Urban Heat Island Effects on Megacities in Desert Environments Using Spatial Network Analysis and Remote Sensing Data: A Case Study from Western Saudi Arabia
Abstract
:1. Introduction
- (a)
- Exploring the climatic conditions and different urban heat island (UHI) types, and revising the definition of UHI in Makkah city;
- (b)
- Extracting LST using different Landsat-8 images for the winter and summer seasons;
- (c)
- Analyzing and comparing the effect of the urban fabric on the LST for two districts in Makkah city.
2. Research Methodology
2.1. Site Description
2.2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations. World Population Projected to Reach 9.7 Billion by 2050. Available online: http://www.un.org/en/development/desa/news/population/2015-report.html (accessed on 27 February 2021).
- Mohamed, M.; Fatani, K.; Khateeb, S.A. Sustainable socio-cultural guidelines for neighborhood design in jeddah. Procedia J. Environ. Sci. Green Urban. 2017, 37, 584–593. [Google Scholar] [CrossRef]
- Fatani, K.; Mohamed, M.; Al-Khateeb, S. Survey Based Sustainable Socio-Cultural Guidelines for Neighbourhood Design in Jeddah. IOP Conf. Ser. Earth Environ. Sci. 2019, 385, 012050. [Google Scholar] [CrossRef]
- UN-Habitat. Urban Themes. Available online: https://unhabitat.org/urban-themes/climate-change/ (accessed on 6 March 2021).
- UN-Habitat. City Prosperity Initiative (CPI). Available online: http://cpi.unhabitat.org/ (accessed on 22 February 2021).
- Li, J.; Zheng, B.; Shen, W.; Xiang, Y.; Chen, X.; Qi, Z. Cooling and energy-saving performance of different green wall design: A simulation study of a block. Energies 2019, 12, 2912. [Google Scholar] [CrossRef] [Green Version]
- Hellström, T. Dimensions of environmentally sustainable innovation: The structure of eco-innovation concepts. Sustain. Dev. 2007, 15, 148–159. [Google Scholar] [CrossRef]
- Lin, P.; Gou, Z.; Lau, S.; Qin, H. The impact of urban design descriptors on outdoor thermal environment: A literature review. Energies 2017, 10, 2151. [Google Scholar] [CrossRef] [Green Version]
- Aram, F.; Solgi, E.; Higueras García, E.; Mosavi, A.; Várkonyi-Kóczy, A.R. The cooling effect of large-scale urban parks on surrounding area thermal comfort. Energies 2019, 12, 3904. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, B.; Fisher, K.; Golden, J.; Hair, L.; Haselbach, L.; Hitchcock, D.; Kaloush, K.; Pomerantz, M.; Tran, N.; Waye, D. Reducing Urban Heat Islands—Compendium of Strategies-Cool Pavements; The National Academies of Sciences, Engineering, and Medicine: Washington, DC, USA, 2008. [Google Scholar]
- Sailor, D. Mitigation of Urban Heat Islands—Recent Progress and Future Prospects. 2006. Available online: https://ams.confex.com/ams/Annual2006/techprogram/paper_105264.htm (accessed on 22 February 2021).
- Rajagopalan, P.; Lim, K.C.; Jamei, E. Urban heat island and wind flow characteristics of a tropical city. Sol. Energy 2014, 107, 159–170. [Google Scholar] [CrossRef]
- Nuruzzaman, M. Urban Heat Island: Causes, Effects and Mitigation Measures—A Review. Int. J. Environ. Monit. Anal. 2015, 3. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, M. Traditional ways of dealing with climate in Egypt. In Proceedings of the The Seventh International Conference of Sustainable Architecture and Urban Development (SAUD 2010), Amman, Jordan, 12–14 July 2010; pp. 247–266. [Google Scholar]
- Mohamed, M.; Gado, T.; Osman, M. Investigating the intelligence of the low-tech earth architecture of the Sahara: A feasibility study from the western desert of Egypt. Intell. Build. Int. (IBI) 2010, 2, 179–197. [Google Scholar] [CrossRef]
- Wang, Y.; Berardi, U.; Akbari, H. Comparing the effects of urban heat island mitigation strategies for Toronto, Canada. Energy Build. 2016, 114, 2–19. [Google Scholar] [CrossRef]
- Siti Halipah, I.; Ibrahim, N.; Wahid, J.; Goh, N.; Koesmeri, D.; Mohd Nawi, M.N. The impact of road pavement on Urban Heat Island (UHI) phenomenon. Int. J. Technol. 2018, 9, 1597. [Google Scholar] [CrossRef] [Green Version]
- Wonorahardjo, S.; Sutjahja, I.M.; Mardiyati, Y.; Andoni, H.; Thomas, D.; Achsani, R.A.; Steven, S. Characterising thermal behaviour of buildings and its effect on urban heat island in tropical areas. Int. J. Energy Environ. Eng. 2019. [Google Scholar] [CrossRef] [Green Version]
- Coseo, P.J.; Larsen, L. How factors of land use/land cover, building configuration, and adjacent heat sources and sinks explain Urban Heat Islands in Chicago. Landsc. Urban Plan. 2014, 125, 117–129. [Google Scholar] [CrossRef]
- Arrau, C.P.; Peña, M.A. Heat Island Types. Available online: https://www.urbanheatislands.com/heat-island-types (accessed on 6 March 2021).
- Wong, E. Reducing urban heat islands: Compendium of strategies—Urban heat island basics. In The Climate Protection Partnership Division; Environmental Protection Agency’s Office of Atmospheric Programs: Washington, DC, USA, 2014. [Google Scholar]
- Maleki, A.; Mahdavi, A. Evaluation of Urban Heat Islands mitigation strategies using 3dimentional urban micro-climate model envi-met. Asian J. Civ. Eng. (BHRC) 2016, 17, 357–371. [Google Scholar]
- Tan, J.; Zheng, Y.; Tang, X.; Guo, C.; Li, L.; Song, G.; Zhen, X.; Yuan, D.; Kalkstein, A.J.; Li, F. The urban heat island and its impact on heat waves and human health in Shanghai. Int. J. Biometeorol. 2010, 54, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Bou-Zeid, E. Synergistic Interactions between Urban Heat Islands and Heat Waves: The Impact in Cities Is Larger than the Sum of Its Parts*. J. Appl. Meteorol. Climatol. 2013, 52, 2051–2064. [Google Scholar] [CrossRef] [Green Version]
- Amorim, M.C.d.C.T. Daily evolution of urban heat islands in a Brazilian tropical continental climate during dry and rainy periods. Urban Clim. 2020, 34, 100715. [Google Scholar] [CrossRef]
- Anjos, M.; Targino, A.C.; Krecl, P.; Oukawa, G.Y.; Braga, R.F. Analysis of the urban heat island under different synoptic patterns using local climate zones. Build. Environ. 2020, 185, 107268. [Google Scholar] [CrossRef]
- Elliot, T.; Babí Almenar, J.; Rugani, B. Modelling the relationships between urban land cover change and local climate regulation to estimate urban heat island effect. Urban For. Urban Green. 2020, 50, 126650. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Q.; Yang, L.; Mu, K.; Zhang, M.; Liu, J. Urban heat island effects of various urban morphologies under regional climate conditions. Sci. Total Environ. 2020, 743, 140589. [Google Scholar] [CrossRef] [PubMed]
- Parker, J. The Leeds urban heat island and its implications for energy use and thermal comfort. Energy Build. 2020, 110636. [Google Scholar] [CrossRef]
- Pioppi, B.; Pigliautile, I.; Pisello, A.L. Human-centric microclimate analysis of Urban Heat Island: Wearable sensing and data-driven techniques for identifying mitigation strategies in New York City. Urban Clim. 2020, 34, 100716. [Google Scholar] [CrossRef]
- Zinzi, M.; Agnoli, S.; Burattini, C.; Mattoni, B. On the thermal response of buildings under the synergic effect of heat waves and urban heat island. Sol. Energy 2020, 211, 1270–1282. [Google Scholar] [CrossRef]
- Chen, F. Urban morphology and citizens’ life. In Encyclopedia of Quality of Life and Well-Being Research; Michalos, A.C., Ed.; Springer Netherlands: Dordrecht, The Netherlands, 2014; pp. 6850–6855. [Google Scholar]
- Marshall, W.E.A.N.W.G. Street network types and road safety. Urban Des. Int. 2010, 15, 133–147. [Google Scholar] [CrossRef]
- Battisti, A. Bioclimatic architecture and urban morphology. Studies on intermediate urban open spaces. Energies 2020, 13, 5819. [Google Scholar] [CrossRef]
- Mohajerani, A.; Bakaric, J.; Jeffrey-Bailey, T. The urban heat island effect, its causes, and mitigation, with reference to the thermal properties of asphalt concrete. J. Environ. Manag. 2017, 197, 522–538. [Google Scholar] [CrossRef] [PubMed]
- Rode, P.; Keim, C.; Robazza, G.; Viejo, P.; Schofield, J. Cities and energy: Urban morphology and residential heat-energy demand. Environ. Plan. B Plan. Des. 2014, 41, 138–162. [Google Scholar] [CrossRef] [Green Version]
- Jung, S.; Yoon, S. Changes in sunlight and outdoor thermal environment conditions based on the layout plan of flat type apartment houses. Energies 2015, 8, 9155–9172. [Google Scholar] [CrossRef] [Green Version]
- Liang, Z.; Wang, Y.; Huang, J.; Wei, F.; Wu, S.; Shen, J.; Sun, F.; Li, S. Seasonal and diurnal variations in the relationships between urban form and the urban heat island effect. Energies 2020, 13, 5909. [Google Scholar] [CrossRef]
- Mohammed, Y.; Salman, A. Effect of urban geometry and green area on the formation of the urban heat island in Baghdad city. MATEC Web. Conf. 2018, 162, 05025. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.-j.; Han, J.-j.; Zhao, X.; Dai, X.-y.; Zhang, H. Understanding the role of optimized land use/land cover components in mitigating summertime intra-surface urban heat island effect: A study on downtown Shanghai, China. Energies 2020, 13, 1678. [Google Scholar] [CrossRef] [Green Version]
- Elkadiri, R.; Manche, C.; Sultan, M.; Al-Dousari, A.; Uddin, S.; Chouinard, K.; Abotalib, A.Z. Development of a coupled spatiotemporal algal bloom model for coastal areas: A remote sensing and data mining-based approach. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 5159–5171. [Google Scholar] [CrossRef]
- Zhou, D.; Xiao, J.; Bonafoni, S.; Berger, C.; Deilami, K.; Zhou, Y.; Frolking, S.; Yao, R.; Qiao, Z.; Sobrino, J.A. Satellite remote sensing of surface urban heat islands: Progress, challenges, and perspectives. Remote Sens. Environ. 2019, 11, 48. [Google Scholar] [CrossRef] [Green Version]
- Rao, P.K. Remote sensing of urban “heat islands” from an environmental satellite. Bull. Am. Meteorol. Soc. 1972, 53, 647–648. [Google Scholar]
- Carnahan, W.H.; Larson, R.C. An analysis of an urban heat sink. Remote Sens. Environ. 1990, 33, 65–71. [Google Scholar] [CrossRef]
- Nichol, J. Remote sensing of urban heat islands by day and night. Photogramm. Eng. Remote Sens. 2005, 71, 613–621. [Google Scholar] [CrossRef]
- Almazroui, M.; Nazrul Islam, M.; Athar, H.; Jones, P.D.; Rahman, M.A. Recent climate change in the Arabian Peninsula: Annual rainfall and temperature analysis of Saudi Arabia for 1978–2009. Int. J. Climatol. 2012, 32, 953–966. [Google Scholar] [CrossRef]
- Worldometer. Saudi Arabia Population. Available online: https://www.worldometers.info/world-population/saudi-arabia-population/ (accessed on 21 February 2021).
- Greenwood, W.R.; Hadley, D.G.; Anderson, R.E.; Fleck, R.J.; Schmidt, D.L. A Discussion on global tec-tonics in Proterozoic times-Late Proterozoic cratonization in southwest Saudi Arabia Philosophical Transac-tions of the Royal Society of London. Philos. Trans. R. Soc. Lond. Ser. AMath. Phys. Sci. 1976, 280, 517–527. [Google Scholar] [CrossRef]
- Moore, T.A.; Al-Rehaili, M.H. Geologic Map of the Makkah Quadrangle, Saudi Arabian Directorate General of Mineral Resources Geoscience Map GM-107C. 1989. Available online: https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/ReferencesPapers.aspx?ReferenceID=1611733 (accessed on 21 February 2021).
- Abotalib, A.Z.; Mohamed, R.S.A.. Surface evidences supporting a probable new concept for the river systems evolution in Egypt: A remote sensing overview. Environ. Earth Sci. 2013, 69, 1621–1635. [Google Scholar] [CrossRef]
- Othman, A.; Shaaban, F.; Abotalib, A.Z.; El-Saoud, W.A.; Gabr, S.S.; Habeebullah, T.; Hegazy, D. Hazard assessment of rockfalls in mountainous urban areas, western saudi arabia. Arab. J. Sci. Eng. 2020. [Google Scholar] [CrossRef]
- TopView. Makkah. Available online: https://ngmdb.usgs.gov/topoview/viewer/# (accessed on 26 February 2021).
- Marsh, A. The Thermal Simulation Engine; Autodesk Inc.: San Rafael, USA, 2008. [Google Scholar]
- GloVis U.G.V.V. United States Geological Survey. Available online: http://glovis.usgs.gov/ (accessed on 26 February 2021).
- Tsou, J.; Zhuang, J.; Li, Y.; Zhang, Y. Urban heat island assessment using the landsat 8 data: A case study in Shenzhen and Hong Kong. Urban Sci. 2017, 1, 10. [Google Scholar] [CrossRef]
- Rajeshwari, A.; Mani, N.D. Estimation of land surface temperature of dindigul district using landsat 8 data. Int. J. Res. Eng. Technol. 2014, 3, 122–126. [Google Scholar] [CrossRef] [Green Version]
- Hague, P.; Harris, P. Sampling and Statistics; Kogan Page: London, UK, 1993; p. 144. [Google Scholar]
- Hillier, B.; Penn, A.; Hanson, J.; Grajewski, T.; Xu, J. Natural movement: Or, configuration and attraction in urban pedestrian movement. Environ. Plan. B Plan. Des. 1993, 20, 29–66. [Google Scholar] [CrossRef] [Green Version]
- Hillier, B.; Sahbaz, O. An evidence based approach to crime and urban design, or, can we have vitality, sustainability and security all at once? Bartlett Sch. Grad. Stud. Univ. Coll. Lond. 2008, 23, 1–28. [Google Scholar]
- Öztürk Hacar, Ö.; Gülgen, F.; Bilgi, S.; Kılıç, B. Accessibility analysis of street networks using space syntax. In Proceedings of the 7th International Conference on Cartography & GIS, Sozopol, Bulgaria, 18–23 June 2018. [Google Scholar]
- Crawley, D.; Lawrie, L. Development of global Typical Meteorological Years (TMYx)(2019). Last Accessed 2020, 2, 5. [Google Scholar]
- Mohamed, M. An approach to integrate the environmental impact assessment process in the early stages of design. In Proceedings of the The First International Engineering Conference Hosting Major International Events Innovation, Creativity and Impact Assessment, Housing &Building National Research Center, Cairo, Egypt, 15–18 January 2013. [Google Scholar]
- Mohamed, M.; Gado, T. Application of computer based environmental assessment and optimization tools: An approach for appropriating buildings. In Proceedings of the 3rd International Conference ArchCairo 2006, Appropriating Architecture taming Urbanism in the decades of transformation, Cairo, Egypt, 21–23 February 2006; pp. 592–604. [Google Scholar]
- Nicol, J.F.; Humphreys, M.A. Adaptive thermal comfort and sustainable thermal standards for buildings. Energy Build. 2002, 34, 563–572. [Google Scholar] [CrossRef]
- Pi Kappa Alpha. Makkah CAD Files; Pi Kappa Alpha: Memphis, TN, USA, 2021. [Google Scholar]
- Hillier, B.H.J. The Social Logic of Space; Cambridge University Press: Cambridge, UK, 1984. [Google Scholar]
- Hillier, B. Space is the Machine: A Configurational Theory of Architecture; Space Syntax: London, UK, 2007. [Google Scholar]
- Salvati, A.; Monti, P.; Coch Roura, H.; Cecere, C. Climatic performance of urban textures: Analysis tools for a Mediterranean urban context. Energy Build. 2019, 185, 162–179. [Google Scholar] [CrossRef]
- Evola, G.; Gagliano, A.; Fichera, A.; Marletta, L.; Martinico, F.; Nocera, F.; Pagano, A. UHI effects and strategies to improve outdoor thermal comfort in dense and old neighbourhoods. Energy Procedia 2017, 134, 692–701. [Google Scholar] [CrossRef]
- Lemus-Canovas, M.; Martin-Vide, J.; Moreno-Garcia, M.C.; Lopez-Bustins, J.A. Estimating Barcelona’s metropolitan daytime hot and cold poles using Landsat-8 Land Surface Temperature. Sci. Total Environ. 2020, 699, 134307. [Google Scholar] [CrossRef] [PubMed]
- Equere, V.; Mirzaei, P.A.; Riffat, S.; Wang, Y. Integration of topological aspect of city terrains to predict the spatial distribution of urban heat island using GIS and ANN. Sustain. Cities Soc. 2021, 69, 102825. [Google Scholar] [CrossRef]
- He, B.-J.; Ding, L.; Prasad, D. Relationships among local-scale urban morphology, urban ventilation, urban heat island and outdoor thermal comfort under sea breeze influence. Sustain. Cities Soc. 2020, 60, 102289. [Google Scholar] [CrossRef]
- Mady Mohamed, A.A.; Noureddine, Z.; Soufiane, F. Predicting the limits of the oasis effect as a cooling phenomenon in hot deserts, An applied study on the Sahara oases. J. Arid. Environ. 2019, 24, 255–266. [Google Scholar]
- Mohamed, M.; Soufiane, F.; Atef, A.; Salaheddine, D. Quantifying the effectiveness of mass proportions and the orientation for buildings on thermal performance in Tebessa, Algeria. IOP Conf. Ser. Earth Environ. Sci. 2019, 397, 012008. [Google Scholar] [CrossRef]
- Shawesh, R.; Mohamed, M. Post occupancy evaluation of outdoor thermal comfort in hot arid zone. Int. J. Low Carbon Technol. 2021, 16, 50–60. [Google Scholar] [CrossRef]
- Othman, A.; Abotalib, A.Z. Land subsidence triggered by groundwater withdrawal under hyper-arid conditions: Case study from Central Saudi Arabia. Environ. Earth Sci. 2019, 78, 243. [Google Scholar] [CrossRef]
- Lazzarini, M.; Marpu, P.R.; Ghedira, H. Temperature-land cover interactions: The inversion of urban heat island phenomenon in desert city areas. Remote Sens. Environ. 2013, 130, 136–152. [Google Scholar] [CrossRef]
- Kim, S.W.; Brown, R.D. Urban heat island (UHI) intensity and magnitude estimations: A systematic literature review. Sci. Total Environ. 2021, 779, 146389. [Google Scholar] [CrossRef]
- Dewan, A.; Kiselev, G.; Botje, D.; Mahmud, G.I.; Bhuian, M.H.; Hassan, Q.K. Surface urban heat island intensity in five major cities of Bangladesh: Patterns, drivers and trends. Sustain. Cities Soc. 2021, 71, 102926. [Google Scholar] [CrossRef]
- Khare, V.R.; Vajpai, A.; Gupta, D. A big picture of urban heat island mitigation strategies and recommendation for India. Urban Clim. 2021, 37, 100845. [Google Scholar] [CrossRef]
- Liu, H.; Huang, B.; Zhan, Q.; Gao, S.; Li, R.; Fan, Z. The influence of urban form on surface urban heat island and its planning implications: Evidence from 1288 urban clusters in China. Sustain. Cities Soc. 2021, 102987. [Google Scholar] [CrossRef]
- Mushtaha, E.; Shareef, S.; Alsyouf, I.; Mori, T.; Kayed, A.; Abdelrahim, M.; Albannay, S. A study of the impact of major Urban Heat Island factors in a hot climate courtyard: The case of the University of Sharjah, UAE. Sustain. Cities Soc. 2021, 69, 102844. [Google Scholar] [CrossRef]
Feature | Surface UHI | Atmospheric UHI |
---|---|---|
Temporal Development |
|
|
Peak Intensity (Most intense UHI conditions) | More spatial and temporal variation: | Less variation: |
Day: 18 to 27 °F (10 to 15 °C) | Day: –1.8 to 5.4 °F (–1 to 3 °C) | |
Night: 9 to 18 °F (5 to 10 °C) | Night: 12.6 to 21.6 °F (7 to 12 °C) | |
Typical Identification Method | Indirect measurement:
| Direct measurement:
|
Typical Depiction |
|
|
District | AlSharashef District | AlEskan District | |||
---|---|---|---|---|---|
Temp. | June | December | June | December | |
Mean | 43.39 | 29.98 | 45.23 | 30.72 | |
Min. | 39.32 | 26.23 | 43.45 | 28.08 | |
Max. | 46.72 | 33.83 | 47.38 | 33.34 |
Comparison Item | June | December | ||
---|---|---|---|---|
AlSharashef | AlEskan | AlSharashef | AlEskan | |
Mean temp. | 43.39 | 45.23 | 29.98 | 30.72 |
t-Test | p = <0.001 | p = <0.001 | ||
The difference between the two sets of LSTs of the two districts in June and December (S = significant) | S | S |
District | AlShrashef Cluster | AlEskan Cluster | |||
---|---|---|---|---|---|
Temp. | June | December | June | December | |
Mean | 42.51 | 27.82 | 43.68 | 29.33 | |
Min. | 42.42 | 26.88 | 43.1 | 28.08 | |
Max. | 43.21 | 29.45 | 44.76 | 31.04 |
Comparison Item | June | December | ||
---|---|---|---|---|
AlShrashef | AlEskan | AlShrashef | AlEskan | |
Mean temp. | 42.51 | 43.68 | 27.82 | 29.33 |
t-Test | p ≤ 0.001 | p ≤ 0.001 | ||
The difference between the two sets of LSTs of the two districts in June and December (S = Significant) | S | S |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohamed, M.; Othman, A.; Abotalib, A.Z.; Majrashi, A. Urban Heat Island Effects on Megacities in Desert Environments Using Spatial Network Analysis and Remote Sensing Data: A Case Study from Western Saudi Arabia. Remote Sens. 2021, 13, 1941. https://doi.org/10.3390/rs13101941
Mohamed M, Othman A, Abotalib AZ, Majrashi A. Urban Heat Island Effects on Megacities in Desert Environments Using Spatial Network Analysis and Remote Sensing Data: A Case Study from Western Saudi Arabia. Remote Sensing. 2021; 13(10):1941. https://doi.org/10.3390/rs13101941
Chicago/Turabian StyleMohamed, Mady, Abdullah Othman, Abotalib Z. Abotalib, and Abdulrahman Majrashi. 2021. "Urban Heat Island Effects on Megacities in Desert Environments Using Spatial Network Analysis and Remote Sensing Data: A Case Study from Western Saudi Arabia" Remote Sensing 13, no. 10: 1941. https://doi.org/10.3390/rs13101941
APA StyleMohamed, M., Othman, A., Abotalib, A. Z., & Majrashi, A. (2021). Urban Heat Island Effects on Megacities in Desert Environments Using Spatial Network Analysis and Remote Sensing Data: A Case Study from Western Saudi Arabia. Remote Sensing, 13(10), 1941. https://doi.org/10.3390/rs13101941