Pan–Tilt IR Scanning Method for the Remote Measurement of Mean Radiant Temperatures at Multi-Location in Buildings
Abstract
:1. Introduction
2. IR Application Methods
2.1. Outline of the Method
2.1.1. Simplified Modeling for Calculating
2.1.2. Pan–Tilt IR Scanning for Measuring
2.2. Classification of Indoor Surfaces
2.2.1. Surface Structure and Location
2.2.2. Material Properties
2.2.3. Thermal Conditions and Characteristics
2.3. Pan–Tilt IR Scanning Method
2.3.1. Proposition of IR and Pan–Tilt Coupled System
IR Image Frame with Angular Data
IR Image Frame with Polygon Image Coordinates
2.3.2. Measurement of the Mean Surface Temperature
Measurement of the Average Reflected Temperature
Calculation of the Mean Surface Temperature
3. Development of Pan–Tilt IR Scanning System
3.1. Development of System Structure
3.2. The IR System Development
4. Experimental Study
4.1. Description of Experimental Study
4.2. Pre-Investigation and Pre-Evaluation
4.3. Measurement Results
4.3.1. Comparison Results of Surface Temperatures: CT vs. IR Methods
4.3.2. Real-Time MRT Distributions
5. Conclusions
- No requirement to install measuring devices in occupant areas—the MRTs can be monitored remotely in a space with a high occupant density or complex occupant movement lines.
- Memorization of each location of classified indoor surfaces and repeated measurements of their average temperature—this enables continuous monitoring of the indoor surface temperature. Moreover, it can be applied to controlling radiant heating and cooling systems, such as radiant ceiling panels and floor heating, by continuously monitoring and controlling their surface temperatures.
- MRT evaluations at multiple indoor locations—individual MRT evaluations are possible for multiple occupant zones especially in large spaces, such as concert hall, dome stadium, and station.
- Minimization of the equipment installation size—single equipment can be installed in the space. Therefore, space utilization is high. This is advantageous in terms of maintenance and repair.
Author Contributions
Funding
Conflicts of Interest
Nomenclature
Symbols | |
polygon image coordinates (pixels) | |
pixel coordinate (pixels) | |
distance between IR camera to object (mm) | |
angle factor | |
IR image frame | |
interior surface | |
group of interior surfaces | |
temperature (°C) | |
absolute temperature (K) | |
mean surface temperature (K) | |
radiation power (W) | |
Abbreviations and acronyms | |
3D | three-dimensional |
AF | angle factor |
CT | contact thermometer |
FOV | field of view |
GT | globe thermometer |
IR | infrared |
MRT | mean radiant temperature |
Greek letters | |
emissivity | |
identifier of a given surface group | |
identifier of a given pixel of IR image | |
transmittance | |
radiant power contribution | |
identifier of a given pan–tilt angle | |
Subscripts | |
a | air, atmospheric |
H | pan rotation |
i | identifier of a given occupant location |
j | identifier of a given interior surface |
m | identifier of a taken IR image and polygon |
obj | abject |
refl | reflected, reflection |
th interior surface of indoor space | |
th surface group | |
t | time |
tot | total |
tilt rotation | |
Superscripts | |
bb | black body |
po | polygon |
px | pixel |
Etc | |
mean value | |
number of elements in a set | |
complementary set |
References
- Guo, H.; Aviv, D.; Loyola, M.; Teitelbaum, E.; Houchois, N.; Meggers, F. On the understanding of the mean radiant temperature within both the indoor and outdoor environment, a critical review. Renew. Sustain. Energy Rev. 2020, 117, 109207. [Google Scholar] [CrossRef]
- Walikewitz, N.; Jänicke, B.; Langner, M.; Meier, F.; Endlicher, W. The difference between the mean radiant temperature and the air temperature within indoor environments: A case study during summer conditions. Build. Environ. 2015, 84, 151–161. [Google Scholar] [CrossRef]
- Aparicio, P.; Salmerón, J.M.; Ruiz, Á.; Sánchez, F.J.; Brotas, L. The globe thermometer in comfort and environmental studies in buildings. Rev. de la Construcción 2016, 15, 57–66. [Google Scholar] [CrossRef] [Green Version]
- Halawa, E.; Van Hoof, J.; Soebarto, V. The impacts of the thermal radiation field on thermal comfort, energy consumption and control—A critical overview. Renew. Sustain. Energy Rev. 2014, 37, 907–918. [Google Scholar] [CrossRef]
- Guo, H.; Teitelbaum, E.; Houchois, N.; Bozlar, M.; Meggers, F. Revisiting the use of globe thermometers to estimate radiant temperature in studies of heating and ventilation. Energy Build. 2018, 180, 83–94. [Google Scholar] [CrossRef]
- d’Ambrosio Alfano, F.R.; Dell’Isola, M.; Palella, B.I.; Riccio, G.; Russi, A. On the measurement of the mean radiant temperature and its influence on the indoor thermal environment assessment. Build. Environ. 2013, 63, 79–88. [Google Scholar] [CrossRef]
- Lindberg, F.; Holmer, B.; Thorsson, S. SOLWEIG 1.0—Modelling spatial variations of 3D radiant fluxes and mean radiant temperature in complex urban settings. Int. J. Biometeorol. 2008, 52, 697–713. [Google Scholar] [CrossRef]
- Lau, K.K.L.; Ren, C.; Ho, J.; Ng, E. Numerical modelling of mean radiant temperature in high-density sub-tropical urban environment. Energy Build. 2016, 114, 80–86. [Google Scholar] [CrossRef]
- Fanger, P.O. Thermal Comfort: Analysis and Applications in Environmental Engineering; McGraw-Hill: New York, NY, USA, 1972; Volume 139, ISBN 0070199159. [Google Scholar]
- Vorre, M.H.; Jensen, R.L.; Le Dréau, J. Radiation exchange between persons and surfaces for building energy simulations. Energy Build. 2015, 101, 110–121. [Google Scholar] [CrossRef]
- ISO 7726. Ergonomics of the Thermal Environment—Instruments for Measuring Physical Quantities; ISO: Geneva, Switzerland, 1998. [Google Scholar]
- Cheong, C.-H.; Hwang, S.-H.; Park, B.-Y. Analysis on Indoor Thermal Comfort of Buildings. J. Arch. Inst. Korea 2014, 16, 187–194. [Google Scholar]
- Guo, H.; Ferrara, M.; Coleman, J.; Loyola, M.; Meggers, F. Simulation and measurement of air temperatures and mean radiant temperatures in a radiantly heated indoor space. Energy 2020, 193, 116369. [Google Scholar] [CrossRef]
- Revel, G.M.; Arnesano, M.; Pietroni, F. Development and validation of a low-cost infrared measurement systemfor real-time monitoring of indoor thermal comfort. Meas. Sci. Technol. 2014, 25. [Google Scholar] [CrossRef]
- Dizeu, F.B.D.; Maldague, X.; Bendada, A. Mapping of the indoor conditions by infrared thermography. J. Imaging 2016, 2, 10. [Google Scholar] [CrossRef]
- Frenzel, C.; Gröger, S.; Hiller, M.; Kessling, W.; Müllner, K. Simulation of Thermal comfort in soccer stadia using trnsys 17 transsolar Energietechnik GmbH, Stuttgart, Germany Technische Universität München, Lehrstuhl für energieeffizientes und nachhaltiges Planen und Bauen, Munich, Germany. Proc. Build. Simul. 2011, 2011, 14–16. [Google Scholar]
- La Gennusa, M.; Nucara, A.; Rizzo, G.; Scaccianoce, G. The calculation of the mean radiant temperature of a subject exposed to the solar radiation—A generalised algorithm. Build. Environ. 2005, 40, 367–375. [Google Scholar] [CrossRef]
- Hiller, M.; Aschaber, J.; Dillig, M. Integration of low-e surfaces and shortwave solar radiation into human comfort calculation in TRNSYS 17. BauSim 2010 Build. Perform. Simul. A Chang. Environ. 2010, 247–253. [Google Scholar]
- Kim, D.G.; Han, K.I.; Choi, J.H.; Lee, J.J.; Kim, T.K. Study on View Factor Calculation for Radiative Heat Transfer By Using the Mesh Subdivision Method. J. Comput. Fluids Eng. 2014, 19, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Eriksson, F. On the Measure of Solid Angles. Math. Mag. 1990, 63, 184–187. [Google Scholar] [CrossRef]
- Van Oosterom, A.; Strackee, J. The Solid Angle of a Plane Triangle. IEEE Trans. Biomed. Eng. 1983, BME-30, 125–126. [Google Scholar] [CrossRef]
- Lee, D.S.; Kim, E.J.; Cho, Y.H.; Kang, J.W.; Jo, J.H. A field study on application of infrared thermography for estimating mean radiant temperatures in large stadiums. Energy Build. 2019, 202, 109360. [Google Scholar] [CrossRef]
- La Gennusa, M.; Nucara, A.; Pietrafesa, M.; Rizzo, G.; Scaccianoce, G. Angle factors and projected area factors for comfort analysis of subjects in complex confined enclosures: Analytical relations and experimental results. Indoor Built Environ. 2008, 17, 346–360. [Google Scholar] [CrossRef]
- Sui, X.; Zhang, X.U. Analysis on combinations of indoor thermal microclimate parameters in radiant cooled residential buildings and drawing of new thermal comfort charts. Build. Serv. Eng. Res. Technol. 2016, 37, 66–84. [Google Scholar] [CrossRef]
- Choi, D.-S.; Ko, M.-J. Prediction and Sensitivity Analysis of Thermal Insulation Performance of Wall Using Infrared Thermograph(IRT). J. Korean Soc. Living Environ. Syst. 2017, 24, 223–231. [Google Scholar] [CrossRef]
- Vollmer, M.; Mollmann, K.-P. Infrared Thermal Imaging; WILEY_VCH Verlag GmbH &, Co.: Weinheim, Germany, 2010; ISBN 9783527403820. [Google Scholar]
- Gargano, M.; Cavaliere, F.; Viganò, D.; Galli, A.; Ludwig, N. A new spherical scanning system for infrared reflectography of paintings. Infrared Phys. Technol. 2017, 81, 128–136. [Google Scholar] [CrossRef]
- ASTM E 1862 Standard test methods for measuring and compensating for reflected temperature using infrared imaging radiometers. ASTM Int. 2010, 1–3. [CrossRef]
- ASTM E 1933 Standard test methods for measuring and compensating for emissivity using infrared imaging radiometers. ASTM Int. 2007, 1–3.
- FLIR. Available online: http://www.flir.com (accessed on 10 September 2018).
- Autonics. Available online: https://www.autonics.com/main (accessed on 5 January 2019).
- CEM. Available online: http://www.cem-instruments.com/ (accessed on 12 January 2019).
- ASHRAE 55. Thermal Environmental Conditions for Human Ocupancy. ASHRAE Stand. 2010, 55, 227. [Google Scholar]
- ISO 7730. Ergonomics of the thermal environment—Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria. ISO 2005, 2, 3–4. [Google Scholar]
Parts | Specifications | |
---|---|---|
Infrared detector | Object temperature range | −20 to +350 °C |
(FLIR A310) [30] | Accuracy | ±2% |
Thermal sensitivity | <0.05 °C at +30 °C | |
FOV | 40° width × 33.8° height | |
IR resolution | 320 × 240 pixels | |
Focal length | 18 mm | |
Weight | 0.7 kg | |
Pan–tilt motor | Angle range | Pan: 0 to 355° Tilt: −85 to +85° |
Rotation speed | Pan: 60°/s Tilt: 30°/s | |
T/RH sensor (Autonics THD-W1-T) | Measuring range | Temperature: −19.9 to +60 °C Relative humidity: 0 to 99.9% |
[31] | Accuracy | Temperature: ±1 °C Relative humidity: ±2% |
Surface Class | (Approx.) | ||
---|---|---|---|
: East | : East wall | 0.95 | 6000 mm |
: West | : West wall | 0.95 | 9000 mm |
: South | : South wall | 0.95 | 5000 mm |
: Roll blind 1 | 0.95 | 5000 mm | |
: Roll blind 2 | 0.95 | 5000 mm | |
: Roll blind 3 | 0.95 | 5000 mm | |
: North | : North wall | 0.95 | 3000 mm |
: Ceiling | : Ceiling | 0.95 | 1500 mm |
: Floor | : Floor | 0.90 | 1500 mm |
Monitoring Set | Values | ||
---|---|---|---|
,, | |||
,, | |||
,,, | |||
,,, , |
Monitoring Set | Values | |
---|---|---|
Monitoring period | Start time | 3 November 2019 03:00 |
End time | 3 November 2019 20:00 | |
Time interval for one cycle | 6 min | |
Surface class | Number of surface groups | 6 |
Number of surfaces | 9 | |
Number of IR image frames | 20 | |
Number of target locations | 2500 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, D.-S.; Jo, J.-H. Pan–Tilt IR Scanning Method for the Remote Measurement of Mean Radiant Temperatures at Multi-Location in Buildings. Remote Sens. 2021, 13, 2158. https://doi.org/10.3390/rs13112158
Lee D-S, Jo J-H. Pan–Tilt IR Scanning Method for the Remote Measurement of Mean Radiant Temperatures at Multi-Location in Buildings. Remote Sensing. 2021; 13(11):2158. https://doi.org/10.3390/rs13112158
Chicago/Turabian StyleLee, Dong-Seok, and Jae-Hun Jo. 2021. "Pan–Tilt IR Scanning Method for the Remote Measurement of Mean Radiant Temperatures at Multi-Location in Buildings" Remote Sensing 13, no. 11: 2158. https://doi.org/10.3390/rs13112158
APA StyleLee, D. -S., & Jo, J. -H. (2021). Pan–Tilt IR Scanning Method for the Remote Measurement of Mean Radiant Temperatures at Multi-Location in Buildings. Remote Sensing, 13(11), 2158. https://doi.org/10.3390/rs13112158