 2021, 127, 104909. [Google Scholar] [CrossRef]
- Nabiollahi, K.; Eskandari, S.; Taghizadeh-Mehrjardi, R.; Kerry, R.; Triantafilis, J. Assessing soil organic carbon stocks under land-use change scenarios using random forest models. Carbon Manag. 2019, 10, 63–77. [Google Scholar] [CrossRef]
- Mahmoudzadeh, H.; Matinfar, H.R.; Taghizadeh-Mehrjardi, R.; Kerry, R. Spatial prediction of soil organic carbon using machine learning techniques in western Iran. Geoderma Reg. 2020, 21, e00260. [Google Scholar] [CrossRef]
- Dharumarajan, S.; Hegde, R.; Singh, S. Spatial prediction of major soil properties using Random Forest techniques—A case study in semi-arid tropics of South India. Geoderma Reg. 2017, 10, 154–162. [Google Scholar] [CrossRef]
- Fearnside, P.; Barbosa, R.I. Soil carbon changes from conversion of forest to pasture in Brazilian Amazonia. For. Ecol. Manag. 1998, 108, 147–166. [Google Scholar] [CrossRef]
- Paz, C.P.; Goosem, M.; Bird, M.; Preece, N.; Goosem, S.; Fensham, R.; Laurance, S. Soil types influence predictions of soil carbon stock recovery in tropical secondary forests. For. Ecol. Manag. 2016, 376, 74–83. [Google Scholar] [CrossRef]
- da Silva, J.E.; Lemainski, J.; Resck, D.S. Soil organic matter losses and their relationships with cation exchange capacity in soils of the Cerrados region of western Bahia, Brazil. Rev. Bras. Cien. Solo 1994, 18, 541–547. [Google Scholar]
- Zinn, Y.L.; Lal, R.; Resck, D.V. Changes in soil organic carbon stocks under agriculture in Brazil. Soil Tillage Res. 2005, 84, 28–40. [Google Scholar] [CrossRef]
- Fujisaki, K.; Chevallier, T.; Lardy, L.; Albrecht, A.; Razafimbelo, T.; Masse, D.; Ndour, Y.B.; Chotte, J.-L. Soil carbon stock changes in tropical croplands are mainly driven by carbon inputs: A synthesis. Agric. Ecosyst. Environ. 2018, 259, 147–158. [Google Scholar] [CrossRef]
- FAO. Statistics–FAOSTAT; Food and Agriculture Organization: Rome, Italy, 2010. [Google Scholar]
- CONAB. Portal de Informações Agropecuárias. Companhia Nacional de Abastecimento. Available online: https://portaldeinformacoes.conab.gov.br/safra-serie-historica-cana-de-acucar.html (accessed on 29 March 2021).
- Ranzani, G. Subsidios a Geografia de Piracicaba; Institutos Historico Geografico Piracicaba: Piracicaba, Brazil, 1996. [Google Scholar]
- IUSS Working Group. World Reference Base for Soil Resources 2014: International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; FAO: Rome, Italy, 2015. [Google Scholar]
- Palmieri, F.; Dos Santos, H.G.; Gomes, I.A.; Lumbreras, J.F.; Aglio, M.L. Brazilian Soil Classification System, 5th ed.; Embrapa: Brasília, Brazil, 2018; Available online: http://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/1094001 (accessed on 29 March 2021).
- Rossi, M. Mapa Pedológico do Estado de São Paulo: Revisado e Ampliado; Instituto Florestal: São Paulo, Brazil, 2017. [Google Scholar]
- Barreto, A.G.O.P.; Sparovek, G.; Gianntti, M. Atlas Rural de Piracicaba; Instituto de Pesquisas e Estudos Florestais: Piracicaba, Brazil, 2006. [Google Scholar]
- Mendes, W.D.S.; Demattê, J.A.; Silvero, N.E.Q.; Campos, L.R. Integration of multispectral and hyperspectral data to map magnetic susceptibility and soil attributes at depth: A novel framework. Geoderma 2021, 385, 114885. [Google Scholar] [CrossRef]
- Gobin, A.; Campling, P.; Deckers, J.; Feyen, J. Integrated Toposequence Analyses to combine local and scientific knowledge systems. Geoderma 2000, 97, 103–123. [Google Scholar] [CrossRef]
- Bishop, T.; McBratney, A.; Laslett, G. Modelling soil attribute depth functions with equal-area quadratic smoothing splines. Geoderma 1999, 91, 27–45. [Google Scholar] [CrossRef]
- Benites, V.M.; Machado, P.L.; Fidalgo, E.C.; Coelho, M.R.; Madari, B.E. Pedotransfer functions for estimating soil bulk density from existing soil survey reports in Brazil. Geoderma 2007, 139, 90–97. [Google Scholar] [CrossRef]
- Sayão, V.M.; Dos Santos, N.V.; Mendes, W.D.S.; Marques, K.P.; Safanelli, J.L.; Poppiel, R.R.; Demattê, J.A. Land use/land cover changes and bare soil surface temperature monitoring in southeast Brazil. Geoderma Reg. 2020, 22, e00313. [Google Scholar] [CrossRef]
- McBratney, A.; Santos, M.M.; Minasny, B. On digital soil mapping. Geoderma 2003, 117, 3–52. [Google Scholar] [CrossRef]
- Safanelli, J.L.; Poppiel, R.R.; Ruiz, L.F.C.; Bonfatti, B.R.; Mello, F.A.D.O.; Rizzo, R.; Demattê, J.A.M. Terrain Analysis in Google Earth Engine: A Method Adapted for High-Performance Global-Scale Analysis. ISPRS Int. J. Geo-Inf. 2020, 9, 400. [Google Scholar] [CrossRef]
- Demattê, J.A.M.; Safanelli, J.L.; Poppiel, R.R.; Rizzo, R.; Silvero, N.E.Q.; Mendes, W.D.S.; Bonfatti, B.R.; Dotto, A.C.; Salazar, D.U.; Mello, F.A.D.O.; et al. Bare Earth’s Surface Spectra as a Proxy for Soil Resource Monitoring. Sci. Rep. 2020, 10, 1–11. [Google Scholar] [CrossRef]
- Bonfatti, B.R.; Demattê, J.A.; Marques, K.P.; Poppiel, R.R.; Rizzo, R.; Mendes, W.D.S.; Silvero, N.E.; Safanelli, J.L. Digital mapping of soil parent material in a heterogeneous tropical area. Geomorphology 2020, 367, 107305. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Dobrowski, S.Z.; Parks, S.A.; Hegewisch, K.C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 2018, 5, 170191. [Google Scholar] [CrossRef] [Green Version]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [Green Version]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Rudiyanto; Minasny, B.; Setiawan, B.I.; Saptomo, S.K.; McBratney, A.B. Open digital mapping as a cost-effective method for mapping peat thickness and assessing the carbon stock of tropical peatlands. Geoderma 2018, 313, 25–40. [Google Scholar] [CrossRef]
- Kursa, M.B.; Rudnicki, W.R. Feature Selection with theBorutaPackage. J. Stat. Softw. 2010, 36, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Kuhn, M. Caret: Classification and Regression Training. 2017. Available online: https://CRAN.R-project.org/package=caret (accessed on 20 August 2020).
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Grimm, R.; Behrens, T.; Märker, M.; Elsenbeer, H. Soil organic carbon concentrations and stocks on Barro Colorado Island—Digital soil mapping using Random Forests analysis. Geoderma 2008, 146, 102–113. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.F.; Chica-Rivas, M. Evaluation of different machine learning methods for land cover mapping of a Mediterranean area using multi-seasonal Landsat images and Digital Terrain Models. Int. J. Digit. Earth 2014, 7, 492–509. [Google Scholar] [CrossRef]
- Heung, B.; Bulmer, C.E.; Schmidt, M.G. Predictive soil parent material mapping at a regional-scale: A Random Forest approach. Geoderma 2014, 214–215, 141–154. [Google Scholar] [CrossRef]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2016. [Google Scholar]
- Efron, B.; Tibshirani, R. An Introduction to the Bootstrap; CRC Press: New York, NY, USA, 1994. [Google Scholar]
- Ließ, M.; Glaser, B.; Huwe, B. Uncertainty in the spatial prediction of soil texture. Geoderma 2012, 170, 70–79. [Google Scholar] [CrossRef]
- Boddey, R.; Rao, I.M.; Thomas, R.J. Nutrient Cycling and Environmental. In Brachiaria: Biology, Agronomy, and Improvement; Miles, J.W., Maass, B.L., do Valle, C.B., Eds.; CIAT Publication 259: Cali, Colombia, 1996; pp. 72–86. [Google Scholar]
- Rezende, C.D.P.; Cantarutti, R.; Braga, J.; Gomide, J.; Pereira, J.; Ferreira, E.; Tarré, R.; Macedo, R.; Alves, B.; Urquiaga, S.; et al. Litter deposition and disappearance in Brachiaria pastures in the Atlantic forest region of the South of Bahia, Brazil. Nutr. Cycl. Agroecosyst. 1999, 54, 99–112. [Google Scholar] [CrossRef]
- Cerri, C.E.P.; Maia, S.M.F.; Cherubin, M.R.; Feigl, B.J.; Lal, R. Reducing Amazon Deforestation through Agricultural Intensification in the Cerrado for Advancing Food Security and Mitigating Climate Change. Sustainability 2018, 10, 989. [Google Scholar] [CrossRef] [Green Version]
- Pausch, J.; Kuzyakov, Y. Carbon input by roots into the soil: Quantification of rhizodeposition from root to ecosystem scale. Glob. Chang. Biol. 2018, 24, 1–12. [Google Scholar] [CrossRef]
- Freschet, G.T.; Cornwell, W.; Wardle, D.A.; Elumeeva, T.; Liu, W.; Jackson, B.; Onipchenko, V.; Soudzilovskaia, N.A.; Tao, J.; Cornelissen, J.H. Linking litter decomposition of above- and below-ground organs to plant-soil feedbacks worldwide. J. Ecol. 2013, 101, 943–952. [Google Scholar] [CrossRef]
- Rasse, D.P.; Rumpel, C.; Dignac, M.-F. Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant Soil 2005, 269, 341–356. [Google Scholar] [CrossRef]
- Tognon, A.; Demattê, J.; Demattê, J. Teor e distribuição da matéria orgânica em latossolos das regiões da floresta amazônica e dos cerrados do Brasil central. Sci. Agricola 1998, 55, 343–354. [Google Scholar] [CrossRef]
- Lal, R.; Kimble, J. Tropical Ecosystems and the Global C Cycle. Glob. Clim. Change Trop. Ecosyst. 2019, 3–32. [Google Scholar] [CrossRef]
- Dolan, M.; Clapp, C.; Allmaras, R.; Baker, J.; Molina, J. Soil organic carbon and nitrogen in a Minnesota soil as related to tillage, residue and nitrogen management. Soil Tillage Res. 2006, 89, 221–231. [Google Scholar] [CrossRef]
- van Wesemael, B.; Paustian, K.; Meersmans, J.; Goidts, E.; Barancikova, G.; Easter, M. Agricultural management explains historic changes in regional soil carbon stocks. Proc. Natl. Acad. Sci. USA 2010, 107, 14926–14930. [Google Scholar] [CrossRef] [Green Version]
- Weill, M.D.A.M.; Sparovek, G. Estudo da erosão na microbacia do Ceveiro (Piracicaba, SP): I—Estimativa das taxas de perda de solo e estudo de sensibilidade dos fatores do modelo EUPS. Rev. Bras. Ciência Solo 2008, 32, 801–814. [Google Scholar] [CrossRef] [Green Version]
- Alidoust, E.; Afyuni, M.; Hajabbasi, M.A.; Mosaddeghi, M.R. Soil carbon sequestration potential as affected by soil physical and climatic factors under different land uses in a semiarid region. Catena 2018, 171, 62–71. [Google Scholar] [CrossRef]
- Sheikh, M.A.; Kumar, M.; Bussmann, R.W. Altitudinal variation in soil organic carbon stock in coniferous subtropical and broadleaf temperate forests in Garhwal Himalaya. Carbon Balance Manag. 2009, 4, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martín, J.A.R.; Álvaro-Fuentes, J.; Gabriel, J.L.; Gutiérrez, C.; Nanos, N.; Escuer, M.; Ramos-Miras, J.J.; Gil, C.; Martín-Lammerding, D.; Boluda, R. Soil organic carbon stock on the Majorca Island: Temporal change in agricultural soil over the last 10 years. Catena 2019, 181, 104087. [Google Scholar] [CrossRef]
- Sharma, V.; Hussain, S.; Sharma, K.; Arya, V.M. Labile carbon pools and soil organic carbon stocks in the foothill Himalayas under different land use systems. Geoderma 2014, 232–234, 81–87. [Google Scholar] [CrossRef]
- Wijesekara, H.; Bolan, N.S.; Thangavel, R.; Seshadri, B.; Surapaneni, A.; Saint, C.; Hetherington, C.; Matthews, P.; Vithanage, M. The impact of biosolids application on organic carbon and carbon dioxide fluxes in soil. Chemosphere 2017, 189, 565–573. [Google Scholar] [CrossRef] [PubMed]
- Martín, J.R.; Álvaro-Fuentes, J.; Gonzalo, J.; Gil, C.; Ramos-Miras, J.; Corbí, J.G.; Boluda, R. Assessment of the soil organic carbon stock in Spain. Geoderma 2016, 264, 117–125. [Google Scholar] [CrossRef] [Green Version]
- Ding, F.; Hu, Y.-L.; Li, L.-J.; Li, A.; Shi, S.; Lian, P.-Y.; Zeng, D.-H. Changes in soil organic carbon and total nitrogen stocks after conversion of meadow to cropland in Northeast China. Plant Soil 2013, 373, 659–672. [Google Scholar] [CrossRef]
- Schimel, D.S.; Braswell, B.H.; Holland, E.A.; McKeown, R.; Ojima, D.S.; Painter, T.H.; Parton, W.J.; Townsend, A.R. Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils. Glob. Biogeochem. Cycles 1994, 8, 279–293. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.; Ye, C.; Hockaday, W.C.; Hall, S.J. Trade-offs in soil carbon protection mechanisms under aerobic and anaerobic conditions. Glob. Chang. Biol. 2020, 26, 3726–3737. [Google Scholar] [CrossRef]
- Six, J.; Conant, R.T.; Paul, E.A.; Paustian, K. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant Soil 2002, 241, 155–176. [Google Scholar] [CrossRef]
- Kaiser, K.; Guggenberger, G. Mineral surfaces and soil organic matter. Eur. J. Soil Sci. 2003, 54, 219–236. [Google Scholar] [CrossRef] [Green Version]
- Lutzow, M.V.; Kögel-Knabner, I.; Ekschmitt, K.; Matzner, E.; Guggenberger, G.; Marschner, B.; Flessa, H. Stabilization of organic matter in temperate soils: Mechanisms and their relevance under different soil conditions—A review. Eur. J. Soil Sci. 2006, 57, 426–445. [Google Scholar] [CrossRef]
- Mikutta, R.; Kleber, M.; Torn, M.; Jahn, R. Stabilization of Soil Organic Matter: Association with Minerals or Chemical Recalcitrance? Biogeochemistry 2006, 77, 25–56. [Google Scholar] [CrossRef]
- Dieckow, J.; Bayer, C.; Conceição, P.C.; Zanatta, J.A.; Martin-Neto, L.; Milori, D.; Salton, J.C.; Macedo, M.M.; Mielniczuk, J.; Hernani, L.C. Land use, tillage, texture and organic matter stock and composition in tropical and subtropical Brazilian soils. Eur. J. Soil Sci. 2009, 60, 240–249. [Google Scholar] [CrossRef]
- Schmidt, M.I.; Duncan, B.B.; Silva, G.A.; Menezes, A.M.; Monteiro, C.A.; Barreto, S.M. Doenças crônicas não-transmissíveis no Brasil: Carga e desafios atuais. Lancet 2011, 61–73. [Google Scholar] [CrossRef]
- Kleber, M. What is recalcitrant soil organic matter? Environ. Chem. 2010, 7, 320–332. [Google Scholar] [CrossRef]
- Dungait, J.A.J.; Hopkins, D.W.; Gregory, A.S.; Whitmore, A.P. Soil organic matter turnover is governed by accessibility not recalcitrance. Glob. Chang. Biol. 2012, 18, 1781–1796. [Google Scholar] [CrossRef]
- Kögel-Knabner, I.; Ekschmitt, K.; Flessa, H.; Guggenberger, G.; Matzner, E.; Marschner, B.; Von Lützow, M. An integrative approach of organic matter stabilization in temperate soils: Linking chemistry, physics, and biology. J. Plant Nutr. Soil Sci. 2008, 171, 5–13. [Google Scholar] [CrossRef]
- Jansson, J.K.; Hofmockel, K.S. Soil microbiomes and climate change. Nat. Rev. Genet. 2020, 18, 35–46. [Google Scholar] [CrossRef]
- Chenu, C.; Angers, D.A.; Barré, P.; Derrien, D.; Arrouays, D.; Balesdent, J. Increasing organic stocks in agricultural soils: Knowledge gaps and potential innovations. Soil Tillage Res. 2019, 188, 41–52. [Google Scholar] [CrossRef]
- Hounkpatin, K.O.L.; Schmidt, K.; Stumpf, F.; Forkuor, G.; Behrens, T.; Scholten, T.; Amelung, W.; Welp, G. Predicting reference soil groups using legacy data: A data pruning and Random Forest approach for tropical environment (Dano catchment, Burkina Faso). Sci. Rep. 2018, 8, 9959. [Google Scholar] [CrossRef] [PubMed]
- Hassink, J. The capacity of soils to preserve organic C and N by their association with clay and silt particles. Plant Soil 1997, 191, 77–87. [Google Scholar] [CrossRef]
- Mikutta, R.; Kaiser, K. Organic matter bound to mineral surfaces: Resistance to chemical and biological oxidation. Soil Biol. Biochem. 2011, 43, 1738–1741. [Google Scholar] [CrossRef]
- Grüneberg, E.; Schöning, I.; Hessenmöller, D.; Schulze, E.-D.; Weisser, W. Organic layer and clay content control soil organic carbon stocks in density fractions of differently managed German beech forests. For. Ecol. Manag. 2013, 303, 1–10. [Google Scholar] [CrossRef]
- Feller, C.; Beare, M. Physical control of soil organic matter dynamics in the tropics. Geoderma 1997, 79, 69–116. [Google Scholar] [CrossRef]
- Barré, P.; Fernandez-Ugalde, O.; Virto, I.; Velde, B.; Chenu, C. Impact of phyllosilicate mineralogy on organic carbon stabilization in soils: Incomplete knowledge and exciting prospects. Geoderma 2014, 235–236, 382–395. [Google Scholar] [CrossRef]
- Fernández-Ugalde, O.; Barré, P.; Virto, I.; Hubert, F.; Billiou, D.; Chenu, C. Does phyllosilicate mineralogy explain organic matter stabilization in different particle-size fractions in a 19-year C3/C4 chronosequence in a temperate Cambisol? Geoderma 2016, 264, 171–178. [Google Scholar] [CrossRef]
- Kozłowski, M.; Komisarek, J. Influence of terrain attributes on organic carbon stocks distribution in soil toposequences of central Poland. Soil Sci. Annu. 2018, 69, 215–222. [Google Scholar] [CrossRef] [Green Version]
- Luo, Z.; Viscarra-Rossel, R.A.; Qian, T. Similar importance of edaphic and climatic factors for controlling soil organic carbon stocks of the world. Biogeosciences 2021, 18, 2063–2073. [Google Scholar] [CrossRef]
- Reichstein, M.; Bahn, M.; Ciais, P.; Frank, D.; Mahecha, M.; Seneviratne, S.I.; Zscheischler, J.; Beer, C.; Buchmann, N.; Frank, D.C.; et al. Climate extremes and the carbon cycle. Nat. Cell Biol. 2013, 500, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Barré, P.; Durand, H.; Chenu, C.; Meunier, P.; Montagne, D.; Castel, G.; Billiou, D.; Soucémarianadin, L.; Cécillon, L. Geological control of soil organic carbon and nitrogen stocks at the landscape scale. Geoderma 2017, 285, 50–56. [Google Scholar] [CrossRef]
- Oades, J.M. The retention of organic matter in soils. Biogeochemistry 1988, 5, 35–70. [Google Scholar] [CrossRef]
- Paustian, K.; Andrén, O.; Janzen, H.H.; Lal, R.; Smith, P.; Tian, G.; Tiessen, H.; Van Noordwijk, M.; Woomer, P.L. Agricultural soils as a sink to mitigate CO2emissions. Soil Use Manag. 1997, 13, 230–244. [Google Scholar] [CrossRef]
- Heckman, K.; Welty-Bernard, A.; Rasmussen, C.; Schwartz, E. Geologic controls of soil carbon cycling and microbial dynamics in temperate conifer forests. Chem. Geol. 2009, 267, 12–23. [Google Scholar] [CrossRef]
- Marques, J.D.D.O.; Luizão, F.J.; Teixeira, W.G.; Vitel, C.M.; Marques, E.M.D.A. Soil organic carbon, carbon stock and their relationships to physical attributes under forest soils in central amazonia. Rev. Árvore 2016, 40, 197–208. [Google Scholar] [CrossRef] [Green Version]
- Andrade, F.V.; Schaefer, C.E.G.R.; Correa, M.L.T.; Mendonça, E.S. Carbon Stocks in Brazilian Latosols (Oxisols) from Different Morphoclimatic Regions and Management Systems. Commun. Soil Sci. Plant Anal. 2005, 35, 2125–2136. [Google Scholar] [CrossRef]
- Marchão, R.L.; Becquer, T.; Brunet, D.; Balbino, L.C.; Vilela, L.; Brossard, M. Carbon and nitrogen stocks in a Brazilian clayey Oxisol: 13-year effects of integrated crop–livestock management systems. Soil Tillage Res. 2009, 103, 442–450. [Google Scholar] [CrossRef]
- Matteodo, M.; Grand, S.; Sebag, D.; Rowley, M.C.; Vittoz, P.; Verrecchia, E.P. Decoupling of topsoil and subsoil controls on organic matter dynamics in the Swiss Alps. Geoderma 2018, 330, 41–51. [Google Scholar] [CrossRef]
- Chenu, C.; Stotzky, G. Interactions between microorganisms and soil particles: An overview. In Interactions between Soil Particles and Microorganisms: Impact on the Terrestrial Ecosystem; John Wiley and Sons: Chichester, UK, 2002. [Google Scholar]
- Kleber, M.; Eusterhues, K.; Keiluweit, M.; Mikutta, C.; Mikutta, R.; Nico, P.S. Mineral–Organic Associations: Formation, Properties, and Relevance in Soil Environments. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2015; Volume 130, pp. 1–140. [Google Scholar]
- Kopittke, P.M.; Dalal, R.C.; Hoeschen, C.; Li, C.; Menzies, N.W.; Mueller, C.W. Soil organic matter is stabilized by organo-mineral associations through two key processes: The role of the carbon to nitrogen ratio. Geoderma 2020, 357, 113974. [Google Scholar] [CrossRef]
- Eusterhues, K.; Rumpel, C.; Kleber, M.; Kögel-Knabner, I. Stabilisation of soil organic matter by interactions with minerals as revealed by mineral dissolution and oxidative degradation. Org. Geochem. 2003, 34, 1591–1600. [Google Scholar] [CrossRef]
- Carter, M.R.; Angers, D.A.; Gregorich, E.G.; Bolinder, M.A. Characterizing organic matter retention for surface soils in eastern Canada using density and particle size fractions. Can. J. Soil Sci. 2003, 83, 11–23. [Google Scholar] [CrossRef]
- Poirier, V.; Basile-Doelsch, I.; Balesdent, J.; Borschneck, D.; Whalen, J.K.; Angers, D.A. Organo-Mineral Interactions Are More Important for Organic Matter Retention in Subsoil Than Topsoil. Soil Syst. 2020, 4, 4. [Google Scholar] [CrossRef] [Green Version]
- Bruun, T.B.; Elberling, B.; Christensen, B.T. Lability of soil organic carbon in tropical soils with different clay minerals. Soil Biol. Biochem. 2010, 42, 888–895. [Google Scholar] [CrossRef]
- Rasmussen, C. Distribution of Soil Organic and Inorganic Carbon Pools by Biome and Soil Taxa in Arizona. Soil Sci. Soc. Am. J. 2006, 70, 256–265. [Google Scholar] [CrossRef]
- Stewart, C.E.; Plante, A.F.; Paustian, K.; Conant, R.T.; Six, J. Soil Carbon Saturation: Linking Concept and Measurable Carbon Pools. Soil Sci. Soc. Am. J. 2008, 72, 379–392. [Google Scholar] [CrossRef]
- Poirier, V.; Angers, D.A.; Rochette, P.; Whalen, J.K. Initial soil organic carbon concentration influences the short-term retention of crop-residue carbon in the fine fraction of a heavy clay soil. Biol. Fertil. Soils 2013, 49, 527–535. [Google Scholar] [CrossRef]
- Jones, D.; Edwards, A. Influence of sorption on the biological utilization of two simple carbon substrates. Soil Biol. Biochem. 1998, 30, 1895–1902. [Google Scholar] [CrossRef]
- Martin, J.P.; Haider, K.; Huang, P.M.; Schnitzer, M. Influence of Mineral Colloids on Turnover Rates of Soil Organic Carbon. In SSSA Special Publications; Huang, P.M., Schnitzer, M., Eds.; Soil Science Society of America: Madison, WI, USA, 1986; pp. 283–304. [Google Scholar] [CrossRef]
- Takata, Y.; Funakawa, S.; Akshalov, K.; Ishida, N.; Kosaki, T. Influence of land use on the dynamics of soil organic carbon in northern Kazakhstan. Soil Sci. Plant Nutr. 2007, 53, 162–172. [Google Scholar] [CrossRef]
- Schulp, C.J.E.; Verburg, P.H.; Kuikman, P.J.; Nabuurs, G.-J.; Olivier, J.G.J.; De Vries, W.; Veldkamp, T. Improving National-Scale Carbon Stock Inventories Using Knowledge on Land Use History. Environ. Manag. 2012, 51, 709–723. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; He, X.; Shen, F.; Zhou, C.; Zhu, A.-X.; Gao, B.; Chen, Z.; Li, M. Improving prediction of soil organic carbon content in croplands using phenological parameters extracted from NDVI time series data. Soil Tillage Res. 2020, 196, 104465. [Google Scholar] [CrossRef]
- Balesdent, J. The significance of organic separates to carbon dynamics and its modelling in some cultivated soils. Eur. J. Soil Sci. 1996, 47, 485–493. [Google Scholar] [CrossRef]
- Liebmann, P.; Wordell-Dietrich, P.; Kalbitz, K.; Mikutta, R.; Kalks, F.; Don, A.; Woche, S.K.; Dsilva, L.R.; Guggenberger, G. Relevance of aboveground litter for soil organic matter formation—A soil profile perspective. Biogeosciences 2020, 17, 3099–3113. [Google Scholar] [CrossRef]
- Fongaro, C.T.; Demattê, J.A.M.; Rizzo, R.; Safanelli, J.L.; Mendes, W.D.S.; Dotto, A.C.; Vicente, L.E.; Franceschini, M.H.D.; Ustin, S.L. Improvement of Clay and Sand Quantification Based on a Novel Approach with a Focus on Multispectral Satellite Images. Remote. Sens. 2018, 10, 1555. [Google Scholar] [CrossRef] [Green Version]
- Gallo, B.C.; Demattê, J.A.M.; Rizzo, R.; Safanelli, J.L.; Mendes, W.D.S.; Lepsch, I.F.; Sato, M.V.; Romero, D.J.; Lacerda, M.P.C. Multi-Temporal Satellite Images on Topsoil Attribute Quantification and the Relationship with Soil Classes and Geology. Remote Sens. 2018, 10, 1571. [Google Scholar] [CrossRef]
- Safanelli, J.L.; Chabrillat, S.; Ben-Dor, E.; Demattê, J.A.M. Multispectral Models from Bare Soil Composites for Mapping Topsoil Properties over Europe. Remote Sens. 2020, 12, 1369. [Google Scholar] [CrossRef]
- Ramesh, T.; Bolan, N.S.; Kirkham, M.B.; Wijesekara, H.; Kanchikerimath, M.; Rao, C.S.; Sandeep, S.; Rinklebe, J.; Ok, Y.S.; Choudhury, B.U.; et al. Soil organic carbon dynamics: Impact of land use changes and management practices: A review. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2019; Volume 156, pp. 1–107. [Google Scholar]
Class Number | LULC History Class | Class |
---|---|---|
1 | Agriculture (100%), | Ag = 100 |
2 | Pasture (100%), | Pas = 100 |
3 | Forest (100%), | Fo = 100 |
4 | Agriculture (>50%)–pasture (<50%), | Ag > 50–Pas < 50 |
5 | Agriculture (>50%)–forest (<50%), | Ag > 50–Fo < 50 |
6 | Agriculture (<50%)–pasture (<50%) | Ag < 50–Pas < 50 |
7 | Agriculture (<50%)–pasture (<50%), | Ag < 50–Fo < 50 |
8 | Mixed of agriculture and pasture and forest | Mix-Ag–Pas–Fo |
9 | Forest (>50%)–agriculture (<50%), | Fo > 50–Ag < 50 |
10 | Forest (>50%)–pasture (<50%), | Fo > 50–Pas < 50 |
11 | pasture (<50%)–Forest (<50%), | Pas < 50–Fo < 50 |
12 | pasture (>50%)–Agriculture (<50%), | Pas >50–Ag < 50 |
13 | Urban and road | Ur–Ro |
14 | Water | Wa |
Factor | Variables | Reference |
---|---|---|
Soil Physical and Chemical Properties | Sand, Silt, Clay, CEC | Mendes et al. [93] |
Minerals | kaolinite, hematite, gibbsite, goethite | Mendes et al. [77] |
Soil, Parent material and age (SySI) | Blue, Green, Red, NIR, SWIR1, SWIR2, SF | SYSI were generated using the method suggested by Dematte et al. [100] in GEE |
Geology | - | Geology map was obtained from Bonfatti et al. [101] 30 m resolution (about 1:100.000 scale). |
Soil Type | - | Soil type was extracted from the published database of Rossi [91] |
LULC history | Agriculture (%), Forest (%), Pasture (%), LULC history Class | LULC history map was generated based on the percent of LULC changes during 1985–2015. |
Mean annual Vegetation Index (1985–2015) | NDVI, EVI, NDWI | vegetation indexes were derived from Landsat 5, 7 and 8 Collection 1 Tier 1 8-day NDVI, EVI, NDWI composites over a period of 1985 to 2015 in GEE at 30 m resolution. |
Climate (1985–2015) | Mean Annual Precipitation (MAP), Maximum Temperature (MaxTemp), Minimum Temperature (MinTemp), Wind Speed (MAW), Downward Solar, LST | Time series of climatic factors (1985–2015) were obtained from TerraClimate dataset [102] and CHIRPS Daily dataset [103] in GEE and LST were obtained from the published database of Sayão et al. [97] |
Bioclimatic (1960–2000) | Annual Mean Temperature (BIO1), Temperature Seasonality (C) (BIO4), Max Temperature of Warmest Month(BIO5), Min Temperature of Coldest Month (BIO6), Annual Precipitation(BIO12), Precipitation of Wettest Month(BIO13), Precipitation of Driest Month(BIO14), Precipitation Seasonality (CV) (BIO15) | bioclimatic variables were obtained from the WorldClim2 dataset (1970–2000) [104] |
Relief | Elevation, slope, aspect, Hillshade, Eastness, Northness, Horizontal Curvature, Vertical Curvature, Gaussian Curvature, Maximal Curvature, Minimal Curvature, Mean Curvature, Topographic Position Index, Shape Index, Terrain features density within a radius of 300 m (TFD300) and Terrain features density within a radius of 500 m (TFD500) | Terrain attributes were generated from the 5 m DEM using GEE [99] |
Convergence Index, Multiresolution Index of Valley Bottom Flatness (MRVBF), Multiresolution Index of Ridge Top Flatness (MRRTF), Terrain Surface Texture (TST), Valley Depth, Slope Height, Normalized Height, Standardized height, topographic wetness index (TWI), Slope Length, Gradient, Analytical Hill shading, Catchment area | ArcGIS10.3 and SAGA GIS (2.3.2) |
Land Use History | Layer | N | SOC (gkg−1) | BD (gcm−3) | SOC Stocks (gm−2) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Min | Max | Mean | Std. | CV | Min | Max | Mean | Std. | CV | Min | Max | Mean | Std. | CV | |||
Ag = 100 | 1 | 1279 | 0.00 | 15.16 | 1.13 | 1.51 | 133.14 | 0.11 | 1.57 | 1.28 | 0.17 | 12.93 | 0.20 | 1971.94 | 137.30 | 190.14 | 138.49 |
2 | 1293 | 0.03 | 10.67 | 1.00 | 1.12 | 111.55 | 0.81 | 1.55 | 1.28 | 0.15 | 11.37 | 4.93 | 1259.40 | 122.12 | 135.04 | 110.58 | |
9 | 881 | 0.06 | 8.84 | 0.67 | 0.88 | 131.88 | 0.08 | 1.53 | 1.28 | 0.17 | 13.32 | 8.46 | 1183.08 | 78.04 | 99.39 | 127.35 | |
10 | 883 | 0.06 | 7.60 | 0.59 | 0.57 | 96.25 | 0.94 | 1.52 | 1.29 | 0.15 | 11.29 | 8.46 | 839.04 | 72.05 | 67.03 | 93.03 | |
Pas = 100 | 1 | 291 | 4.99 | 11.66 | 6.19 | 1.45 | 23.42 | 1.19 | 1.43 | 1.40 | 0.05 | 3.71 | 713.34 | 1434.05 | 857.52 | 157.07 | 18.32 |
2 | 291 | 4.64 | 11.08 | 5.82 | 1.35 | 23.18 | 1.19 | 1.44 | 1.40 | 0.06 | 3.95 | 668.21 | 1333.53 | 807.22 | 142.64 | 17.67 | |
9 | 291 | 2.96 | 8.58 | 3.72 | 1.05 | 28.34 | 1.15 | 1.45 | 1.41 | 0.06 | 4.21 | 420.07 | 1047.33 | 519.82 | 111.99 | 21.54 | |
10 | 291 | 2.78 | 7.77 | 3.64 | 0.94 | 25.84 | 1.16 | 1.44 | 1.41 | 0.06 | 4.10 | 398.14 | 840.49 | 508.23 | 100.44 | 19.76 | |
Ag >50–Past < 50 | 1 | 1398 | 0.04 | 10.90 | 0.95 | 1.29 | 135.96 | 0.28 | 0.11 | 1.56 | 1.36 | 0.11 | 8.41 | 1398.00 | 89.19 | 172.12 | 137.08 |
2 | 1404 | 0.04 | 8.87 | 0.88 | 1.15 | 130.89 | 0.52 | 0.88 | 1.56 | 1.37 | 0.11 | 7.81 | 1404.00 | 84.82 | 154.92 | 132.38 | |
9 | 842 | 0.00 | 8.27 | 0.50 | 0.69 | 138.02 | 0.15 | 0.94 | 1.54 | 1.38 | 0.11 | 7.69 | 842.00 | 50.86 | 91.51 | 136.63 | |
10 | 842 | 0.06 | 6.15 | 0.47 | 0.58 | 124.84 | 0.95 | 0.95 | 1.54 | 1.38 | 0.10 | 7.49 | 842.00 | 49.61 | 77.45 | 123.64 | |
Ag >50–Fo < 50 | 1 | 148 | 0.08 | 17.47 | 1.54 | 2.48 | 161.53 | 0.88 | 1.50 | 1.29 | 0.13 | 9.84 | 10.91 | 1358.90 | 189.42 | 309.29 | 163.28 |
2 | 148 | 0.08 | 10.44 | 1.26 | 1.83 | 145.13 | 0.72 | 1.50 | 1.29 | 0.13 | 10.29 | 10.91 | 1221.58 | 152.94 | 215.25 | 140.74 | |
9 | 95 | 0.17 | 6.67 | 0.74 | 1.22 | 165.72 | 0.05 | 1.48 | 1.30 | 0.17 | 13.04 | 25.34 | 840.49 | 85.29 | 132.45 | 155.28 | |
10 | 95 | 0.09 | 6.15 | 0.55 | 0.73 | 132.50 | 0.95 | 1.49 | 1.31 | 0.11 | 8.67 | 13.44 | 780.86 | 70.53 | 93.05 | 131.93 | |
Total data | 1 | 3307 | 0.00 | 17.47 | 1.52 | 2.08 | 137.04 | 0.11 | 1.57 | 1.33 | 0.14 | 10.61 | 0.20 | 2358.90 | 198.82 | 279.18 | 140.42 |
2 | 3327 | 0.03 | 11.08 | 1.39 | 1.84 | 132.68 | 0.72 | 1.56 | 1.33 | 0.13 | 9.70 | 4.93 | 1333.53 | 182.45 | 247.21 | 135.49 | |
9 | 2215 | 0.00 | 8.84 | 1.00 | 1.36 | 136.04 | 0.05 | 1.54 | 1.34 | 0.14 | 10.75 | 0.51 | 1183.08 | 131.56 | 180.94 | 137.53 | |
10 | 2217 | 0.06 | 7.77 | 0.94 | 1.23 | 131.88 | 0.94 | 1.54 | 1.35 | 0.13 | 9.45 | 8.45 | 842.49 | 125.18 | 168.21 | 134.37 |
Land Use History | Layers | Recursive Feature Elimination | ||||||
---|---|---|---|---|---|---|---|---|
Mtry | Train | Test | ||||||
R2 | RMSE | RPD | R2 | RMSE | RPD | |||
Ag = 100 | 1 | 5 | 0.40 | 43.35 | 1.28 | 0.39 | 41.31 | 1.28 |
2 | 10 | 0.39 | 38.06 | 1.27 | 0.48 | 36.46 | 1.37 | |
3 | 5 | 0.25 | 96.92 | 1.21 | 0.34 | 125.31 | 1.49 | |
4 | 5 | 0.47 | 28.75 | 1.35 | 0.43 | 30.00 | 1.33 | |
5 | 5 | 0.46 | 28.85 | 1.35 | 0.29 | 33.24 | 1.20 | |
6 | 5 | 0.47 | 26.64 | 1.35 | 0.49 | 25.02 | 1.42 | |
7 | 5 | 0.56 | 21.91 | 1.51 | 0.54 | 23.67 | 1.44 | |
8 | 5 | 0.54 | 23.16 | 1.46 | 0.56 | 23.88 | 1.51 | |
9 | 5 | 0.58 | 22.03 | 1.53 | 0.53 | 23.33 | 1.46 | |
10 | 5 | 0.60 | 22.23 | 1.56 | 0.55 | 22.72 | 1.49 | |
Pas = 100 | 1 | 5 | 0.75 | 49.48 | 2.88 | 0.72 | 92.29 | 1.78 |
2 | 5 | 0.87 | 48.42 | 2.85 | 0.80 | 70.46 | 2.30 | |
3 | 5 | 0.87 | 30.90 | 3.32 | 0.84 | 52.41 | 2.29 | |
4 | 5 | 0.91 | 24.06 | 4.54 | 0.93 | 31.64 | 3.81 | |
5 | 10 | 0.87 | 31.35 | 2.74 | 0.83 | 42.01 | 2.39 | |
6 | 5 | 0.80 | 32.64 | 2.39 | 0.87 | 37.18 | 2.71 | |
7 | 5 | 0.63 | 41.67 | 1.53 | 0.76 | 52.19 | 1.99 | |
8 | 5 | 0.91 | 25.04 | 3.27 | 0.93 | 34.57 | 3.25 | |
9 | 5 | 0.89 | 30.03 | 3.19 | 0.84 | 50.09 | 2.51 | |
10 | 5 | 0.85 | 29.50 | 3.34 | 0.94 | 15.97 | 5.44 | |
Ag > 50 – Past < 50 | 1 | 10 | 0.62 | 87.41 | 1.70 | 0.69 | 104.96 | 1.79 |
2 | 10 | 0.70 | 79.53 | 1.83 | 0.77 | 79.92 | 2.11 | |
3 | 5 | 0.76 | 76.67 | 1.94 | 0.82 | 66.96 | 2.38 | |
4 | 5 | 0.76 | 67.68 | 1.90 | 0.86 | 48.34 | 2.97 | |
5 | 5 | 0.67 | 67.43 | 1.77 | 0.60 | 83.03 | 1.67 | |
6 | 5 | 0.66 | 58.15 | 1.68 | 0.68 | 70.37 | 1.96 | |
7 | 5 | 0.71 | 56.56 | 1.70 | 0.87 | 29.38 | 2.91 | |
8 | 5 | 0.71 | 45.83 | 1.59 | 0.64 | 74.49 | 2.57 | |
9 | 5 | 0.62 | 59.02 | 1.43 | 0.59 | 51.65 | 1.53 | |
10 | 5 | 0.79 | 38.54 | 2.08 | 0.48 | 51.85 | 1.41 | |
Ag >50 –Fo < 50 | 1 | 5 | 0.33 | 44.92 | 1.11 | 0.31 | 45.90 | 1.21 |
2 | 5 | 0.20 | 45.37 | 1.03 | 0.20 | 50.42 | 1.14 | |
3 | 5 | 0.29 | 79.61 | 1.11 | 0.19 | 33.00 | 1.14 | |
4 | 5 | 0.60 | 84.09 | 1.02 | 0.51 | 179.42 | 1.17 | |
5 | 5 | 0.45 | 90.96 | 1.08 | 0.11 | 174.18 | 1.02 | |
6 | 5 | 0.27 | 85.70 | 1.49 | 0.18 | 208.75 | 1.10 | |
7 | 5 | 0.45 | 53.59 | 1.12 | 0.16 | 234.53 | 1.48 | |
8 | 5 | 0.64 | 13.45 | 1.34 | 0.38 | 16.52 | 1.29 | |
9 | 5 | 0.38 | 127.81 | 1.00 | 0.18 | 69.87 | 0.73 | |
10 | 5 | 0.37 | 46.32 | 0.93 | 0.12 | 33.35 | 0.99 | |
Total data | 1 | 5 | 0.82 | 117.00 | 2.10 | 0.82 | 118.68 | 2.09 |
2 | 5 | 0.87 | 79.37 | 2.89 | 0.91 | 67.53 | 2.84 | |
3 | 15 | 0.88 | 78.06 | 2.89 | 0.86 | 85.31 | 2.75 | |
4 | 15 | 0.91 | 68.07 | 3.30 | 0.92 | 65.12 | 3.42 | |
5 | 5 | 0.79 | 89.02 | 2.11 | 0.79 | 91.52 | 2.18 | |
6 | 10 | 0.88 | 58.53 | 2.77 | 0.84 | 66.57 | 2.46 | |
7 | 5 | 0.89 | 57.93 | 2.95 | 0.87 | 60.57 | 2.77 | |
8 | 5 | 0.90 | 54.26 | 3.00 | 0.88 | 58.95 | 2.87 | |
9 | 10 | 0.83 | 67.73 | 2.21 | 0.78 | 72.40 | 2.13 | |
10 | 5 | 0.90 | 46.67 | 3.07 | 0.90 | 46.17 | 3.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tayebi, M.; Fim Rosas, J.T.; Mendes, W.d.S.; Poppiel, R.R.; Ostovari, Y.; Ruiz, L.F.C.; dos Santos, N.V.; Cerri, C.E.P.; Silva, S.H.G.; Curi, N.; et al. Drivers of Organic Carbon Stocks in Different LULC History and along Soil Depth for a 30 Years Image Time Series. Remote Sens. 2021, 13, 2223. https://doi.org/10.3390/rs13112223
Tayebi M, Fim Rosas JT, Mendes WdS, Poppiel RR, Ostovari Y, Ruiz LFC, dos Santos NV, Cerri CEP, Silva SHG, Curi N, et al. Drivers of Organic Carbon Stocks in Different LULC History and along Soil Depth for a 30 Years Image Time Series. Remote Sensing. 2021; 13(11):2223. https://doi.org/10.3390/rs13112223
Chicago/Turabian StyleTayebi, Mahboobeh, Jorge Tadeu Fim Rosas, Wanderson de Sousa Mendes, Raul Roberto Poppiel, Yaser Ostovari, Luis Fernando Chimelo Ruiz, Natasha Valadares dos Santos, Carlos Eduardo Pellegrino Cerri, Sérgio Henrique Godinho Silva, Nilton Curi, and et al. 2021. "Drivers of Organic Carbon Stocks in Different LULC History and along Soil Depth for a 30 Years Image Time Series" Remote Sensing 13, no. 11: 2223. https://doi.org/10.3390/rs13112223
APA StyleTayebi, M., Fim Rosas, J. T., Mendes, W. d. S., Poppiel, R. R., Ostovari, Y., Ruiz, L. F. C., dos Santos, N. V., Cerri, C. E. P., Silva, S. H. G., Curi, N., Silvero, N. E. Q., & Demattê, J. A. M. (2021). Drivers of Organic Carbon Stocks in Different LULC History and along Soil Depth for a 30 Years Image Time Series. Remote Sensing, 13(11), 2223. https://doi.org/10.3390/rs13112223