Incorporating Persistent Scatterer Interferometry and Radon Anomaly to Understand the Anar Fault Mechanism and Observing New Evidence of Intensified Activity
Abstract
:1. Introduction
2. Study Area, Fault Specifications and Tectonic Setting
3. Data Acquisition and Methods
3.1. Persistent Scatterer Interferometry (PSI)
3.2. Azimuth Offset Method
3.3. 3D Displacement Field Calculation and Fault Mechanism
3.4. Radon Map Processing
3.4.1. Groundwater Sampling
3.4.2. Radon Measurement and Anomaly Mapping
3.5. Relationship between Fault Activity and Radon Concentration
4. Results and Discussion
4.1. PSI Analysis
4.2. 3D Displacement Fields
4.3. PSI Validation
4.4. Anar Fault Tectonic Model
4.5. Radon Analysis
4.6. Relationship between Radon Anomaly and Fault Displacement
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nicol, A.; Walsh, J.; Manzocchi, T.; Morewood, N. Displacement rates and average earthquake recurrence intervals on normal faults. J. Struct. Geol. 2005, 27, 541–551. [Google Scholar] [CrossRef]
- Sertel, E.; Kaya, S.; Curran, P.J. Use of Semivariograms to Identify Earthquake Damage in an Urban Area. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1590–1594. [Google Scholar] [CrossRef]
- Mehrabi, A.; Dastanpour, M.; Radfar, S.; Vaziri, M.; Derakhshani, R. Detection of fault lineaments of the Zagros fold-thrust belt based on Landsat imagery interpretation and their relationship with Hormuz series salt dome locations using GIS analysis. Geosciences 2015, 24, 17–32. [Google Scholar] [CrossRef]
- McClymont, A.F.; Villamor, P.; Green, A.G. Fault displacement accumulation and slip rate variability within the Taupo Rift (New Zealand) based on trench and 3-D ground-penetrating radar data. Tectonics 2009, 28, 28. [Google Scholar] [CrossRef]
- Stramondo, S. The Tohoku–Oki Earthquake: A Summary of Scientific Outcomes from Remote Sensing. IEEE Geosci. Remote Sens. Lett. 2013, 10, 895–897. [Google Scholar] [CrossRef] [Green Version]
- Hicks, S.P.; Rietbrock, A. Seismic slip on an upper-plate normal fault during a large subduction megathrust rupture. Nat. Geosci. 2015, 8, 955–960. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Liu, X.; Zhang, Y.; Zhao, J.; Xu, Q.; Yang, Y.; Liu, G. A nonlinear inversion of InSAR-observed coseismic surface deformation for estimating variable fault dips in the 2008 Wenchuan earthquake. Int. J. Appl. Earth Obs. Geoinf. 2019, 76, 179–192. [Google Scholar] [CrossRef]
- Vorobieva, I.; Ismail-Zadeh, A.; Gorshkov, A. Nonlinear dynamics of crustal blocks and faults and earthquake occurrences in the Transcaucasian region. Phys. Earth Planet. Inter. 2019, 297, 106320. [Google Scholar] [CrossRef]
- Chin, T.-L.; Chen, K.-Y.; Chen, D.-Y.; Lin, D.-E. Intelligent Real-Time Earthquake Detection by Recurrent Neural Networks. IEEE Trans. Geosci. Remote Sens. 2020, 58, 5440–5449. [Google Scholar] [CrossRef]
- Barnhart, W.D.; Gold, R.D.; Hollingsworth, J. Localized fault-zone dilatancy and surface inelasticity of the 2019 Ridgecrest earthquakes. Nat. Geosci. 2020, 13, 1–6. [Google Scholar] [CrossRef]
- Derakhshani, R.; Eslami, S.S. A New Viewpoint for Seismotectonic Zoning. Am. J. Environ. Sci. 2011, 7, 212–218. [Google Scholar] [CrossRef]
- Ali, S.; Pirasteh, S. Geological application of Landsat ETM for mapping structural geology and interpretation: Aided by remote sensing and GIS. Int. J. Remote Sens. 2004, 25, 4715–4727. [Google Scholar] [CrossRef]
- Pirasteh, S.; Woodbridge, K.; Rizvi, S.M.A. Geo-information technology (GiT) and tectonic signatures: The River Karun & Dez, Zagros Orogen in south-west Iran. Int. J. Remote Sens. 2008, 30, 389–403. [Google Scholar] [CrossRef]
- Foroutan, M.; Sébrier, M.; Nazari, H.; Meyer, B.; Fattahi, M.; Rashidi, A.; Dortz, K.L.; Bateman, M.D. New evidence for large earthquakes on the Central Iran plateau: Palaeoseismology of the Anar fault. Geophys. J. Int. 2012, 189, 6–18. [Google Scholar] [CrossRef] [Green Version]
- Amato, V.; Aucelli, P.P.; Sessa, E.B.; Cesarano, M.; Incontri, P.; Pappone, G.; Valente, E.; Vilardo, G. Multidisciplinary approach for fault detection: Integration of PS-InSAR, geomorphological, stratigraphic and structural data in the Venafro intermontane basin (Central-Southern Apennines, Italy). Geomorphology 2017, 283, 80–101. [Google Scholar] [CrossRef]
- Poreh, D.; Pirasteh, S. InSAR observations and analysis of the Medicina Geodetic Observatory and CosmoSkyMed images. Nat. Hazards 2020, 103, 1–17. [Google Scholar] [CrossRef]
- Rahbar, R.; Bafti, S.; Derakhshani, R. INVESTIGATION OF THE TECTONIC ACTIVITY OF BAZARGAN MOUNTAIN IN IRAN. Sustain. Dev. Mt. Territ. 2017, 9, 380–386. [Google Scholar] [CrossRef]
- Kermani, A.F.; Derakhshani, R.; Bafti, S.S. Data on morphotectonic indices of Dashtekhak district, Iran. Data Brief. 2017, 14, 782–788. [Google Scholar] [CrossRef]
- Sousa, J.J.; Ruiz, A.M.; Hooper, A.J.; Hanssen, R.F.; Perski, Z.; Bastos, L.C.; Gil, A.J.; Galindo-Zaldívar, J.; De Galdeano, C.S.; Alfaro, P.; et al. Multi-temporal InSAR for Deformation Monitoring of the Granada and Padul Faults and the Surrounding Area (Betic Cordillera, Southern Spain). Procedia Technol. 2014, 16, 886–896. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Liu, C.; Zhang, W.; Jiang, F. Present-Day Deformation of the Gyaring Co Fault Zone, Central Qinghai–Tibet Plateau, Determined Using Synthetic Aperture Radar Interferometry. Remote Sens. 2019, 11, 1118. [Google Scholar] [CrossRef] [Green Version]
- Hung, W.-C.; Hwang, C.; Chen, Y.-A.; Chang, C.-P.; Yen, J.-Y.; Hooper, A.; Yang, C.-Y. Surface deformation from persistent scatterers SAR interferometry and fusion with leveling data: A case study over the Choushui River Alluvial Fan, Taiwan. Remote Sens. Environ. 2011, 115, 957–967. [Google Scholar] [CrossRef]
- Ghazifard, A.; Moslehi, A.; Safaei, H.; Roostaei, M. Effects of groundwater withdrawal on land subsidence in Kashan Plain, Iran. Bull. Int. Assoc. Eng. Geol. 2016, 75, 1157–1168. [Google Scholar] [CrossRef]
- Guo, J.; Xu, S.; Fan, H. Neotectonic interpretations and PS-InSAR monitoring of crustal deformations in the Fujian area of China. Open Geosci. 2017, 9, 126–132. [Google Scholar] [CrossRef]
- Gong, W.; Zhang, Y.; Li, T.; Wen, S.; Zhao, D.; Hou, L.; Shan, X. Multi-Sensor Geodetic Observations and Modeling of the 2017 Mw 6.3 Jinghe Earthquake. Remote Sens. 2019, 11, 2157. [Google Scholar] [CrossRef] [Green Version]
- Kuna, V.M.; Nábělek, J.L.; Braunmiller, J. Mode of slip and crust–mantle interaction at oceanic transform faults. Nat. Geosci. 2019, 12, 138–142. [Google Scholar] [CrossRef]
- Mehrabi, A. Monitoring the Iran Pol-e-Dokhtar flood extent and detecting its induced ground displacement using sentinel 1 imagery techniques. Nat. Hazards 2021, 105, 2603–2617. [Google Scholar] [CrossRef]
- Ghayournajarkar, N.; Fukushima, Y. Determination of the dipping direction of a blind reverse fault from InSAR: Case study on the 2017 Sefid Sang earthquake, northeastern Iran. Earth Planets Space 2020, 72, 1–15. [Google Scholar] [CrossRef]
- Song, X.; Jiang, Y.; Shan, X.; Qu, C. Deriving 3D coseismic deformation field by combining GPS and InSAR data based on the elastic dislocation model. Int. J. Appl. Earth Obs. Geoinf. 2017, 57, 104–112. [Google Scholar] [CrossRef]
- Qu, F.; Lu, Z.; Kim, J.-W.; Zheng, W. Identify and Monitor Growth Faulting Using InSAR over Northern Greater Houston, Texas, USA. Remote Sens. 2019, 11, 1498. [Google Scholar] [CrossRef] [Green Version]
- Su, Z.; Yang, Y.-H.; Li, Y.-S.; Xu, X.-W.; Zhang, J.; Zhou, X.; Ren, J.-J.; Wang, E.-C.; Hu, J.-C.; Zhang, S.-M.; et al. Coseismic displacement of the 5 April 2017 Mashhad earthquake (Mw 6.1) in NE Iran through Sentinel-1A TOPS data: New implications for the strain partitioning in the southern Binalud Mountains. J. Asian Earth Sci. 2019, 169, 244–256. [Google Scholar] [CrossRef]
- Sansosti, E.; Berardino, P.; Bonano, M.; Calò, F.; Castaldo, R.; Casu, F.; Manunta, M.; Manzo, M.; Pepe, A.; Pepe, S.; et al. How second generation SAR systems are impacting the analysis of ground deformation. Int. J. Appl. Earth Obs. Geoinf. 2014, 28, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Liu, G.; Yu, B.; Dai, K.; Zhang, R.; Ma, D.; Li, Z. An integrated method based on DInSAR, MAI and displacement gradient tensor for mapping the 3D coseismic deformation field related to the 2011 Tarlay earthquake (Myanmar). Remote Sens. Environ. 2015, 170, 388–404. [Google Scholar] [CrossRef]
- Ran, Y.; Xu, X.; Wang, H.; Chen, W.; Chen, L.; Liang, M.; Yang, H.; Li, Y.; Liu, H. Evidence of Characteristic Earthquakes on Thrust Faults from Paleo-Rupture Behavior Along the Longmenshan Fault System. Tectonics 2019, 38, 2401–2410. [Google Scholar] [CrossRef]
- Luo, H.; Wang, K. Postseismic geodetic signature of cold forearc mantle in subduction zones. Nat. Geosci. 2021, 14, 104–109. [Google Scholar] [CrossRef]
- Mouslopoulou, V.; Walsh, J.J.; Nicol, A. Fault displacement rates on a range of timescales. Earth Planet. Sci. Lett. 2009, 278, 186–197. [Google Scholar] [CrossRef]
- Wu, C.; Zheng, W.; Zhang, Z.; Jia, Q.; Yang, H. Large-earthquake rupturing and slipping behavior along the range-front Maidan fault in the southern Tian Shan, northwestern China. J. Asian Earth Sci. 2020, 190, 104193. [Google Scholar] [CrossRef]
- Stemberk, J.; Moro, G.D.; Stemberk, J.; Blahůt, J.; Coubal, M.; Košťák, B.; Zambrano, M.; Tondi, E. Strain monitoring of active faults in the central Apennines (Italy) during the period 2002–2017. Tectonophysics 2019, 750, 22–35. [Google Scholar] [CrossRef]
- Hooper, A. A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef] [Green Version]
- Yaseen, M.; Hamm, N.; Woldai, T.; Tolpekin, V.; Stein, A. Local interpolation of coseismic displacements measured by InSAR. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 1–17. [Google Scholar] [CrossRef]
- Ferretti, A.; Fumagalli, A.; Novali, F.; Prati, C.; Rocca, F.; Rucci, A. A New Algorithm for Processing Interferometric Data-Stacks: SqueeSAR. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3460–3470. [Google Scholar] [CrossRef]
- Liu, G.; Li, J.; Xu, Z.; Wu, J.; Chen, Q.; Zhang, H.; Zhang, R.; Jia, H.; Luo, X. Surface deformation associated with the 2008 Ms8.0 Wenchuan earthquake from ALOS L-band SAR interferometry. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, 496–505. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef] [Green Version]
- Lanari, R.; Mora, O.; Manunta, M.; Mallorqui, J.; Berardino, P.; Sansosti, E. A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1377–1386. [Google Scholar] [CrossRef]
- Perissin, D.; Wang, T. Repeat-Pass SAR Interferometry with Partially Coherent Targets. IEEE Trans. Geosci. Remote Sens. 2011, 50, 271–280. [Google Scholar] [CrossRef]
- Yalım, H.A.; Sandıkcıoğlu, A.; Ertuğrul, O.; Yıldız, A.; Yildiz, A. Determination of the relationship between radon anomalies and earthquakes in well waters on the Akşehir-Simav Fault System in Afyonkarahisar province, Turkey. J. Environ. Radioact. 2012, 110, 7–12. [Google Scholar] [CrossRef]
- Yamani, M.; Goorabi, A.; Kakroodia, A. Evidence of Neotectonics along Dehshir and Anar Faults in Central Iran by Using Remote Sensing Data. Wulfenia 2013, 20, 1–29. [Google Scholar]
- Amani, A.; Mansor, S.; Pradhan, B.; Billa, L.; Pirasteh, S. Coupling effect of ozone column and atmospheric infrared sounder data reveal evidence of earthquake precursor phenomena of Bam earthquake, Iran. Arab. J. Geosci. 2013, 7, 1517–1527. [Google Scholar] [CrossRef]
- Ye, Q.; Singh, R.P.; He, A.; Ji, S.; Liu, C. Characteristic behavior of water radon associated with Wenchuan and Lushan earthquakes along Longmenshan fault. Radiat. Meas. 2015, 76, 44–53. [Google Scholar] [CrossRef]
- Kawabata, K.; Sato, T.; Takahashi, H.A.; Tsunomori, F.; Hosono, T.; Takahashi, M.; Kitamura, Y. Changes in groundwater radon concentrations caused by the 2016 Kumamoto earthquake. J. Hydrol. 2020, 584, 124712. [Google Scholar] [CrossRef]
- Tsunomori, F.; Shimodate, T.; Ide, T.; Tanaka, H. Radon concentration distributions in shallow and deep groundwater around the Tachikawa fault zone. J. Environ. Radioact. 2017, 172, 106–112. [Google Scholar] [CrossRef]
- Seminsky, K.; Seminsky, A. Radon concentration in groundwater sources of the Baikal region (East Siberia, Russia). Appl. Geochem. 2019, 111, 104446. [Google Scholar] [CrossRef]
- Zafar, W.A.; Ahmed, J.; Barkat, A.; Nabi, A.; Mahmood, R.; Manzoor, S.; Iqbal, T. Spatial mapping of radon: Implication for fault delineation. Geochem. J. 2018, 52, 359–371. [Google Scholar] [CrossRef] [Green Version]
- Mehrabi, A.; Khabazi, M.; Almodaresi, A.; Nohesara, M.; Derakhshani, R. Land use changes monitoring over 30 years and prediction of future changes using multi-temporal Landsat imagery and the land change modeler tools in Rafsanjan city (Iran). Sustain. Dev. Mt. Territ. 2019, 11, 26–35. [Google Scholar] [CrossRef]
- Dortz, K.L.; Meyer, B.; Sébrier, M.; Nazari, H.; Braucher, R.; Fattahi, M.; Benedetti, L.; Foroutan, M.; Siame, L.; Bourlès, D.; et al. Holocene right-slip rate determined by cosmogenic and OSL dating on the Anar fault, Central Iran. Geophys. J. Int. 2009, 179, 700–710. [Google Scholar] [CrossRef] [Green Version]
- Woodbridge, K.P.; Pirasteh, S.; Parsons, D.R. Investigating Fold-River Interactions for Major Rivers Using a Scheme of Remotely Sensed Characteristics of River and Fold Geomorphology. Remote Sens. 2019, 11, 2037. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.A.; Rangzan, K.; Pirasteh, S. Remote Sensing and GIS Study of Tectonics and Net Erosion Rates in the Zagros Structural Belt, Southwestern Iran. Mapp. Sci. Remote Sens. 2003, 40, 258–267. [Google Scholar] [CrossRef]
- Mehrabi, A.; Derakhshani, R. Generation of integrated geochemical-geological predictive model of porphyry-Cu potential, Chahargonbad District, Iran. Geochim. Cosmochim. Acta 2010, 74, A649–A743. [Google Scholar] [CrossRef] [Green Version]
- Derakhshani, R.; Mehrabi, A. Derakhshan Geologically-Constrained Fuzzy Mapping of Porphyry Copper Mineralization Potential, Meiduk District, Iran. Trends Appl. Sci. Res. 2009, 4, 229–240. [Google Scholar] [CrossRef]
- Derakhshani, R.; Mehrabi, A. Spatial Association of Copper Mineralization and Faults/Fractures in Southern Part of Central Iranian Volcanic Belt. Trends Appl. Sci. Res. 2009, 4, 138–147. [Google Scholar] [CrossRef] [Green Version]
- Agard, P.; Monié, P.; Gerber, W.; Omrani, J.; Molinaro, M.; Meyer, B.; Labrousse, L.; Vrielynck, B.; Jolivet, L.; Yamato, P. Transient, synobduction exhumation of Zagros blueschists inferred from P-T, deformation, time, and kinematic constraints: Implications for Neotethyan wedge dynamics. J. Geophys. Res. Space Phys. 2006, 111. [Google Scholar] [CrossRef]
- Berberian, M.; Jackson, J.; Fielding, E.J.; Parsons, B.; Priestley, K.F.; Qorashi, M.; Talebian, M.; Walker, R.; Wright, T.J.; Baker, C.V.H. The 1998 March 14 Fandoqa earthquake (Mw6.6) in Kerman province, southeast Iran: Re-rupture of the 1981 Sirch earthquake fault, triggering of slip on adjacent thrusts and the active tectonics of the Gowk fault zone. Geophys. J. Int. 2001, 146, 371–398. [Google Scholar] [CrossRef] [Green Version]
- Rashidi Boshrabadi, A.; Khatib, M.M.; Raeesi, M.; Mousavi, S.M.; Djamour, Y.; Rashidi, A.; Jamour, Y. Geometric-kinematic characteristics of the main faults in the W-SW of the Lut Block (SE Iran). J. Afr. Earth Sci. 2018, 139, 440–462. [Google Scholar] [CrossRef]
- Hessami, K.; Nilforoushan, F.; Talbot, C. Active deformation within the Zagros Mountains deduced from GPS measurements. J. Geol. Soc. 2006, 163, 143–148. [Google Scholar] [CrossRef] [Green Version]
- Pirasteh, S.; Safari, H.O.; Mollaee, S. Digital Processing of SAR Data and Image Analysis Techniques. In Monitoring and Modeling of Global Changes: A Geomatics Perspective; Springer: Berlin/Heidelberg, Germany, 2015; pp. 281–299. [Google Scholar]
- Michel, R.; Avouac, J.-P.; Taboury, J. Measuring ground displacements from SAR amplitude images: Application to the Landers Earthquake. Geophys. Res. Lett. 1999, 26, 875–878. [Google Scholar] [CrossRef] [Green Version]
- Fattahi, H.; Agram, P.; Simons, M. A Network-Based Enhanced Spectral Diversity Approach for TOPS Time-Series Analysis. IEEE Trans. Geosci. Remote Sens. 2017, 55, 777–786. [Google Scholar] [CrossRef] [Green Version]
- Wegnüller, U.; Werner, C.; Strozzi, T.; Wiesmann, A.; Frey, O.; Santoro, M. Sentinel-1 Support in the GAMMA Software. Procedia Comput. Sci. 2016, 100, 1305–1312. [Google Scholar] [CrossRef] [Green Version]
- Papastefanou, C. Variation of radon flux along active fault zones in association with earthquake occurrence. Radiat. Meas. 2010, 45, 943–951. [Google Scholar] [CrossRef]
- Rashidi, A.; Abbassi, M.-R.; Nilfouroushan, F.; Shafiei, S.; Derakhshani, R.; Nemati, M. Morphotectonic and earthquake data analysis of interactional faults in Sabzevaran Area, SE Iran. J. Struct. Geol. 2020, 139, 104147. [Google Scholar] [CrossRef]
Orbit Type | Orbit Number | Time Span | Number of Images | Number of Interferograms |
---|---|---|---|---|
Descending | 488 | March 2016–May 2020 | 81 | 80 |
Ascending | 98 | September 2016–May 2020 | 97 | 96 |
NO | Village | Lat (UTM) | Lon (UTM) | Rn 2017–2018 (Bq/L) | Rn 2018–2019 (Bq/L) | Rn 2019–2020 (Bq/L) |
---|---|---|---|---|---|---|
1 | Ghasem Abad | 329,656.85639 | 3,423,556.19580 | 18.64 | 18.99 | 19.21 |
2 | Bahar Abad | 329,334.92291 | 3,422,306.85130 | 17.22 | 18.08 | 18.69 |
3 | Hossein Abad | 325,013.37649 | 3,419,025.05865 | 5.44 | 4.12 | 5.21 |
4 | Hossein Abad | 328,582.39661 | 3,415,554.10066 | 11.78 | 10.23 | 11.93 |
5 | Raas o that | 330,300.71681 | 3,416,526.88789 | 13.92 | 13.8 | 14.22 |
6 | Hojat Abad | 328,436.42938 | 3,419,774.60282 | 7.75 | 5.26 | 6.05 |
7 | Farhang Abad | 334,226.59384 | 3,425,394.66601 | 2.31 | 3.11 | 3.94 |
8 | Deh Sheikh | 333,155.07632 | 3,423,619.05864 | 4.64 | 7.27 | 5.71 |
9 | Mahmood Abad | 336,415.41131 | 3,421,794.76522 | 7.23 | 8.19 | 9.03 |
10 | Ghaemieh | 338,089.24035 | 3,419,491.40985 | 6.84 | 5.12 | 5.69 |
11 | Hashem Abad | 336,854.52368 | 3,420,264.18860 | 3.67 | 4.83 | 4.37 |
12 | Hemmat Abad | 334,508.02400 | 3,420,132.96900 | 10.38 | 9.46 | 8.29 |
13 | Abbas Abad | 336,255.92223 | 34,18,087.09242 | 9.72 | 13.51 | 12.01 |
14 | Ghorban Abad | 338,502.26398 | 3,417,764.16731 | 13.19 | 13.67 | 13.49 |
15 | Aliabad Hasan | 339,313.89665 | 3,416,817.07334 | 4.41 | 4.82 | 5.15 |
16 | Gisheh | 335,640.88157 | 3,404,500.41184 | 19.62 | 20.75 | 21.39 |
17 | Shahrdari 1 | 335,117.28839 | 3,408,320.42721 | 18.27 | 18.96 | 18.13 |
18 | Shahrdari 2 | 333,231.62348 | 3,409,132.83521 | 23.71 | 23.98 | 24.77 |
19 | Fath Abad | 335,693.90684 | 3,412,320.44668 | 14.06 | 16.19 | 16.03 |
20 | Golshan | 340,250.25516 | 3,406,770.36966 | 9.76 | 9.84 | 10.72 |
21 | Jalalieh | 339,264.78347 | 3,409,098.76056 | 2.88 | 2.11 | 3.53 |
22 | Chahardar | 338,872.25539 | 3,411,707.61868 | 6.76 | 9.68 | 8.66 |
23 | Asad Abad | 339,762.76335 | 3,415,252.94256 | 6.33 | 5.03 | 6.99 |
24 | Seyed Agha | 340,206.30409 | 3,413,475.59562 | 1.09 | 2.06 | 2.87 |
25 | Hossein Abad | 339,518.12490 | 3,405,194.46905 | 10.03 | 9.22 | 11.76 |
26 | Sadr Abad | 331,253.80357 | 3,416,064.38567 | 27.04 | 28.9 | 29.42 |
27 | Deh Sheikh | 330,264.64036 | 3,422,390.26206 | 29.48 | 29.88 | 31.73 |
28 | Saadat Abad | 322,907.01719 | 3,422,003.11639 | 6.89 | 6.94 | 5.21 |
29 | Dahjiha | 326,197.67889 | 3,420,572.26232 | 12.33 | 13.59 | 14.43 |
30 | Kheyrabad | 328,982.36278 | 3,417,868.40086 | 16.07 | 15.49 | 17.11 |
31 | Esmaiel Abad | 329,531.54481 | 3,418,771.13689 | 18.86 | 18.65 | 19.27 |
32 | Mahdavi | 336,698.02758 | 3,406,713.40789 | 15.5 | 15.31 | 14.68 |
33 | Mehrdasht | 338,174.42153 | 3,407,729.32537 | 11.73 | 7.42 | 12.88 |
34 | Minoudasht | 336,157.60422 | 3,409,369.54907 | 13.01 | 12.95 | 13.98 |
35 | Abbas Abad | 334,126.15384 | 3,411,477.91884 | 21.66 | 23.83 | 24.11 |
36 | Sharif Abad | 338,243.90742 | 3,415,731.71478 | 8.44 | 7.13 | 8.81 |
37 | Dehreies | 335,741.09477 | 3,413,845.44728 | 5.73 | 2.77 | 4.95 |
38 | Sarzir | 329,656.85639 | 3,423,556.19580 | 19.07 | 20.36 | 22.41 |
39 | Ghorban Abad | 329,334.92291 | 3,4223,06.85130 | 18.04 | 19.11 | 17.72 |
40 | Anar | 325,013.37649 | 3,419,025.05865 | 15.61 | 17.04 | 17.24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mehrabi, A.; Pirasteh, S.; Rashidi, A.; Pourkhosravani, M.; Derakhshani, R.; Liu, G.; Mao, W.; Xiang, W. Incorporating Persistent Scatterer Interferometry and Radon Anomaly to Understand the Anar Fault Mechanism and Observing New Evidence of Intensified Activity. Remote Sens. 2021, 13, 2072. https://doi.org/10.3390/rs13112072
Mehrabi A, Pirasteh S, Rashidi A, Pourkhosravani M, Derakhshani R, Liu G, Mao W, Xiang W. Incorporating Persistent Scatterer Interferometry and Radon Anomaly to Understand the Anar Fault Mechanism and Observing New Evidence of Intensified Activity. Remote Sensing. 2021; 13(11):2072. https://doi.org/10.3390/rs13112072
Chicago/Turabian StyleMehrabi, Ali, Saied Pirasteh, Ahmad Rashidi, Mohsen Pourkhosravani, Reza Derakhshani, Guoxiang Liu, Wenfei Mao, and Wei Xiang. 2021. "Incorporating Persistent Scatterer Interferometry and Radon Anomaly to Understand the Anar Fault Mechanism and Observing New Evidence of Intensified Activity" Remote Sensing 13, no. 11: 2072. https://doi.org/10.3390/rs13112072
APA StyleMehrabi, A., Pirasteh, S., Rashidi, A., Pourkhosravani, M., Derakhshani, R., Liu, G., Mao, W., & Xiang, W. (2021). Incorporating Persistent Scatterer Interferometry and Radon Anomaly to Understand the Anar Fault Mechanism and Observing New Evidence of Intensified Activity. Remote Sensing, 13(11), 2072. https://doi.org/10.3390/rs13112072