Characterization of the 2014 Indus River Flood Using Hydraulic Simulations and Satellite Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Model
2.2.1. Remote Sensing Data for Land-Use/Land-Cover Type Classification
2.2.2. The HEC-RAS Model and DEM Data
2.2.3. Streamflow Data
2.3. Methodology
2.3.1. LULC Classification
2.3.2. Satellite-Based Flood Damage Assessment and Its Validation
2.3.3. Mapping the Spatial Extent of Floods of Different Return Periods and Comparing the Extent of the 2014 Flood with MODIS Imagery
3. Results
3.1. Changes in LULC after the Flood and Assessment of Accuracy
3.2. Damage Assessment
3.3. Frequency Analysis
3.4. Flood Plain Mapping
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Islam, R.; Kamaruddin, R.; Ahmad, S.A.; Jan, S.J.; Anuar, A.R. A review on mechanism of flood disaster management in Asia. Int. Rev. Manag. Mark. 2016, 6, 1. [Google Scholar]
- Khan, B.; Iqbal, M.J.; Yosufzai, M.A.K. Flood risk assessment of River Indus of Pakistan. Arab. J. Geosci. 2010, 4, 115–122. [Google Scholar] [CrossRef]
- Asad Sarwar, Q. Water management in the Indus Basin in Pakistan: Challenges and opportunities. Mt. Res. Dev. 2011, 31, 252–260. [Google Scholar]
- Ullah, I.; Ma, X.; Yin, J.; Asfaw, T.G.; Azam, K.; Syed, S.; Liu, M.; Arshad, M.; Shahzaman, M. Evaluating the meteorological drought characteristics over Pakistan using in situ observations and reanalysis products. Int. J. Clim. 2021. [Google Scholar] [CrossRef]
- D’Addabbo, A.; Refice, A.; Pasquariell, G.; Lovergine, F.P.; Capolongo, C.; Manfreda, S. A Bayesian network for flood detection combining SAR imagery and ancillary data. IEEE Trans. Geosci. Remote Sens. 2016, 54, 3612–3625. [Google Scholar] [CrossRef]
- Sanyal, J.; Lu, X.X. Application of remote sensing in flood management with special reference to Monsoon Asia: A review. Nat. Hazards 2004, 33, 283–301. [Google Scholar] [CrossRef]
- Chaudhry, Z.A. Hydraulic/structural deficiencies at the Taunsa Barrage. Pak. J. Sci. 2009, 61, 135–140. [Google Scholar]
- Quirós, E.; Gagnon, A.S. Validation of flood risk maps using open source optical and radar satellite imagery. Trans. GIS 2020, 24, 1208–1226. [Google Scholar] [CrossRef]
- Julzarika, A.; Harintaka. Indonesian DEMNAS: DSM or DTM? In Proceedings of the 2019 IEEE Asia-Pacific Conference on Geoscience, Electronics and Remote Sensing Technology (AGERS), Jakarta, Indonesia, 26–27 August 2019; pp. 31–36. [Google Scholar]
- Florinsky, I.V. Chapter 3—Digital elevation models. In Digital Terrain Analysis in Soil Science and Geology, 2nd ed.; Florinsky, I.V., Ed.; Academic Press: Cambridge, MA, USA, 2016; pp. 77–108. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Chen, A.S.; Fu, G.; Djordjević, S.; Zhang, C.; Savić, D.A. An integrated framework for high-resolution urban flood modelling considering multiple information sources and urban features. Environ. Model. Softw. 2018, 107, 85–95. [Google Scholar] [CrossRef]
- Shafapour Tehrany, M.; Shabani, F.; Neamah Jebur, M.; Hong, H.; Chen, W.; Xie, X. GIS-based spatial prediction of flood prone areas using standalone frequency ratio, logistic regression, weight of evidence and their ensemble techniques. Geomat. Nat. Hazards Risk 2017, 8, 1538–1561. [Google Scholar] [CrossRef]
- Gashaw, W.; Legesse, D. Flood hazard and risk assessment using GIS and remote sensing in fogera woreda, Northwest Ethiopia. In Nile River Basin: Hydrology, Climate and Water Use; Melesse, A.M., Ed.; Springer: Dordrecht, The Netherlands, 2011; pp. 179–206. [Google Scholar] [CrossRef]
- Elkhrachy, I. Flash flood hazard mapping using satellite images and GIS tools: A case study of Najran City, Kingdom of Saudi Arabia (KSA). Egypt. J. Remote Sens. Space Sci. 2015, 18, 261–278. [Google Scholar] [CrossRef] [Green Version]
- Samanta, S.; Pal, D.K.; Palsamanta, B. Flood susceptibility analysis through remote sensing, GIS and frequency ratio model. Appl. Water Sci. 2018, 8, 66. [Google Scholar] [CrossRef] [Green Version]
- Syifa, M.; Park, S.J.; Achmad, A.R.; Lee, C.-W.; Eom, J. Flood mapping using remote sensing imagery and artificial intelligence techniques. A case study in Brumadinho, Brazil. J. Coast. Res. 2019, 90, 197–204. [Google Scholar] [CrossRef]
- Ahamed, A.; Bolten, J.; Doyle, C.; Fayne, J. Near real-time flood monitoring and impact assessment systems. In Remote Sensing of Hydrological Extremes; Lakshmi, V., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 105–118. [Google Scholar] [CrossRef]
- Rahman, M.S.; Di, L. A systematic review on case studies of remote-sensing-based flood crop loss assessment. Agriculture 2020, 10, 131. [Google Scholar] [CrossRef] [Green Version]
- Di, L.; Yu, E.G.; Kang, L.; Shrestha, R.; Bai, Y.-Q. RF-CLASS: A remote-sensing-based flood crop loss assessment cyber-service system for supporting crop statistics and insurance decision-making. J. Integr. Agric. 2017, 16, 408–423. [Google Scholar] [CrossRef]
- Chow, M.F.; Yusop, Z.; Toriman, M.E. Modelling runoff quantity and quality in tropical urban catchments using Storm Water Management Model. Int. J. Environ. Sci. Technol. 2012, 9, 737–748. [Google Scholar] [CrossRef] [Green Version]
- Rahman, G.; Rahman, A.-U.; Anwar, M.; Khan, M.; Ashraf, H.; Zafar, U. Socio-economic damages caused by the 2014 flood in Punjab province, Pakistan. Proc. Pak. Acad. Sci. 2017, 54, 365–374. [Google Scholar]
- Sajjad, A.; Lu, J.; Chen, X.; Chisenga, C.; Saleem, N.; Hassan, H. Operational monitoring and damage assessment of riverine flood-2014 in the lower Chenab plain, Punjab, Pakistan, using remote sensing and GIS techniques. Remote Sens. 2020, 12, 714. [Google Scholar] [CrossRef] [Green Version]
- Hussain, M.; Butt, A.R.; Uzma, F.; Ahmed, R.; Irshad, S.; Rehman, A.; Yousaf, B. A comprehensive review of climate change impacts, adaptation, and mitigation on environmental and natural calamities in Pakistan. Environ. Monit. Assess. 2019, 192, 48. [Google Scholar] [CrossRef]
- Abedin, S.; Stephen, H. GIS framework for spatiotemporal mapping of urban flooding. Geosciences 2019, 9, 77. [Google Scholar] [CrossRef] [Green Version]
- Das, S.; Patel, P.P.; Sengupta, S. Evaluation of different digital elevation models for analyzing drainage morphometric parameters in a mountainous terrain: A case study of the Supin-Upper Tons Basin, Indian Himalayas. Springerplus 2016, 5, 1544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Towfiqul Islam, A.R.M.; Talukdar, S.; Mahato, S.; Kundu, S.; Eibek, K.U.; Pham, Q.B.; Kuriqi, A.; Linh, N.T.T. Flood susceptibility modelling using advanced ensemble machine learning models. Geosci. Front. 2021, 12. in press. [Google Scholar] [CrossRef]
- Mahmood, S.; Rahman, A.-u.; Sajjad, A. Assessment of 2010 flood disaster causes and damages in district Muzaffargarh, Central Indus Basin, Pakistan. Environ. Earth Sci. 2019, 78, 63. [Google Scholar] [CrossRef]
- Yerramilli, S. A hybrid approach of integrating HEC-RAS and GIS towards the identification and assessment of flood risk vulnerability in the city of Jackson, MS. Am. J. Geogr. Inf. Syst. 2012, 1, 7–16. [Google Scholar] [CrossRef] [Green Version]
- Demir, V.; Kisi, O. Flood hazard mapping by using geographic information system and hydraulic model: Mert River, Samsun, Turkey. Adv. Meteorol. 2016, 2016, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Gorokhovich, Y.; Voustianiouk, A. Accuracy assessment of the processed SRTM-based elevation data by CGIAR using field data from USA and Thailand and its relation to the terrain characteristics. Remote Sens. Environ. 2006, 104, 409–415. [Google Scholar] [CrossRef]
- Sanders, B.F. Evaluation of on-line DEMs for flood inundation modeling. Adv. Water Resour. 2007, 30, 1831–1843. [Google Scholar] [CrossRef]
- Khattak, M.S.; Anwar, F.; Saeed, T.U.; Sharif, M.; Sheraz, K.; Ahmed, A. Floodplain mapping using HEC-RAS and ArcGIS: A case study of Kabul River. Arab. J. Sci. Eng. 2015, 41, 1375–1390. [Google Scholar] [CrossRef]
- Khalil, U.; Muhammad Khan, N.; Rehman, H. Floodplain mapping for Indus River: Chashma–Taunsa Reach. Pak. J. Eng. Appl. Sci. 2017, 20, 30–48. [Google Scholar]
- Khalid, B.; Cholaw, B.; Alvim, D.S.; Javeed, S.; Khan, J.A.; Javed, M.A.; Khan, A.H. Riverine flood assessment in Jhang district in connection with ENSO and summer monsoon rainfall over Upper Indus Basin for 2010. Nat. Hazards 2018, 92, 971–993. [Google Scholar] [CrossRef]
- Chohan, K.; Ahmad, S.R.; ul Islam, Z.; Adrees, M. Riverine flood damage assessment of cultivated lands along Chenab River using GIS and remotely sensed data: A case study of district Hafizabad, Punjab, Pakistan. J. Geogr. Inf. Syst. 2015, 7, 506–526. [Google Scholar] [CrossRef] [Green Version]
- Chignell, S.; Anderson, R.; Evangelista, P.; Laituri, M.; Merritt, D. Multi-temporal independent component analysis and landsat 8 for delineating maximum extent of the 2013 Colorado front range flood. Remote Sens. 2015, 7, 9822–9843. [Google Scholar] [CrossRef] [Green Version]
- Rokni, K.; Ahmad, A.; Selamat, A.; Hazini, S. Water feature extraction and change detection using multitemporal landsat imagery. Remote Sens. 2014, 6, 4173–4189. [Google Scholar] [CrossRef] [Green Version]
- Vogel, R.M.; Thomas, W.O.; McMahon, T.A. Flood-flow frequency model selection in southwestern United States. J. Water Resour. Plan. Manag. 1993, 119, 353–366. [Google Scholar] [CrossRef] [Green Version]
- Frangopol, D.M. Probability concepts in engineering: Emphasis on applications to civil and environmental engineering. Struct. Infrastruct. Eng. 2008, 4, 413–414. [Google Scholar] [CrossRef]
- Katz, R.W.; Parlange, M.B.; Naveau, P. Statistics of extremes in hydrology. Adv. Water Resour. 2002, 25, 1287–1304. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.J. LH moments for statistical analysis of extreme events. Water Resour. Res. 1997, 33, 2841–2848. [Google Scholar] [CrossRef]
- Hoshi, K.; Stedinger, J.R.; Burges, S.J. Estimation of log-normal quantiles: Monte Carlo results and first-order approximations. J. Hydrol. 1984, 71, 1–30. [Google Scholar] [CrossRef]
- McCuen, R. Microcomputer Applications in Statistical Hydrology; Prentice Hall: Hoboken, NJ, USA, 1992. [Google Scholar]
- Sañudo, E.; Cea, L.; Puertas, J. Modelling pluvial flooding in urban areas coupling the models iber and SWMM. Water 2020, 12, 2647. [Google Scholar] [CrossRef]
- Siddiqui, M.J.; Haider, S.; Gabriel, H.F.; Shahzad, A. Rainfall–runoff, flood inundation and sensitivity analysis of the 2014 Pakistan flood in the Jhelum and Chenab river basin. Hydrol. Sci. J. 2018, 63, 1976–1997. [Google Scholar] [CrossRef]
- Mahmood, S.; Khan, A.-u.-H.; Mayo, S.M. Exploring underlying causes and assessing damages of 2010 flash flood in the upper zone of Panjkora River. Nat. Hazards 2016, 83, 1213–1227. [Google Scholar] [CrossRef]
- Azar, D.; Engstrom, R.; Graesser, J.; Comenetz, J. Generation of fine-scale population layers using multi-resolution satellite imagery and geospatial data. Remote Sens. Environ. 2013, 130, 219–232. [Google Scholar] [CrossRef]
- Musa, Z.N.; Popescu, I.; Mynett, A. A review of applications of satellite SAR, optical, altimetry and DEM data for surface water modelling, mapping and parameter estimation. Hydrol. Earth Syst. Sci. 2015, 19, 3755. [Google Scholar] [CrossRef] [Green Version]
- Qi, S.; Brown, D.G.; Tian, Q.; Jiang, L.; Zhao, T.; Bergen, K.M. Inundation extent and flood frequency mapping using LANDSAT imagery and digital elevation models. GISci. Remote Sens. 2013, 46, 101–127. [Google Scholar] [CrossRef]
- Giordan, D.; Notti, D.; Villa, A.; Zucca, F.; Calò, F.; Pepe, A.; Dutto, F.; Pari, P.; Baldo, M.; Allasia, P. Low cost, multiscale and multi-sensor application for flooded area mapping. Nat. Hazards Earth Syst. Sci. 2018, 18, 1493–1516. [Google Scholar] [CrossRef] [Green Version]
Serial Number | Year | Qm (m3-s−1) | Qp (m3-s−1) | Serial Number | Year | Qm (m3-s−1) | Qp (m3-s−1) |
---|---|---|---|---|---|---|---|
1 | 1986 | 2530 | 2170 | 16 | 2001 | 3510 | 2456 |
2 | 1987 | 2850 | 2230 | 17 | 2002 | 3220 | 2235 |
3 | 1988 | 2942 | 2632 | 18 | 2003 | 2930 | 2156 |
4 | 1989 | 3442 | 2563 | 19 | 2004 | 2720 | 2230 |
5 | 1990 | 4530 | 3325 | 20 | 2005 | 2420 | 1562 |
6 | 1991 | 4918 | 2635 | 21 | 2006 | 2520 | 1456 |
7 | 1992 | 3513 | 2546 | 22 | 2007 | 2210 | 1320 |
8 | 1993 | 2967 | 2364 | 23 | 2008 | 2518 | 1648 |
9 | 1994 | 3840 | 3385 | 24 | 2009 | 2695 | 1241 |
10 | 1995 | 3868 | 3265 | 25 | 2010 | 4230 | 2530 |
11 | 1996 | 3510 | 2568 | 26 | 2011 | 3834 | 2359 |
12 | 1997 | 3420 | 2346 | 27 | 2012 | 3540 | 2640 |
13 | 1998 | 3630 | 3156 | 28 | 2013 | 3530 | 2654 |
14 | 1999 | 3340 | 3562 | 29 | 2014 | 4130 | 3125 |
15 | 2000 | 3689 | 2963 | - | - | - | - |
Scheme | Land Use | Manning’s “n” |
---|---|---|
1 | Water | 0.015 |
2 | Soil | 0.32 |
3 | Vegetation | 0.045 |
4 | Healthy Vegetation | 0.19 |
Classes | Pre-Flood | During the Flood | Post-Flood | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
UA | PA | OA | K | UA | PA | OA | K | UA | PA | OA | K | |
Crop/agricultural land | 82.35 | 98.98 | 0.96 | 0.94 | 91.94 | 80.28 | 0.93 | 0.91 | 91.84 | 81.82 | 0.90 | 0.85 |
Built-up area | 98.98 | 97.23 | 96.02 | 93.53 | 88.73 | 88.73 | ||||||
Barren land | 84.81 | 94.37 | 93.85 | 93.85 | 93.10 | 73.97 | ||||||
Sand | 95.85 | 94.29 | 94.64 | 96.15 | 80.79 | 83.59 | ||||||
Water/wetlands | 98.90 | 93.75 | 80.11 | 84.56 | 90.30 | 83.71 | ||||||
Deposited material | 81.56 | 84.53 | 90.59 | 93.33 | 90.91 | 98.90 |
Station | Taunsa Barrage | ||||
---|---|---|---|---|---|
Return Period (years) | 5 | 10 | 50 | 100 | 150 |
LN | 3842 | 4422 | 5476 | 5862 | 6134 |
Gumbel | 3923 | 4372 | 5360 | 5777 | 6021 |
LP3 | 3861 | 4435 | 5299 | 5710 | 6110 |
Distribution | Taunsa Barrage | |||
---|---|---|---|---|
Test Statistic (D) | Fit | Ranking | Sample Size | |
LN | 0.065 | Yes | 3 | 0.103 |
Gumbel | 0.063 | Yes | 1 | 0.126 |
LP3 | 0.064 | Yes | 2 | 0.113 |
Serial Number | Return Period | Area Affected (km2) | Percentage w.r.t Normal Flow (%) |
---|---|---|---|
1 | Normal flow | 23.29 | 100 |
2 | 5-year | 130.95 | 139 |
3 | 10-year | 136.56 | 143 |
4 | 50-year | 138.40 | 145 |
5 | 100-year | 141.54 | 147 |
6 | 150-year | 143.22 | 149 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tariq, A.; Shu, H.; Kuriqi, A.; Siddiqui, S.; Gagnon, A.S.; Lu, L.; Linh, N.T.T.; Pham, Q.B. Characterization of the 2014 Indus River Flood Using Hydraulic Simulations and Satellite Images. Remote Sens. 2021, 13, 2053. https://doi.org/10.3390/rs13112053
Tariq A, Shu H, Kuriqi A, Siddiqui S, Gagnon AS, Lu L, Linh NTT, Pham QB. Characterization of the 2014 Indus River Flood Using Hydraulic Simulations and Satellite Images. Remote Sensing. 2021; 13(11):2053. https://doi.org/10.3390/rs13112053
Chicago/Turabian StyleTariq, Aqil, Hong Shu, Alban Kuriqi, Saima Siddiqui, Alexandre S. Gagnon, Linlin Lu, Nguyen Thi Thuy Linh, and Quoc Bao Pham. 2021. "Characterization of the 2014 Indus River Flood Using Hydraulic Simulations and Satellite Images" Remote Sensing 13, no. 11: 2053. https://doi.org/10.3390/rs13112053
APA StyleTariq, A., Shu, H., Kuriqi, A., Siddiqui, S., Gagnon, A. S., Lu, L., Linh, N. T. T., & Pham, Q. B. (2021). Characterization of the 2014 Indus River Flood Using Hydraulic Simulations and Satellite Images. Remote Sensing, 13(11), 2053. https://doi.org/10.3390/rs13112053