Observation of Diurnal Ground Surface Changes Due to Freeze-Thaw Action by Real-Time Kinematic Unmanned Aerial Vehicle
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Site
2.2. Field Survey
2.3. Data Analysis
2.4. Model Selection Procedures
3. Results
3.1. Slope-Failure Site Properties
3.2. Verification of DSM Accuracy Created from RTK-UAV Imagery
3.3. Environment and Altitude Changes of the Ground Surface at Slope-Failure Sites
3.4. Relationships among Freeze-Thaw Amount, Terrain, and the Thermal Environment
4. Discussion
4.1. Validity, Accuracy, and Applicability of DSMs Created from RTK-UAV Images
4.2. Environmental Factors Affecting Freeze-thaw Amount
4.3. Differences in Freeze-Thaw Amount between Slope-Failure Sites
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saxton, K.E.; Formanek, G.E.; Molnau, M. Frozen Soil Impacts on Agricultural, Range, and Forest Land; Special Report; U.S. Army Cold Regions Research and Engineering Laboratory: Hanover, NH, USA, 1990. [Google Scholar]
- Mill, T.; Ellmann, A.; Aavik, A.; Horemuz, M.; Sillamäe, S. Determining ranges and spatial distribution of road frost heave by terrestrial laser scanning. Balt. J. Road Bridg. Eng. 2014, 9, 225–234. [Google Scholar] [CrossRef] [Green Version]
- Matsuoka, N. Solifluction rates, processes and landforms: A global review. Earth-Sci. Rev. 2001, 55, 107–134. [Google Scholar] [CrossRef]
- Lawler, D.M. Needle ice processes and sediment mobilization on river banks: The River Ilston, West Glamorgan, UK. J. Hydrol. 1993, 150, 81–114. [Google Scholar] [CrossRef]
- Couper, P.; Stott, T.; Maddock, I. Insights into river bank erosion processes derived from analysis of negative erosion-pin recordings: Observations from three recent UK studies. Earth Surf. Process. Landf. 2002, 27, 59–79. [Google Scholar] [CrossRef]
- Matsuoka, N.; Abe, M.; Ijiri, M. Differential frost heave and sorted patterned ground: Field measurements and a laboratory experiment. Geomorphology 2003, 52, 73–85. [Google Scholar] [CrossRef]
- Ponti, S.; Cannone, N.; Guglielmin, M. Needle ice formation, induced frost heave, and frost creep: A case study through photogrammetry at Stelvio Pass (Italian Central Alps). Catena 2018, 164, 62–70. [Google Scholar] [CrossRef]
- Saito, H.; Uchiyama, S.; Hayakawa, Y.S.; Obanawa, H. Landslides triggered by an earthquake and heavy rainfalls at Aso volcano, Japan, detected by UAS and SfM-MVS photogrammetry. Prog. Earth Planet. Sci. 2018, 5, 1–10. [Google Scholar] [CrossRef]
- Cook, K.L.; Dietze, M. A simple workflow for robust low-cost UAV-derived change detection without ground control points. Earth Surf. Dyn. 2019, 7, 1009–1017. [Google Scholar] [CrossRef] [Green Version]
- Vepakomma, U.; Cormier, D. Potential of multi-temporal UAV-borne lidar in assessing effectiveness of silvicultural treatments. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 42, 393–397. [Google Scholar] [CrossRef] [Green Version]
- Sofonia, J.; Phinn, S.; Roelfsema, C.; Kendoul, F. Observing geomorphological change on an evolving coastal sand dune using SLAM-based UAV LiDAR. Remote Sens. Earth Syst. Sci. 2019, 2, 273–291. [Google Scholar] [CrossRef]
- Neugirg, F.; Stark, M.; Kaiser, A.; Vlacilova, M.; Della Seta, M.; Vergari, F.; Schmidt, J.; Becht, M.; Haas, F. Erosion processes in calanchi in the Upper Orcia Valley, Southern Tuscany, Italy based on multitemporal high-resolution terrestrial LiDAR and UAV surveys. Geomorphology 2016, 269, 8–22. [Google Scholar] [CrossRef]
- Osanai, N.; Yamada, T.; Hayashi, S.I.; Kastura, S.; Furuichi, T.; Yanai, S.; Murakami, Y.; Miyazaki, T.; Tanioka, Y.; Takiguchi, S.; et al. Characteristics of landslides caused by the 2018 Hokkaido Eastern Iburi Earthquake. Landslides 2019, 16, 1517–1528. [Google Scholar] [CrossRef]
- Japan Meteorological Agency. Past Weather Data and Download. Available online: https://www.data.jma.go.jp/obd/stats/etrn/ (accessed on 20 December 2020).
- Zhang, S.; Li, R.; Wang, F.; Iio, A. Characteristics of landslides triggered by the 2018 Hokkaido Eastern Iburi earthquake, Northern Japan. Landslides 2019, 16, 1691–1708. [Google Scholar] [CrossRef]
- Nakata, Y.; Hayamizu, M.; Koshimizu, K.; Takeuchi, F.; Ebina, M.; Sato, H. Accuracy assessment of topographic measurements and monitoring of topographic changes using RTK-UAV in landslide area caused by 2018 Hokkaido Eastern Iburi Earthquake. Landsc. Ecol. Manag. 2020, 25, 43–52. [Google Scholar] [CrossRef]
- QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. 2020. Available online: http://qgis.osgeo.org (accessed on 15 April 2020).
- Barton, K. MuMIn: Multi-Model Inference. R Package Version 1.9.0. 2013. Available online: http://CRAN.R-project.org/package=MuMIn (accessed on 25 January 2014).
- Burnham, K.P.; Anderson, D.R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach; Springer: New York, NY, USA, 2013. [Google Scholar]
- R Development Core Team. R: A Language and Environment for Statistical Computing; 2020 R (Version 4.0.0); R Development Core Team: Vienna, Austria; Available online: http://www.R-project.org (accessed on 29 April 2020).
- Obanawa, H.; Sakanoue, S.; Yagi, T. Evaluating the Applicability of RTK-UAV for Field Management. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokahama, Japan, 28 July–2 August 2019; pp. 9090–9092. [Google Scholar]
- Torres-Sánchez, J.; López-Granados, F.; Borra-Serrano, I.; Peña, J.M. Assessing UAV-collected image overlap influence on computation time and digital surface model accuracy in olive orchards. Precis. Agric. 2017, 19, 115–133. [Google Scholar] [CrossRef]
- James, M.R.; Robson, S.; d’Oleire-Oltmanns, S.; Niethammer, U. Optimising UAV topographic surveys processed with structure-from-motion: Ground control quality, quantity and bundle adjustment. Geomorphology 2017, 280, 51–66. [Google Scholar] [CrossRef] [Green Version]
- Sarsembayeva, A.; Collins, P.E.F. Evaluation of frost heave and moisture/chemical migration mechanisms in highway subsoil using a laboratory simulation method. Cold Reg. Sci. Technol. 2017, 133, 26–35. [Google Scholar] [CrossRef]
- Kellerer-Pirklbauer, A. Potential weathering by freeze-thaw action in alpine rocks in the European Alps during a nine year monitoring period. Geomorphology 2017, 296, 113–131. [Google Scholar] [CrossRef]
- Arabameri, A.; Blaschke, T.; Pradhan, B.; Pourghasemi, H.R.; Tiefenbacher, J.P.; Bui, D.T. Evaluation of recent advanced soft computing techniques for gully erosion susceptibility mapping: A comparative study. Sensors 2020, 20, 335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arabameri, A.; Pradhan, B.; Lombardo, L. Comparative assessment using boosted regression trees, binary logistic regression, frequency ratio and numerical risk factor for gully erosion susceptibility modelling. Catena 2019, 183, 104223. [Google Scholar] [CrossRef]
- Arabameri, A.; Chen, W.; Loche, M.; Zhao, X.; Li, Y.; Lombardo, L.; Cerda, A.; Pradhan, B.; Bui, D.T. Comparison of machine learning models for gully erosion susceptibility mapping. Geosci. Front. 2020, 11, 1609–1620. [Google Scholar] [CrossRef]
- Konrad, J.-M.; Morgenstern, N.R. A mechanistic theory of ice lens formation in fine-grained soils. Can. Geotech. J. 1980, 17, 473–486. [Google Scholar] [CrossRef]
- Matsuoka, N.; Hirakawa, K.; Watanabe, T.; Haeberli, W.; Keller, F. The role of diurnal, annual and millennial freeze-thaw cycles in controlling alpine slope instability. In Proceedings of the PERMAFROST—7th International Conference, Yellowknife, NT, Canada, 23–27 June 1998; pp. 711–717. [Google Scholar]
- Schartel, M.; Burr, R.; Mayer, W.; Docci, N.; Waldschmidt, C. UAV-Based Ground Penetrating Synthetic Aperture Radar. In Proceedings of the 2018 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM), Munich, Germany, 15–17 April 2018; pp. 1–4. [Google Scholar] [CrossRef] [Green Version]
UAV | ||
Airplane model | DJI Phantom4RTK | DJI Matrice210RTK |
Airplane type | Rotary-wing aircraft | Rotary-wing aircraft |
Airplane weight | 1391 g | 4910 g |
Max. duration of flight | 30 min | 33 min |
Base station model | DJI D-RTK2 | DJI D-RTK2 |
Cameras | ||
Camera model | DJI FC6310R | DJI Zenmuse XT2 |
Number of pixels | 20 M | 12 M |
Sensor size | 5472 × 3648 | 640 × 512 |
Focal length | 8.8 mm | 5.0 mm |
No. | 4/2 P.M.–4/3 A.M. | 4/3 P.M.–4/3 A.M. | ||||
---|---|---|---|---|---|---|
X | Y | Z | X | Y | Z | |
1 | 0.004 | −0.069 | 0.078 | 0.005 | −0.016 | −0.019 |
2 | 0.039 | −0.075 | 0.046 | −0.005 | −0.012 | 0.026 |
3 | 0.033 | −0.057 | 0.006 | −0.008 | −0.011 | −0.027 |
4 | 0.027 | −0.068 | −0.001 | −0.018 | −0.020 | −0.039 |
5 | 0.064 | −0.083 | −0.001 | 0.025 | −0.023 | −0.020 |
6 | 0.036 | −0.063 | 0.010 | −0.009 | −0.007 | −0.009 |
7 | 0.054 | −0.069 | −0.063 | −0.002 | −0.014 | −0.031 |
8 | 0.024 | −0.067 | −0.063 | −0.011 | −0.006 | −0.051 |
9 | −0.017 | −0.014 | −0.048 | −0.015 | −0.004 | −0.059 |
10 | 0.019 | −0.061 | 0.071 | −0.018 | −0.025 | −0.010 |
RMSE | 0.036 | 0.065 | 0.049 | 0.013 | 0.015 | 0.033 |
Rank of Model | AIC | ΔAIC | Estimated Coefficients (Standard Error) | |||||
---|---|---|---|---|---|---|---|---|
Intercept | Ground Surface Temperatures | TWI | Cumulative Solar Radiation | Inclination Angle | Curvature | |||
1 | –11,297.7 | 0.00 | 0.102 *** (0.00831) | 0.00106 *** (0.000130) | –0.00410 *** (0.000983) | –7.43 × 10−6 *** (1.98 × 10−6) | 0.000318 (0.000167) | |
2 | –11,296.1 | 1.64 | 0.114 *** (0.00531) | 0.00113 *** (0.000126) | –0.00481 *** (0.000911) | –8.47 × 10−6 *** (1.90 × 10−6) | ||
3 | –11,295.9 | 1.76 | 0.102 *** (0.00831) | 0.00106 *** (0.000130) | –0.00411 *** (0.000983) | –7.44 × 10−6 *** (1.98 × 10−6) | 0.000320 (0.000167) | –2.04 × 10−7 (4.16 × 10−7) |
4 | –11,294.3 | 3.43 | 0.114 *** (0.00531) | 0.00113 *** (0.000126) | –0.00482 *** (0. 000912) | –8.47 × 10−6 *** (1.90 × 10−6) | –1.89 × 10−7 (4.16 × 10−7) | |
Null model | –11,170.3 | 127.44 | 0.0923 *** (0.00130) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakata, Y.; Hayamizu, M.; Ishiyama, N.; Torita, H. Observation of Diurnal Ground Surface Changes Due to Freeze-Thaw Action by Real-Time Kinematic Unmanned Aerial Vehicle. Remote Sens. 2021, 13, 2167. https://doi.org/10.3390/rs13112167
Nakata Y, Hayamizu M, Ishiyama N, Torita H. Observation of Diurnal Ground Surface Changes Due to Freeze-Thaw Action by Real-Time Kinematic Unmanned Aerial Vehicle. Remote Sensing. 2021; 13(11):2167. https://doi.org/10.3390/rs13112167
Chicago/Turabian StyleNakata, Yasutaka, Masato Hayamizu, Nobuo Ishiyama, and Hiroyuki Torita. 2021. "Observation of Diurnal Ground Surface Changes Due to Freeze-Thaw Action by Real-Time Kinematic Unmanned Aerial Vehicle" Remote Sensing 13, no. 11: 2167. https://doi.org/10.3390/rs13112167
APA StyleNakata, Y., Hayamizu, M., Ishiyama, N., & Torita, H. (2021). Observation of Diurnal Ground Surface Changes Due to Freeze-Thaw Action by Real-Time Kinematic Unmanned Aerial Vehicle. Remote Sensing, 13(11), 2167. https://doi.org/10.3390/rs13112167