Monitoring the Structure of Regenerating Vegetation Using Drone-Based Digital Aerial Photogrammetry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Context: Pipeline Operations, Restoration, and Monitoring
2.2. Study Sites
2.3. In Situ Measurements
2.4. Data Acquisition and Photogrammetric Processing
2.5. Processing and Analysis
2.5.1. Point-Cloud Processing
2.5.2. DAP Height Assessment
2.5.3. Structure Metrics
2.5.4. Two-Step Clustering Analysis
2.5.5. Cluster Comparison and Interpretation
2.5.6. Cover and Spatial Arrangement
2.6. Software
3. Results
3.1. DAP Height Assessment
3.2. Clustering Analysis
3.3. Final Structure Classes
3.4. Land Cover and Spatial Arrangement
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lambin, E.F.; Meyfroidt, P. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl. Acad. Sci. USA 2011, 108, 3465–3472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- British Petroleum. Energy Outlook 2020 Edition Explores the Forces Shaping the Global Energy Transition out to 2050 and the Surrounding That Transition; British Petroleum: London, UK, 2020. [Google Scholar]
- Food and Agriculture Organization of the United Nations. The State of the World’s Forests; Food and Agriculture Organization of the United Nations: Rome, Italy, 2020. [Google Scholar]
- Convention on Biological Diversity. Invasive Alien Species: A Threat to Biodiversity; Convention on Biological Diversity: Quebec, QC, Canada, 2009. [Google Scholar]
- Dabros, A.; Pyper, M.; Castilla, G. Seismic lines in the boreal and arctic ecosystems of North America: Environmental impacts, challenges, and opportunities. Environ. Rev. 2018, 26, 214–229. [Google Scholar] [CrossRef] [Green Version]
- Aerts, R.; Honnay, O. Forest restoration, biodiversity and ecosystem functioning. BMC Ecol. 2011, 11, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Ciccarese, L.; Mattsson, A.; Pettenella, D. Ecosystem services from forest restoration: Thinking ahead. New For. 2012, 43, 543–560. [Google Scholar] [CrossRef]
- McClung, M.R.; Moran, M.D. Understanding and mitigating impacts of unconventional oil and gas development on land-use and ecosystem services in the U.S. Curr. Opin. Environ. Sci. Heal. 2018, 3, 19–26. [Google Scholar] [CrossRef]
- Bendor, T.; Lester, T.W.; Livengood, A.; Davis, A.; Yonavjak, L. Estimating the size and impact of the ecological restoration economy. PLoS ONE 2015, 10, 1–15. [Google Scholar] [CrossRef]
- National Energy Board. Environmental Protection Plan Guidelines; National Energy Board: Calgary, AB, Canada, 2011. [Google Scholar]
- Prach, K.; Durigan, G.; Fennessy, S.; Overbeck, G.E.; Torezan, J.M.; Murphy, S.D. A primer on choosing goals and indicators to evaluate ecological restoration success. Restor. Ecol. 2019, 27, 917–923. [Google Scholar] [CrossRef]
- Stanturf, J.A.; Palik, B.J.; Dumroese, R.K. Contemporary forest restoration: A review emphasizing function. For. Ecol. Manage. 2014, 331, 292–323. [Google Scholar] [CrossRef]
- Thorpe, A.S.; Stanley, A.G. Determining appropriate goals for restoration of imperilled communities and species. J. Appl. Ecol. 2011, 48, 275–279. [Google Scholar] [CrossRef]
- Murphy, S.D. Restoration Ecology’s Silver Jubilee: Meeting the challenges and forging opportunities. Restor. Ecol. 2018, 26, 3–4. [Google Scholar] [CrossRef]
- Dale, V.H.; Beyeler, S.C. Remote sensing of vegetation 3-D structure for biodiversity andhabitat: Review and implications for lidar and radar spacebornemissions. Ecol. Indic. 2001, 1, 3–10. [Google Scholar] [CrossRef] [Green Version]
- Gibbons, P.; Freudenberger, D. An overview of methods used to assess vegetation condition at the scale of the site. Ecol. Manag. Restor. 2006, 7, 10–17. [Google Scholar] [CrossRef]
- D’Urban Jackson, T.; Williams, G.J.; Walker-Springett, G.; Davies, A.J. Three-dimensional digital mapping of ecosystems: A new era in spatial ecology. Proc. R. Soc. B Biol. Sci. 2020, 287, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Levin, S.A. The problem of pattern and scale in ecology. Ecology 1992, 73, 1943–1967. [Google Scholar] [CrossRef]
- Anderson, K.; Gaston, K.J. Lightweight unmanned aerial vehicles will revolutionize spatial ecology. Front. Ecol. Environ. 2013, 11, 138–146. [Google Scholar] [CrossRef] [Green Version]
- Wheatley, M.; Johnson, C. Factors limiting our understanding of ecological scale. Ecol. Complex. 2009, 6, 150–159. [Google Scholar] [CrossRef]
- Bergen, K.M.; Goetz, S.J.; Dubayah, R.O.; Henebry, G.M.; Hunsaker, C.T.; Imhoff, M.L.; Nelson, R.F.; Parker, G.G.; Radeloff, V.C. Remote sensing of vegetation 3-D structure for biodiversity and habitat: Review and implications for lidar and radar spaceborne missions. J. Geophys. Res. Biogeosciences 2009, 114, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Wulder, M.A.; Bater, C.W.; Coops, N.C.; Hilker, T.; White, J.C. The role of LiDAR in sustainable forest management. For. Chron. 2008, 84, 807–826. [Google Scholar] [CrossRef] [Green Version]
- Forsmoo, J.; Anderson, K.; Macleod, C.J.A.; Wilkinson, M.E.; DeBell, L.; Brazier, R.E. Structure from motion photogrammetry in ecology: Does the choice of software matter? Ecol. Evol. 2019, 9, 12964–12979. [Google Scholar] [CrossRef]
- Colomina, I.; Molina, P. Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS J. Photogramm. Remote. Sens. 2014, 92, 79–97. [Google Scholar] [CrossRef] [Green Version]
- Cunliffe, A.M.; Brazier, R.E.; Anderson, K. Ultra-fine grain landscape-scale quantification of dryland vegetation structure with drone-acquired structure-from-motion photogrammetry. Remote Sens. Environ. 2016, 183, 129–143. [Google Scholar] [CrossRef] [Green Version]
- van Iersel, W.; Straatsma, M.; Addink, E.; Middelkoop, H. Monitoring height and greenness of non-woody floodplain vegetation with UAV time series. ISPRS J. Photogramm. Remote Sens. 2018, 141, 112–123. [Google Scholar] [CrossRef]
- Quirós Vargas, J.J.; Zhang, C.; Smitchger, J.A.; McGee, R.J.; Sankaran, S. Phenotyping of Plant Biomass and Performance Traits Using Remote Sensing Techniques in Pea (Pisum sativum, L.). Sensors 2019, 19, 2031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, J.C.; Wulder, M.A.; Vastaranta, M.; Coops, N.C.; Pitt, D.; Woods, M. The utility of image-based point clouds for forest inventory: A comparison with airborne laser scanning. Forests 2013, 4, 518–536. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; McDermid, G.J.; Castilla, G.; Linke, J. Measuring vegetation height in linear disturbances in the boreal forest with UAV photogrammetry. Remote Sens. 2017, 9, 1257. [Google Scholar] [CrossRef] [Green Version]
- Zahawi, R.A.; Dandois, J.P.; Holl, K.D.; Nadwodny, D.; Reid, J.L.; Ellis, E.C. Using lightweight unmanned aerial vehicles to monitor tropical forest recovery. Biol. Conserv. 2015, 186, 287–295. [Google Scholar] [CrossRef] [Green Version]
- James, M.R.; Robson, S. Mitigating systematic error in topographic models derived from UAV and ground-based image networks. Earth Surf. Process. Landf. 2014, 39, 1413–1420. [Google Scholar] [CrossRef] [Green Version]
- Government of Canada. Natural Gas Facts. Available online: https://www.nrcan.gc.ca/science-data/data-analysis/energy-data-analysis/energy-facts/natural-gas-facts/20067#L1 (accessed on 1 June 2020).
- Canada Energy Regulator. Canada’s Energy Future 2020; Canada Energy Regulator: Calgary, AB, Canada, 2020. [Google Scholar]
- Northrup, J.M.; Wittemyer, G. Characterising the impacts of emerging energy development on wildlife, with an eye towards mitigation. Ecol. Lett. 2013, 16, 112–125. [Google Scholar] [CrossRef]
- Dabros, A.; James Hammond, H.E.; Pinzon, J.; Pinno, B.; Langor, D. Edge influence of low-impact seismic lines for oil exploration on upland forest vegetation in northern Alberta (Canada). For. Ecol. Manage. 2017, 400, 278–288. [Google Scholar] [CrossRef]
- Government of Canada. Considerations in Developing Oil and Gas Industry Best Practices in the North; Government of Canada: Whitehorse, YT, Canada, 2009.
- Canadian Energy Regulator. Lifecycle Approach. Available online: https://www.cer-rec.gc.ca/en/safety-environment/environment/index.html (accessed on 1 June 2020).
- TC Energy. Year Three Caribou Monitoring Report—NWML, LKXO and Chinchaga Project; TC Energy: Calgary, AB, Canada, 2020. [Google Scholar]
- Alberta Energy Regulator Data and Reports: Pipelines and Other Infrastructure. Available online: https://www.aer.ca/providing-information/data-and-reports/statistical-reports/st98/pipelines-and-other-infrastructure (accessed on 1 June 2020).
- Desserud, P.; Gates, C.C.; Adams, B.; Revel, R.D. Restoration of foothills rough fescue grassland following pipeline disturbance in Southwestern Alberta. J. Environ. Manage. 2010, 91, 2763–2770. [Google Scholar] [CrossRef]
- Caners, R.T.; Lieffers, V.J. Divergent pathways of successional recovery for in situ oil sands exploration drilling pads on wooded moderate-rich fens in alberta, Canada. Restor. Ecol. 2014, 22, 657–667. [Google Scholar] [CrossRef]
- Barker, J. Minimum disturbance pipeline construction in boreal forests to reduce restoration challenges. In Proceedings of the SER-WC: Restoration for Resilience—Ecological Restoration in the 21st Century, Burnaby, BC, Canada, 14–16 February 2018; pp. 1–29. [Google Scholar]
- Government of Alberta. Provincial Woodland Caribou Range Plan: Alberta’s Approach to Achieve Caribou Recovery (Draft); Government of Alberta: Edmonton, AB, Canada, 2017.
- TC Energy. Restoration Plan for the Chinchaga Lateral Loop No. 3 (Chinchaga Section); TC Energy: Calgary, AB, Canada, 2014. [Google Scholar]
- Eyre, M.; Kerkhof, S.; Pfeiffer, Z.; Titman, S. Cumulative Effects, woodland caribou and NEB regulated pipelines—A regultory perspective. In Proceedings of the 11th Symposium on Environmental Concerns in RoW Management, Halifax, NS, Canada, 20–23 September 2015; pp. 267–279. [Google Scholar]
- Government of Alberta. Weed Control Act. Alberta Regulation AR 171/2001; Government of Alberta: Edmonton, AB, Canada, 2010.
- TC Energy. Third Year Post-Construction Monitoring Report for the NOVA Gas Transmission LTD. Musreau Cutbank Expension; TC Energy: Calgary, AB, Canada, 2019. [Google Scholar]
- Natural Regions Committee. Natural Regions and Subregions of Alberta. Compiled by D.J. Downing and W.W. Pettapiece; Natural Regions Committee: Edmonton, AB, Canada, 2006. [Google Scholar]
- Alberta Parks. Natural Regions and Subregions of Alberta: A Framework for Alberta’s Parks; Alberta Parks: Edmonton, AB, Canada, 2015. [Google Scholar]
- Willkomm, M.; Bolten, A.; Bareth, G. Non-destructive monitoring of rice by hyperspectral in-field spectrometry and UAV-based remote sensing: Case study of field-grown rice in North Rhine-Westphalia, Germany. Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. ISPRS Arch. 2016, XLI-B1, 1071–1077. [Google Scholar] [CrossRef] [Green Version]
- Province of Alberta. Weed Control Act Statutes of Alberta Chapter W-5.1; Province of Alberta: Edmonton, AB, Canada, 2008; pp. 1–14. [Google Scholar]
- Agisoft LLC. Agisoft Metashape Professional v1.6.3; Agisoft LCC: Saint Petersburg, Russia, 2020. [Google Scholar]
- Chiabrando, F.; Donadio, E.; Rinaudo, F. SfM for orthophoto generation: A winning approach for cultural heritage knowledge. Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. ISPRS Arch. 2015, 40, 91–98. [Google Scholar] [CrossRef] [Green Version]
- Murtiyoso, A.; Grussenmeyer, P.; Börlin, N.; Vandermeerschen, J.; Freville, T. Open source and independent methods for bundle adjustment assessment in close-range UAV photogrammetry. Drones 2018, 2, 3. [Google Scholar] [CrossRef] [Green Version]
- Granshaw, S.I. Bundle Adjustment Methods in Engineering Photogrammetry. Photogramm. Rec. 1980, 10, 181–207. [Google Scholar] [CrossRef]
- Isenburg, M. LAStools-Efficient Tools for LiDAR Processing. Available online: https://rapidlasso.com/lastools/ (accessed on 10 January 2020).
- Anders, N.; Valente, J.; Masselink, R.; Keesstra, S. Comparing Filtering Techniques for Removing Vegetation from UAV-Based Photogrammetric Point Clouds. Drones 2019, 3, 61. [Google Scholar] [CrossRef] [Green Version]
- Goodbody, T.R.H.; Coops, N.C.; Tompalski, P.; Crawford, P.; Day, K.J. Updating residual stem volume estimates using ALS- and UAV-acquired stereo-photogrammetric point clouds. Int. J. Remote Sens. 2016, 38, 2938–2953. [Google Scholar] [CrossRef]
- White, J.C.; Stepper, C.; Tompalski, P.; Coops, N.C.; Wulder, M.A. Comparing ALS and image-based point cloud metrics and modelled forest inventory attributes in a complex coastal forest environment. Forests 2015, 6, 3704–3732. [Google Scholar] [CrossRef]
- Jenness, J.S. Calculating landscape surface area from digital elevation models. Wildl. Soc. Bull. 2004, 32, 829–839. [Google Scholar] [CrossRef]
- Guo, X.; Coops, N.C.; Tompalski, P.; Nielsen, S.E.; Bater, C.W.; John Stadt, J. Regional mapping of vegetation structure for biodiversity monitoring using airborne lidar data. Ecol. Inform. 2017, 38, 50–61. [Google Scholar] [CrossRef]
- Wold, S.; Esbensen, K.; Geladi, P. Principal Component Analysis. Chemom. Intell. Lab. Syst. 1987, 2, 37–52. [Google Scholar] [CrossRef]
- Chiu, T.; Fang, D.P.; Chen, J.; Wang, Y.; Jeris, C. A robust and scalable clustering algorithm for mixed type attributes in large database environment. In Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining, San Francisco, CA, USA, 26–29 August 2001; pp. 263–268. [Google Scholar]
- Tamura, Y.; Obara, N.; Miyamoto, S. A method of two-stage clustering with constraints using agglomerative hierarchical algorithm and one-pass k-means++. Adv. Intell. Syst. Comput. 2014, 2, 9–19. [Google Scholar]
- Ward, J.H. Hierarchical Grouping to Optimize an Objective Function Author. J. Am. Stat. Assoc. 1963, 58, 236–244. [Google Scholar] [CrossRef]
- Dunn, O.J. Multiple Comparisons Using Rank Sums. Technometrics 1964, 6, 241–252. [Google Scholar] [CrossRef]
- Kruskal, W.H.; Wallis, W.A. Use of Ranks in One-Criterion Variance Analysis. J. Am. Stat. Assoc. 1952, 47, 583–621. [Google Scholar] [CrossRef]
- Naimi, B.; Hamm, N.A.S.; Groen, T.A.; Skidmore, A.K.; Toxopeus, A.G.; Alibakhshi, S. ELSA: Entropy-based local indicator of spatial association. Spat. Stat. 2019, 29, 66–88. [Google Scholar] [CrossRef]
- Crutsinger, G.M.; Short, J.; Sollenberger, R. The future of UAVs in ecology: An insider perspective from the Silicon Valley drone industry. J. Unmanned Veh. Syst. 2016, 4, 161–168. [Google Scholar] [CrossRef] [Green Version]
- Pádua, L.; Vanko, J.; Hruška, J.; Adão, T.; Sousa, J.J.; Peres, E.; Morais, R. UAS, sensors, and data processing in agroforestry: A review towards practical applications. Int. J. Remote Sens. 2017, 38, 2349–2391. [Google Scholar] [CrossRef]
- Transport Canada. Canadian Aviation Regulations Part IX; Transport Canada: Ottowa, OT, Canada, 2020. [Google Scholar]
- European Union Aviation Safety Agency. Easy Access Rules for Unmanned Aircraft Systems (Regulations (EU) 2019/947 and (EU) 2019/945); European Union Aviation Safety Agency: Brussels, Belgium, 2020. [Google Scholar]
- Tu, Y.H.; Phinn, S.; Johansen, K.; Robson, A.; Wu, D. Optimising drone flight planning for measuring horticultural tree crop structure. ISPRS J. Photogramm. Remote. Sens. 2020, 160, 83–96. [Google Scholar] [CrossRef] [Green Version]
- Graham, A.; Coops, N.C.; Wilcox, M.; Plowright, A. Evaluation of ground surface models derived from unmanned aerial systems with digital aerial photogrammetry in a disturbed conifer forest. Remote Sens. 2019, 11, 84. [Google Scholar] [CrossRef] [Green Version]
- Cao, J.; Leng, W.; Liu, K.; Liu, L.; He, Z.; Zhu, Y. Object-Based Mangrove Species Classification Using Unmanned Aerial Vehicle Hyperspectral Images and Digital Surface Models. Remote. Sens. 2018, 10, 89. [Google Scholar] [CrossRef] [Green Version]
- Gann, G.D.; McDonald, T.; Walder, B.; Aronson, J.; Nelson, C.R.; Jonson, J.; Hallett, J.G.; Eisenberg, C.; Guariguata, M.R.; Liu, J.; et al. International principles and standards for the practice of ecological restoration. Second edition. Restor. Ecol. 2019, 27, 1–46. [Google Scholar] [CrossRef] [Green Version]
Pipeline | ConstructionYear | Ecoregion | Elevation (m) | Slope (°) and Aspect | Site Area (ha) |
---|---|---|---|---|---|
A | 2009 | LBH | 720 | Level | 2.6 |
B | 2014 | LBH | 785 | Level | 8.2 |
C | 2005 | UF | 1180 | 7.5, NW | 1.6 |
Life Form | Observed Species | Occurrence |
---|---|---|
Coniferous trees | Black Spruce (Picea mariana) Lodgepole Pine (Pinus contorta) White Spruce (Picea glauca) | A, B, C A, B, C A |
Deciduous trees and shrubs | Aspen Poplar (Populus tremuloides) Balsam Poplar (Populus balsamifera) Bog Birch (Betula pumila) Willow (Salix Spp.) | A, B B, C B A, B, C |
Perennials | Aster (Symphyotrichum Spp.) Bearberry (Arctostaphylos uva-ursi) Blueberry (Vaccinium Spp.) Canada buffaloberry (Shepherdia Canadensis) Cloudberry (Rubus chamaemorus) Common Yarrow (Achillea millefolium) Cranberry (Vaccinium Spp.) Dandelion (Taraxacum officinale) Fireweed (Chamerion angustifolium) Honeysuckle (Lonicera dioica) Horsetail (Equisetum arvense) Indian Paintbrush (Castilleja Spp.) Labrador Tea (Rhododendron groenlandicum) Milkvetch (Cicer milkvetch) Raspberry (Rubus Spp.) Strawberry (Fragaria virginiana) White Clover (Trifolium repens) White Peavine (Lathyrus palustris) Wild Rose (Rosa acicularis) Yellow Rattle (Rhinanthus minor) Yellow Sweet Clover (Melilotus officinalis) | A, B, C B C A B A, B A A, C A, B, C C A, B, C C A A, B C A, C A, B, C A A, B B, C B |
Listed weeds | Broad-leaved Pepper-grass (Lepidium latifolium) Marsh Thistle (Cirsium palustre) Meadow Hawkweed (Hieracium caespitosum) Perennial Sow Thistle (Sonchus arvensis) | A A A A |
Graminoids | Short-growing graminoids (sp. not recorded Tall-growing graminoids (sp. not recorded) | A, B, C C |
Mosses | Sp. not recorded | A, B, C |
Study Site | Platform | Date | Time | Weather | HAGL (m) | Forward Overlap (%) | GSD (cm/px) | Point Density (pts m−2) |
---|---|---|---|---|---|---|---|---|
A | Phantom | 2019-08-14 | 16:20 | Overcast | 90 | 75 | 2.5 | 885 |
B | Phantom | 2019-08-24 | 13:15 | Overcast | 180 | 80 | 4.9 | 940 |
B | Phantom | 2019-08-25 | 09:40 | Overcast | 125 | 85 | 3.4 | 970 |
C | Matrice | 2019-09-17 | 11:00 | Sunny | 110 | 90 | 2.4 | 1190 |
Metric | Description | Category |
---|---|---|
Pn | nth percentile point height. | Height |
Mean | Mean point height. | Height |
Max * | Maximum point height. | Height |
SD | Standard deviation of point heights. | Height Variability |
Skew, Kurt | Skewness and kurtosis of point heights. | Height Variability |
COV * | Coefficient of variation is the ratio of standard deviation to mean height. | Height Variability |
RI * | Rumple index is the ratio of canopy surface area, calculated using Delaunay triangulation, to projected ground area. | Surface Complexity |
%P_below2.5, %P2.5_25 *, %P25_50, %P50_75 | % Points, i.e., density, within lower height strata. For example, between 2.5 and 25 cm. | Cover |
%P25_200 * | % Points, i.e., density, between 25 and 200 cm representing total vegetation cover. | Cover |
Max | RI | COV | %P2.5_25 | %P25_200 | |
---|---|---|---|---|---|
Max | 1.0 | ||||
RI | 0.80 | 1.0 | |||
COV | −0.38 | −0.20 | 1.0 | ||
%P2.5_25 | −0.20 | −0.15 | −0.44 | 1.0 | |
%P25_200 | 0.78 | 0.52 | −0.54 | −0.39 | 1.0 |
Class | Cluster(s) | Structural Description | Observed Life Forms |
---|---|---|---|
1 | 1 and 9 | Tall and complex vegetation structures. | Woody vegetation, e.g., willow. |
2 | 4 and 5 | Mid-tall vegetation structures with low-moderate height variability. | Tall graminoids and perennials. |
3 | 3 and 8 | Short vegetation structures with low-moderate height variability. | Short graminoids and perennials, e.g., white clover. |
4 | 2 | Structures absent and very flat canopy surface. | Bare soil, mosses, and short graminoids. |
5 | 6 | Structures absent and flat canopy surface. | Seedlings, mosses, and short graminoids. |
6 | 7 | Very short vegetation structures and flat, or closed, canopy surface. | Short graminoids and perennials possibly side-by-side with seedlings. |
7 | N.A. | Vegetation above 2 m, excluded from cluster analysis. | N.A. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nuijten, R.J.G.; Coops, N.C.; Watson, C.; Theberge, D. Monitoring the Structure of Regenerating Vegetation Using Drone-Based Digital Aerial Photogrammetry. Remote Sens. 2021, 13, 1942. https://doi.org/10.3390/rs13101942
Nuijten RJG, Coops NC, Watson C, Theberge D. Monitoring the Structure of Regenerating Vegetation Using Drone-Based Digital Aerial Photogrammetry. Remote Sensing. 2021; 13(10):1942. https://doi.org/10.3390/rs13101942
Chicago/Turabian StyleNuijten, Rik J. G., Nicholas C. Coops, Catherine Watson, and Dustin Theberge. 2021. "Monitoring the Structure of Regenerating Vegetation Using Drone-Based Digital Aerial Photogrammetry" Remote Sensing 13, no. 10: 1942. https://doi.org/10.3390/rs13101942
APA StyleNuijten, R. J. G., Coops, N. C., Watson, C., & Theberge, D. (2021). Monitoring the Structure of Regenerating Vegetation Using Drone-Based Digital Aerial Photogrammetry. Remote Sensing, 13(10), 1942. https://doi.org/10.3390/rs13101942